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The crossing rela.tions of two-body scattering amplitudes for reactions involving particles with 
spin a.re derived (or the helicity amplitudes of Jacob and Wick. From the crossing relations the 
differential cross section and polarization of the direct channel are related to the analytic continua­
tion of the crossed channel helicity amplitude. The differentia.l cross section is then expressed in 
terms of the crossed channel partial waves, and rules are given for treating the exchange of fixed 
angular momentum poles and Regge poles for two-body processes involving particles with higher spin. 

I. INTRODUCTION 

T HE crossing relations relate the scattering am­
plitude for the direct process of some two­

particle scattering process to the analytic continua­
tion of the scattering amplitude for the crossed 
process. It is the concern of this communication 
to relate the c.m. helicity amplitude for processes 
with spin to the analytic continuation of the c.m. 
helicity' amplitude for the "crossed process." The 
statement of crossing for the helicity amplitudes is 
nseful for practical applications of the dispersion 
theory of strong interactions and has been worked 
out for processes such as 7rN and NN scattering' 
in detail. 

The crossing relations were known in quantum 
field theory as the substitution rule and follow from 
the principle of analytic continuation in the linear 
momenta, which is assumed in the S matrix theory.'" 

• Supported in part by the U. S. Atomic Energy Commis­
aion under Contract A. T. (45-1)1388, Progra.m B . 

1 This problem has also been studled by G. C. Wick and 
T . L. Treuman of the Brookhaven National Laboratory. They 
have reached conclusions similar to ours [Ann. Phys. (N. Y.) 
26, 322 (1964)1. 

, M . L. Goldberger, M. T. Orisaru, S. W. MacDowell, and 
D. Y. Wong, Phys. Rev. 120,2250 (1960) for the NN problem, 
and G. F. Chew, M. L. Goldberge:r, F. E. Low, and Y. Nambu, 
ibid. 106, 1377 (1957) for the rN problem . 

• H. P . Stapp, Phys. Rev. 125, 2139 (1962). 
.. G. F. Chew, S Malnx Theory of Slrong Inleradion3 

(w. A. Benjamin, Inc., New York, 1962). 

It is the latter point of view which we consider here. 
In Sec. II, the crossing relations are given for the 
invariant spinor functions (M functions) introduced 
by Stapp.' And from the crossing relations for the 
M functions, the crossing relations for the c.m. 
helicity amplitudes are derived. The crossing rela­
tions are given in terms of the crossing matrices, 
which are rotations (unitary matrices in spin space) . 
The details concerning the angles of rotation are 
given in an Appendix. 

In Sec. III, two theorems are proven from the 
crossing relations relating the polarization and dif­
ferential cross section to the C.m. helicity amplitude 
for the "crossed process." 

In Sec. IV, the cross section for a two-body 
reaction is related to the partial wave helicity 
amplitudes of the "crossed reaction," and simple 
rules are given for the calculation of the cross 
section due to the exchange of a fixed angular 
momentum pole or a Regge pole for processes 
involving particles with spin. 

II. CROSSING MATRlCES 

We begin with a discussion of the kinematic 
preliminaries. Let the mass, spin, and momentum 
of the particles in the two-particle process be denoted 
by m;, s" and k;, where i = 1,2,3, 4; we will denote 
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s. k. m. 

S, k, m, 5. k, m, 

FlO. I. Two-body scattering 
diagram. 

the helicities of the particles hy lower-<:ase Greek 
letters when the need arises. There are three physical 
processes related by analytic continuation of the 
linear momenta. 

(i) 

(ii) 

and 

+ 2 -> 3 + 4, 

+3->2+4, 

(iii) 1 + 4 -> 2 + 3. 
All of the momenta are taken to be into the 

scattering diagram Fig. I, and conservation of 4-
momentum reads 

k, + k, + k, + k, = O. (J 1.1 ) 

We define the usual invariants by 

S, k, m, 

FIo. 3. Crossed channel (t­
channel process). 

In the t channel, particle 1 and antiparticle 3 with 
momenta kJ and k3 are incoming, antiparticle 2" 
and particle 4 with momenta -k, and -k, are 
outgoing (Fig. 3). The physical region for the in­
variant variables is 

8 ~ Sml.(t), 

U ~ Uml.(t), (11.4) 

t ;?: max [(m, + m,)', (m, + m,)'j. 

There is another channel, the U channel, where 
the physical region for the invariants is defined by 

S ~ Sml.(U), 

t ~ tm l.(U), (II .5) 

u;?: max [(Tn, + m,)' , (m, + m,)'j . 

and 

s = (kJ + lc2)2 = (ka + k.?, 

t = (k, + k,)' = (k, + k,)', 
In the following, the S channel will be referred 

(II.2) to as the direct channel and the t and U channels 
will be referred to as crossed channels. The S matrix 

U = (k, + k,)' = (k, + k,) ' . 

Each of the momenta has the property' 
, 

k: = m: and 8 + t + U = L m:. i., 
In the 8 channel, particles 1 and 2 with momenta 

k, and k, are incoming, particles 3 and 4 with 
momenta -k, and -k, are outgoing (Fig. 2). The 
physical region for the invariant variables is 

8 ;?: max [(m, + m,)', (m, + m,)']. 

t ~ tml.(S) , (J 1.3) 

u ~ Uml,,(S), 

since the masses are unequal the mllliffium mo­
mentum transfers tmia and u .. ;" are not zero. G 

s. -k. m, 

S, k, m, 

s. -k . m. 

5. k, m. 

FJG. 2. Direct channel (,,_ 
channel process ). 

• The metric here is such tha.t A . B - A °8° - A . B, 
where A - (A ", A) and B .,. (BO, B) are 4-vcctors . 

• We wiU have no need to know the precise value of the 
minimum momentum transfers. The mmimum momentum 
transfers tlld .. s.od 11 .... 1 .. are defined by forward and backward 
8cattermg. 

for the 8 channel is written as 

(A' - k,; ,,' - k,l (8 - I ) lA, k,; "k, ) 

= -i(2.-)'6(k, + k, + k. + k,)H', (11.6) 

where A, II, A', and II' are the helicitics of particles 
I, 2, 3, and 4, respectively. The C.m. differential 
cross section per unit C.m. solid angle is related to 
the H amplitude by 

du k' I (k' k)I' dO = k cp~.,. , , ~,.. • (11.7) 

where 
(II.8) 

(-k', k') and (-k, k) are the final and initial C.m. 
momenta (Fig. 4), 

Under the homogeneous proper Lorentz Group, 

3 

k ' 

FIO.4. Scattering proccse in 
--! _ __ --,,"-7"---t--2=- .s-cbanncl c. m. 

-k 
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the helicity amplitude transforms according to 

HIK] = !I)"IA( -k.)] @ !I)"IA( -k,)]HW'(A)K] 

X !I)"IA '(k,)] @ !I)"IA ,(k,)]; (11.9) 

K represents collectively the incoming and outgoing 
momenta.' Elements of the proper homogeneous 
Lorentz group are denoted A(A), where ±A are 
the corresponding elements of the two-by-two uni­
modular group. The helicity indices are suppressed 
and matrix notation is used. The unitary matrices 
!I)' are the well-known representations of the unitary 
unimodular group. The unitary matrices A (k) are 
known as the Wigner rotations in the literature and 
are defined by 

A(k) = B- '(k)AB(A - , k), (II.IO) 

and the matrLx B (k) is defined by 

AIB(k)]k. = k, 

where k. = (rn, 0). 
In the notation of Ref. 7, 

B(k) = [k~:'TU = U[k''', ~Ikl"'l (II. ll) 

U = exp (-lif",) exp (-tiO .. ,) exp (lif",) , (II.12) 

the angles f, 0 are the azimuthal and polar angles 
of the vector k, and .. , are the usual Pauli matrices 
.. , = ( .. " d). 

Besides invariance under proper Lorentz trans­
formations, invariance under space reflection and 
time reversal are assumed throughout. Isotopic spin 
crossing will not be considered in this paper.' 

It is useful to define another amplitude the in­
variant spinor function (M function' ") by 

MIK] = !I)"IB(-k.)] @ !I)"IB(-k,)]HIK] 

X !I)"IB,(k,)] @ !I)"IB'(k,)J (II.l3) 

with the transformation property 

MIK] = !I)"IA] @ !I)"[A]MW'(A)K] 

X !I)"IA'] @ !I)"[A']. (II.l4) 

In the spin-t case for example, Eq. (II.14) becomes' 

7 A. O. Barut, I. J. Muzinicb, and D. N. Williams, Phys. 
Rev. 13°1 442 (1963). Equation (11.9) can also be written &8 
in Eq. (:.:::.1) oC Barut el al., where an index transforming 
cording to ,;), corresponds to an outgoing particle or an in­
coming antiparticle. An index transformmg according to 
:I).' corresponds to an incoming particle or a.n outgoing 
antiparticle. 

• For a detailed treatment of isotopic spin crossing. Sec, 
for example, L. L. Foldy and R. F. Peierls, Phys. Rev. 130, 
1585 (1963). 

I The conventions on the spin or indices of M are the same 
fL8 in ReL 7. The dotted index transforms according to 
A t (incoming particle or outgoing antiparticlo) and the un· 
dotted index transforms according to A ( incoming anti­
pa.rticle or outgoing particle). 

(II.l5) 

when the spinor indices arc displayed explicitly.' 
Aside from having simple transformation prop­

erties, the M functions are expected to be free of 
kinematical singularities and are the natural objects 
to consider for analytic properties. The matrix 
Ik' ... /m]1 in Eq. (II.ll) can be written as 

[~]I = [k' + m]1 + k. d[k' - rn]1 m 2m 2m' (11.16) 

and we see that the above matrix is analytical 
except at the kinematical branch points of the square 
root factors, k' = ±m. The factors l(kO ± m)/ 2m]1 
are precisely the factors that enter from the use 
of Dirac helicity spinors in the evaluation of the 
matrix element H[K], and multiplication by B(k) 
Eq. (11.11) removes these factors. 

Note added in proof: Once the square roots in 
Eq. (II.16) are defined, the analytic continuation of 
[k' ... /m]! and HIK] is defined. 

In particular, for spin-! spin-O elastic scattering, 
the M function is 

MIKJ = lk, · .. / m - k, · .. / mJA 

- [k,· .. / ma·(k, - k.)k, .. /m 

- .. ·(k, - k.)]B, (II.l7) 

where ,4 and B are the usual scalar amplitudes,' 
and the spin-! particle has initial momenta k, and 
final momentum - k" the spin-O particle has initial 
momentum k, and final momentum -k,. The 
matrices a. are ( .. " -d). The M function appears 
in the unitarity condition without kinematical sin­
gularities or projections and is the natural object 
to consider for analytic properties.' 

We now assume that the M function can be 
analytically continued from one set of real energy 
momenta describing a physical process to another 
set of real energy momenta, but with some different 
signs. ,. We assume that the physical sheet is such 
that are no natural boundaries and that this con­
tinuation is possible. The analytically continued 
four momentum with its sign rev~rsed contributes 
oppositely to tbe energy-momentum conservation 
law, and if the object associated with this energy­
momentum 4-vector was fonnerly a particle in the 
final (initial) state of a physical process, we in­
terpret the analytically continued M function as 

I .. The assumption or the crossing properties for the M 
functions is not unique. One could make the aame assump­
tion for the helicity amplitudes. However, if onc assumes 
that the M functions are completely free from singularities 
except those required by the unitarity condition, then it is 
userul to assume that they have crossing properties also. 
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describing a physical proc<;ss in which there is an 
antiparticle in the initial (final) state. This is the 
only statement of analyticity we will need in the 
following. 

The crossing relations for the M functions follolV 
from the assumption about analyticity. In particular 
let M: .•• , •.• ,[-k., -k, ; k" k.] be the M function 
describing the physical process associated with the 
s channel (direct channel), and let M~ .•• , •.•. [ -k., 
k.; -k" k.] be the M function describing the 
physical process associated with the I channel 
(crossed channel) (Fig. 3). The crossing relation is 
simply 

ftf:.",.:,.,d.[-k ... -ka; k2 • k1 ] 

= M: .•. :o .... [-k-4. -ka; k2 • kd (I l.J 8) 

We desire the crossing relations for the C.m. 
helicity amplitudes; therefore, we use Eq. (II.13) 
to relate the M function to the helicity amplitude 
and Eq. (11.9) (Lorentz invarianee) to relate the 
general f,-ame helicity amplitude to the C.m. helicity 
amplitude. 

The Lorentz transformation A that takes one 
from the e.m. in the I channel to a general frame 
is parameterized in the foUowing way,lO 

A = A(~. I) = coshx/ 2 + ~'d si nh ix. 
k, + k , = -(k, + k.) = ~tl sinh x, 

k: + kg = -(k: + k:J = /1 cosh X. 

Por the helicity convention we have 

A = A(>I>, 0, ->1» = R(>I>, E>, ->1» 

X [cosh h + u, sinh hI. 
where 

R(q,,0, '- >1» = cxp(-tjq,u,/2 

X exp (-i)0u,/Z exp iq,u,/Z, 

(II .19) 

( II .20) 

( II .20') 

and (>I>, 0) are the azimuthal and polar angles of 
the vector k, + k •. From Eqs. (11.9) and (II. 13) 
with A given by Eq. (II.20) we obtain 

M'[K"I = :l)" [AB(k;J] ® :l)"[AB(k;)1 

X H'[A - '(A)K"]:l)" [B '(k;)A 'I 

® :O"[B'(kDA'J. ( 11.21) 

where K" represents the set of mom~nta {-k., ka; 
-k" k,l, and A -'(A)K" = K', which represents 
the set of momenta {k:, k;; k;, k:J. Since A is the 
transfo rmation from the general frame to the e.m., 

the set K' is merely the C.m. momenta, and HI is 
the helieity amplitude evaluated in the C.m. of the 
I channel. Next we analytically continue in the set 
K" the expression (II.21) to the physical region 
for the 8 channel, Eq. (II.!8) (direct channel) . 
(Note A is also continued since it is a function of 
the momenta.) Furthermore, we use Eq. (II.13) to 
relate M to the helicity amplitude for the s channel 
and we obtain: 

}f ' IKI = :O"[il (-k.») ® :l)" [il(-k,)1 

X H '[A-'(A)K):D"[A '(k ,» ) ® :O"[A '(k,» ). (II.Z2) 

Equation (II.22) requires some explanations. The 
set of momenta { -k., -k.; k" k,) are represented 
by K and are the physical momenta for the 8-

channel scattering, and 

( II .23) 

where k = -k", -ka, k2' or kl . Hence, the matrices 
A (k) are merely Wigner rotations for the Lorentz 
transformation A. However, when the continuation 
to the direct channel is made, i.e., going from the 
real set J(" to the real set K, the variable t which 
was timelike before the continuation now becomes 
spacelike, and the vector k, + k , which specified 
the Lorentz transformation A becomes the momen­
tum transfer k, - k, for the 8 channel. We are 
dealing with a complex Lorentz tt-ansformation in 
the crossing relation Eq. (II.22), and A (k) Eq. (11.23) 
is the Wigner rotation for the complex Lorentz 
transformation. The Lorentz transformation A be­
comes complex since / can be negative in the physical 
region for the 8 channel, and the quantity (1)1, 
which plays the role of the mass in the Lorentz 
transformation A, is now complex. We obtain this 
complex Lorentz transformation solely from the 
continuation of Eq. (II.21) to obtain M' and fl' . 

To obtain our final result we will take the result 
for H' (K) and evaluate in the C.m. of the 8 channel 
- (k. + k,) = (k, + k,) = O. Without loss of 
generality we can take the direction of tbe Lorentz 
transformation A [Eqs. (II.19) and (II .ZO)] to be 
along tbe 3 direction [we will considc,' scattering 
in the (1, 3) plane). In the Appendix it will be shown 
that the Wigner rotations A (k) corresponding to the 
complex Lorentz transformation arc unitary and are 
rotations about the 2 direction (transverse to the 
scattering plane) through real angles. The final result 
for the crossing matrices is 

10 The formuln.s 00 the Lorentz tr"'osformation from the 
c. m. to a general frame which are i~cluded here for com- II" I/{ j = d'·CW4 ) ® d"'(W3) 
pleteness are contained in G. C. Wick, Ann. Phys. (N. Y.) 
18, 65(1962). X H'[A - ' (A)Kld"(-w,) ® d" (-w,l , crr.24) 
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where the matrices d'(w) are the familiar reduced 
rotation matrices and w, (i = I, 2, 3, 4) are the 
real angles of rotation for each of the particles. The 
angles of rotation will be constructed explicitly in 
the Appendix. The fact that the angles of rotation 
are real and the d'(w) are unitary is at first glance 
surprising and requires detailed derivation. The 
matrices d'(w) can be inverted easily Cd'(wJr' 
d'( -w) and the inverse crossing relations can be 
found. 

III . DIFFERENTIAL CROSS SECTION 
AND POLARIZATION 

Next we prove two theorems from the crossing 
relation Eq. (II.24) regarding the unpolarized dif­
ferential cross section and the polarization of one 
of the fina l particles in a two-body process. 

The unpolarized differential cross section per unit 
momentum t ransfer is for the s channel 

~: = 16;k's (28, + 1 )~28, + I ) Tr {H' CKJW ' CKJJ. 

(JILl) 

where t is the momentum transfer which is evaluatcd 
in the C.m. for the s channel, and t = m: + m: -
2k~k: + 2k ' ·k. 

Using the crossing relat ion Eq. (II.24) and (III.l) 
we obtain 

du 1 1 
dt = 16.-k's (28, + 1)(28, + I) 

X Tr {U ' [A -'(A)K JU ' [A-' (A)KJ ' } . (HI.! ') 

The unitary crossing matrices d'(w) disappear when 
the spins are averaged and summed. Therefore, we 
have 

Theorem (i). The unpolarized differential cross 
section of the direct channel is the spin average 
and sum of the product U'H't, where Ii' is the 
analytic continuation of the C.m. helicity amplitude 
of the crossed channel. 

The polarization of one of the final particles can 
also be related to the helicity amplitudes of the 
crossed channel. The polarization" P is defined as 
the expectation value of the total angular momentum 
of the particle in its rest frame. Following Jacob 
and Wick we can relate the polarization" to the 
direct channel helicity amplitudes in the following 

II For the general theory of polarization in scattering 
processes see, for example, H. P. Stapp, Pbys. Rev. 103, 
425 (1956); R. Spitzer and H. P. Stapp. ibid. 109,540 ( 1958); 
M. j acob and G. C. Wick. Ann. Phys. (N. Y.) 7, 401 ( 1959). 

12 One can also use in place of H in Eqs. (111.2) and 
(IlIA) the amplitude ... defined by Eq . (11.7 ). 

way by standard methods 

, du 1 
16.- s d!! P = (28, + 1)(28, + I) 

X Tr [(:o"(U) Ii'CK]) ' l; :O"(U)IJ'[K]) . ( II I. 2) 

where s, is the spin of the final particle whose 
polarization is being studied; U = U(f, 0, -f) 
[Eq. (ILI2)J. where 0 and f are the polar and 
azimuthal angles of this final particle. l; is the 
spin operator (angular momentum of particle in the 
rest frame). In terms of the rest fram e state vectors 
we have 

( l;)' Is,. X) = sls, + 1) Is,. X). 

2:, Is,. X) = X Is" X) . 
( III.3) 

In writing the indices explicitly, Eq . (JII.2) takes 
the form 

16 ' du P 1 '" (:O;,'(U)li',. [K j)* 
7r s dQ = (28, + 1)(28, + 1) L-

X (s, . XIl; Is,. X' ):o;I,.( U)l:l; .• [J(], (III.4) 

only the relevant indices arc displayed explicitly, 
all other indices are summed. Without loss of gen­
erality, we can take f = 0 and consider the scatter­
ing in the (I. 3) plane (Fig. 4.) In a parity-conserving 
theory we need only study the transverse component 
of the polarization which is in the 2 direction or 
(k )( k') direction; (k and k') are the initial and 
final C.m. momenta. In this case. U reduces to 
exp (- i02:,) which commutes with 2:" and Eq. 
(IIT.2) reduces to 

, du p ' 1 
16.- s dQ = n~ (28, + 1)(28, + I ) 

X Tr {IJ"[KJ2:~JJ'[K]}. (III.5) 

where nJ.. is a. unit vector in the transverse direction 
(2 direction), and 2:~ is the transverse component 
of the spin. 

Next we usc the crossing matrices to relate the 
helicity amplitude JI'CKJ to the helicity amplitude 
of the cross channel Eq. (II.24), and since the 
crossing matrices are rotations about the transverse 
direction they dissappear in the trace Eq. (IlL5) 
(rotations about the transverse direction commute 
with 2:~); therefore, we obtain 

, du p ' 1 
16.- s dQ = n~ (2s, + 1)(28, + I ) 

X Tr {H"CA- ' (A)KJ2:~ l:l '[A- '(A)K]} . (IlI .6) 

We have the Theorem (ii) . The transverse polariza­
tion of a final particle of the direct channel is trace 
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4 

q' 

3 Fm. 5. Scattering process 
__ q:......_ --,.L--__ ...:.=-- in t channel c. m. 

2 

-q' 

of the product If' 'lhlf', where H' is the analytic 
continuation of the c.m. helicity amplitude of the 
cross channel. 

IV. CROSS CHANNEL PARTIAL-WAVE ANALYSIS 

In this section, the differential cross section is 
rela ted to the partial waves of the crossed channel. 
The analysis of the differential cross section in tcrms 
of crossed channel partial waves is not a new idea 
and has been considered elsewhere," and the discus­
sion here is included for completeness. In particular, 
only a finite number of partial waves and R egge 
poles is retained in the crossed channel partial 
wave amplitude. 

The c. m. helicity amplitude in terms of the t 
channel partial waves T J (t) is written for unequal 
mass kinematics following Jacob and Wick: 

1 
4>, • . ,,(q' , q) = 2(q ' q)I 1: J (2J + l ):oL, .• _,(R')Ti •. ", 

= 4.-~t)1 m •. " , (IV. I) 

where q' and q are the final and initial c.m. momenta 
for the t channel, A and I' are the helicities of particles 
I and 4, and >: and il are the helicities of anti­
particles 3 and 2 (Fig. 5) and 

R' = R'(a, (3, -a) 

= exp (-iaJ,) exp (-i{3J,) exp (iaJ ,) . 

The quantities {3 and a are the polar a ngles of q' 
and the direction of the incident bcam q is taken 
along the 3 direction. 

Of course, we cannot continue the partial wave 
expansion to the physical region of the direct 
channel Eq. (II.3) . The partial wave expansion 
converges only in the Lehmann elipse for the crossed 
channel. However, we will keep only a finite number 
of partial waves in Eq. (IV.I ) and approximate the 

. U A. Martin and M. Gourdin (unpublished) have con­
Sidered tho analysis of the cross section in U;rms of the 
partiaJ wave amplitudes of the crossed cha.nnel from the 
point of view of assuming that the spin sum can be analyti­
cally continued. Also P. K. DeCelles, L. Durand, and R. B. 
Marr, Phys. Rev. 126, 1882 (1962) have considered the 
cros~ section in the single quantum exchange process. They 
consider the problem from the point of view of the analYSIS 
of the vertex functions in the brick wall frame and give the 
multiple decomposition of the vertex functions. 

amplitude with a finite number of poles; the question 
of convergence does not arise in this approximation 
although the approximation may not be too good. 
This approximation amounts to considering the 
exchange of a finite number of quanta, and Eq. (IV. I) 
becomes a sum over a fini te nwnber of partial waves. 

The simplest situation we can encounter is the one 
quantum exchange approximation. If the particles 
I and 3 (2 and 4) bave the same quantum numbers 
as some system (elemeotalY particle or resonance) 
with angular momentum J, M (- J :$ M :$ J) 
we can approximate the J th partial wave amplitude 
by a single pole" 

( rV .2) 

where t. is the mass of the system, r its width, 
the quantities r" and r., are the partial widths, 
which are related to the coupling of the system to 
particles 2 and 4 and I and 3. We have assumed 
that the residue of the pole can be factored. 

In determining the number of independent matrix 
elements and partial widths, we must consider the 
restrictions implied by angular momentum, space 
reflection invariance P, and time-reversal in­
variance T: 

P: T:',_ •. _,_,(t) = ~,~. ~ , ~,( -1)" "·-"-"T{ •. ,,(t) 
(IV .3) 

T: T;,.,.(t) = T{ •. ,,(t) , ( IV.4) 

where the ~, 8 are the phase factors denoting the 
intrinsic parities of the objects involved. For the 
partial widths which are proportional to the matrix 
element of the system X(J, M) coupled to the 
initia l and final particles we have, under space­
reflection invariance, 

r., = «J, M ), XI T I(J , M); !'il) 

( J, M); XI r'TP I(J , M); I'il), 

(IV.5) 
and 

r~i = (-l)J-· ' -" r_~_t "' '''''I 1Ja; 

the quantities J - 81 - 8s and J - 82 - 8, are 
always integers. Consideration of the total angular 
momentum J of the system leads us to the further 
restrictions 

-J :$A - X:$J and - J :$ I' -il:$ J; (IV.6) 

of course, IAI :$ 8 " 1>:1 :$ 8" lill :$ 8" and 11'1 :$ 8 •. 

14 Equation (IV.2) is the Brcit-Wigner fOfm of the partial. 
wave ampl itude. This approximation is probably not good 
for t much different from t,. 
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Time--reversal invariance which implies a symmetric 
S matrix does not give us any further restrictions 
on the partial widths. 

Once J' (spin parity) is given for the stable or 
unstable system, the number of independent partial 
widths will be restricted by Eqs. (IV.5) and (IV.6). 
Of course, the detailed dependence of the partial 
widths on I is a question that can only be answered 
by dynamics. However, the differential cross section 
is an easy matter to calculate in the one quantum 
exchange approximation, once the partial widths 
arc given. Using Eq. (IV.2) in Eq. (IV. I ) we have 

<I> 1 :O{_I .• _.(R') r,lr •• 
I . ... = 2(q' q)1 I - I, + il!r (1V.7) 

where I > max {(m, + m,)', (m, + m,)', 

u :s; UfQlo. (IV.8) 

and 

• = "': + m: = 2{(q' + m:)I(q" + ",:)1 + qq' cos II] 

(IV.9) 

in the I-channel c.m. The angle" can be set equal 
to zcro wi thout loss of generality. 

We now analytically continue Eq. (IV.7) to the 
physical region of the direct channel Eq. (1I.3) and 
use Eq. (III. I) {Theorem (i)] to obtain for the 
direct-channcl differential cross section : 

du ... F( •• /) 
dl - 16sk' II - I, + il!rl' , (IV. 10) 

where 

I 
F(s, I) - ""'(2.I-, -'+-:-:-J )':-::(2s-,-+~J ) 

X I: h',\"Y"I' Id;:'-I .• -.(Il) I'· 
)"1i"ii 

Note that thc crossing matrices do not complicate 
the spin sums in view of Eq. (ilL I) {Theorem (i)] 
the s dependence is displayed explicitly in the 
reduced rotation matrix d J (II) . The widths have been 
redefined 'Y,I = (II/q) r,l, 'Y,. = (II/q,) r". 

We conclude this section with the calculation 
of the contribution of Regge poles of the I channel 
to the differential cross section of the direct channel. 
The problem of calculating the contribution of Regge 
poles of the crossed channel has been considered 
elsewhere." Here the full (not asymptotic) con­
tribut ion will be obtained. 

It O. F. Chew and S. C. Frautschi Phys. Rev. Letters "I, 
394 (106 1); G. F. Chew, S. C. Frautacl,i, and S. Mandel, ta.m, 
Pbys. Rev. 126, 1202 (J062); V. N. GrilJOV and 1. Va. Pome­
rauch uk, Phys . Rev . Letters 8, 343, 412 (1962 ). V. N . 

The reggeization of two particle amplitudes has 
been considered in detail by the recent work of 
Gell-Mann et al." They have introduced partial 
wave amplitudes of well-defined parity. 

(IV. U ) 

H ere v = 0 for integral J and t for half integral J. 
A given trajectory will belong to either + or - in 
a parity conserving theory. The concepts of sense 
and nonsense channels and compensating trajec­
tories has been considered in detail by these authors. 
The concept of nonsense channels refers to channels 
in which J can become less than the difference of 
the helicities X - X or I' - {l. 

In order to find the contribution of a Rogge pole 
of the I channel to the cross section of the direct 
channel we need the contribution to the helicity 
amplitude of the I channel to use in Eq. (IlL I). 
The helicity amplitude for one Regge pole is written 
for the azimuthal angle equal to zero: 

<l>/, ... = -4( '" ' )1 2<>. + 1 hW)£,~(t) 
qq S1I111"a", 

X {d:!cp_,( .. - 11)(- 1)1-, + ,d:!,.,_p(tl) ]. (1V.12) 

where the residue of the Regge pole has been 
factored" into the coupling parameters hI £." ". 
is the position of the Regge pole, the subscript ± 
on " and £ indicates that t he pole is associated with 
either T J

+ or T J
-, and E is the signature of the 

trajectory. 
The d functions in Eq. (IV.12) are not the ordinary 

reduced rotation matrices. In the evaluation of the 
d functions in terms of Legcndere functio ns Po of 
Appendix A of Ref. 11 (Jacob and Wick) the p. 
functions should be replaced by <Po = -(tan ""./ .. ). 
Q-o- ,' The Q functions are the familiar Legendre 
functions of the second kind. 

Using Eq. (III. I) we obtain for the unpolarized 
differential cross section 

du .. ' (2<>. + J ) ' P'( ) 
dt = 16se sin 1ra.., a,t . S , t , (IV. 13) 

GribovJ Zh. Ekspcrim. i Teor. Fi~ . .41, 667, 1962 (1961) 
[Englisn Iran,/.: Soviet Phys.-J ETP 14, 478, 1395 (1962)]. 
For the NN problem : I. J. Muzinich PhYB. Rev. 130, 1571 
(1962); W. Wagner, Phys. Rev. Letters 10, 202 (1963); D. 
Sharp and W. Wagner, Phys. Rev. (to he published ). M. 
GeU-Mann in The procudingl of the 1962 International 
Cqrifereme on High-Energy PhYIt'ics CERN, (Scientific In­
formative Service, Geneva 23, Switzerland). For the.".N prob­
lem: V. Singh, Phys. Rev. 129, 1889 (1962); M. Gell-Ma.nn, 
F. Zacharaisen, and S. C. Frautschi, ibid. 12~ 2204 (1962). 

11 M. Gell-Mann, M. L. Goldberger, F . E . LOw, E. Marx, 
and F. Zachariasen, Elementary Particles of Conventional 
Field Theory &8 Regge Poles III, especially Appendix B. 
Maasachusctts Institute of Technology 1003 (unpublished). 

17 M. Gcll-Mann, Phys. Rev. Letters 8, 263 (1962 ). See 
also the work Gribov and Pomeranchuk, Ref. 15. 
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where 

1 
F(a., 8, I) = (20 , + 1)(20, + 1) 

X L id':I.,-.(" - {j)( _1)1-, + .a;::, .• -,(f311' 
),~II.11 

X i"l,,~i', 

and 

(IV. 14) 

,., = (tl/q')~.,. 

If we have a finite number N of Regge poles, 
we obtain 

du .... {,,2a, + J 
dl = 16sk' L.- . F (a" 8, I) • sm 11"0' ,. 

" 2a, + J 2a, + I .} +2Re L.- . . G(a"a,,8 , 1) ,(IV.15) 
;>i SIn 7rO' , SIn 11'"0' , 

where 

G(a;,a j jS, t) 1 
(20, + 1)(20, + 1) 

X [d'~I .• _,( .. - /1)( _1)1-, + . ,d,~,. ,_ ,(f3) ]* 

X ';1':,('(1':,)* . (IV. l6) 

the indices i and j (i, j = 1, 2, .. . , N) label the 
Regge pole parameters the ± subscript for the 
parity is included in the labels i and j. 

Another important question is the number of 
independent coupling paramaters "I for a given 
channel that has the quantum numbers of some 
given trajectory. This problem has been dealt with 
for the .. N and N N channels" and is being studied 
for the N"N channel (N .. is the J = ! isospin; pion 

was not our concern here. It might be added that 
the discussion in thc last section concerning the 
Regge poles will be greatly complicated if there are 
cuts in the angular-momentum plane as suggested 
by Mandelstam." 
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APPENDIX: THE ANGLES OF ROTATION 

The angle of rotatiOll for the Wigner rotation 
Eqs. (ILIO) and (1I.23) can be computed by direct 
evaluation of the thrce matrices in Eqs. (I1.IO) and 
(1I.23). This is most easily accomplished by using 
the representation of the matrices A(p), A, and B(p) 
on 4-vectors AlA (p )], A[A], and A[B(p) l. We take 
the Lorentz transformation along the 3 direction 
and Eq. (II .23) becomes 

A[A(P)] 

where 

A[A] 

cos p 

A[B-'(P') IA [AIA[B(P)J, 

A -, [B(P' ) IA [A]A[B(P) I. 

p' A[A]p . 

0 

0 

0 0 

0 0 

0 

0 

0 

cosh x 

sinh x 

sin p 0 

o 
o 

s inh x 

cosh x 

(AI) 

nucleon iso bar). A [B(P) ] 
0 0 0 

The discussion in this section which is applicable ' 
for the boson-type Regge trajectories can easily be 
extended to the fermion trajectories. 

V. CONCLUSIONS 

From the crossing relations for the helicity 
amplitudes of two-body processes with higher spin, 
the cross section and polarization of the direct 
channel were related in a simple manner to the 
analytic continuation of the C.m. helicity amplitude 
for the crossed ,·eaction. The crossing relations are 
simple in the helicity language and one does not 
have to go to the intermediate step of relating the 
helicity amplitudes to scalar amplitudes to complete 
the crossing. The scalar amplitudes are useful for 
discussing analytic properties in the invariants which 

-sin p 0 

0 0 

0 

X 
0 

0 0 

0 0 

cos p 0 

0 

0 

0 

cosh (J' 

sinh (f 

o 
o 

sinh (f 

cosh u 

(AI') 

and Po = m cosh u, ipi = m sinh u. Here X is the 
usual Lorentz transfonnation parameter and p and 
p' are the polar angles of the vectors p and p'. 
Mter combining the three matrices in Eq. (A.I) 
we find 

It S. Maodclstam, University of Birmingham (unpub­
lished). 
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COSw 0 BJn w 0 

A[A(P)] 0 0 0 
(A2) 

-smw 0 COSw 0 

0 0 0 1 

where 

cosw = cos p cos p' + cosh X s in p sin p' (A3) 

or alternatively 

cosh X = cosh u cosh u' + cos w sinh u sinh u'. (A .3') 

The axis of the Wigner rotation is transverse to 
the direction of the Lorentz transformation and the 
plane of the vectors p and p', the (1, 3) plane. The 
angle of rotation is the angle between p and p' as 
seen from the rest system of the particle. The paper 
of Wick" contains other references and the geo­
metrical interpretation of the angle. 

If we give the vectors p and p' some azimuthal 
angles "" and ",,', a Lorentz transformation along 
the three direction does not change the transverse 
components therefore "" = ",,', and the Wigner 
rotation Eq. (A.2) will become 

A[A(P)] = A[exp (-,)""J, exp (-,)wJ, exp ip,] 

= A[exp (-,)Ii·Jw] (A4) 

instead of A[A(p)] = A[exp (-i)J,w] in Eq. (A.2). 
Here Ii is a unit vector transverse to the plane 
of p and p'. 

Il = -i sin"" + i cos"", (A4') 

where i and i are unit vectors in the 1 and 2 direc­
tions. Thus, the only change that nonzero aximuthal 
angle can produce in the crossing relation Eqs. (II.23) 
and (II.24) and polarization etc., is a redefinition 
of transverse from the 2 direction to the Il direction. 
And the crossing matrices in Eq. (II.24) would 
become 'D'("", w, -",,) instead of d'(w). We will set 

"" = O. 
We now wish to find the angle w for each of the 

particles in the scattering diagram Fig. 1 for the 
complex Lorentz transformation Eq. (II.20), when 
we continue to the physical region of the direct 
channel Eq. (II.3) . We will take the Lorentz trans­
formation along the direction 

~ = (k - k')/II sinh x, 

which we take as the three direction, and 

k~ - k~ = ti cosbXt 

(A5) 

(A6) 

of course, k and k' will have some angles 0 and 0' 
with respect to ~ and the cosine of the C.m. scat-

tering angle for the direct process is 

cos 0 ••. = cos (0' - 0). 

The vector k - k' is the space part of the momentum 
transfer and k: - k: is the time component of the 
momentum transfer for the 8 channel. Using Eq. 
(A.3) the angle of rotation can he written 

m' cosh X = pop,o - Ipllp' l eosw, (A7) 

and similarly for each of the particles we have for 
the transformation A in Eq. (II.20) from Eq. (A7): 

m~ cosh X = k:ok~ - qk cos WI. 

m~ cosh X = k;ok~ - q'k cos Waf 

m: cosh X = k;Ok~ + qk cos Wat 

m! cosh X = k~ok~ + q'k' cos w •• 

(AS) 

where the k: i = 1, 2, 3, 4 are evaluated in the c.m. 
of the 8 channel and k:' are evaluated in the c.m. 
of the / channel. Similarly, g, g', and k, k' are the 
C.m. momenta for the t and 8 channels. A paper 
by Kibble" contains useful formulas for the rel­
ativistic kinematics of two-body reactions; however 
we Jist also the following formulas. 

k~ = 
8+m~-m~ k'o _ l+m~-m! 

2s' ' - 2/' 

k~ = 
s + m! - m: k'o _ t+m:-m! 

2s' 
, -

21' 

k~ = 
s+m!-m! k'O - t+m!-m: 

2s' 
, -

2/' 

k~ = 
s+m;-m: k'o - t+m! -m~ 

2s' . - 2/' 

k = [(s - (m, + m,)')(s - (m, - m,)')]I/2sI, 

k' = [(8 - (m, + m.)')(s - (m. - m.)')Jl2sI, 

9 = [(t - (m, - m.)')(t - (m, - m.)')]1/2tl, 

g' = [(t - (m, + m.)')(t - (m, - m.)')JI/2tl . 

(A9) 

For the complex Lorentz transformation A Eq. 
(II.20), we will show that cos OJ is real and Icos wi < I 
"in the physical region for the direct channel. Note 
that k: and k: are given by Eq. (A.9) in the formula 
for cosh X in Eq. (A.6). 

Using Eqs. (AS), (A6), and (A9) we obtain for 
cos WI, for example, 

k~rl - m~ - m!l + 2m~k~ 
cos w, = k([t _ (m, + m,)'][l- (m, _ m,)'])! ' (A IO) 

.. T . W. B. Kibble, Phy •. Rev. 117, 1159 (1960). 
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Evaluating 1 in the physical region for the direct 
channel Eq, (II,3) 1 :0; Im •• (s) < (m, - m,)' we 
see that the numerator is real and the argument 
of the square root is real and positive, Expressing 
1 in terms of C,m, quantities for the direct channel 
we obtain 

Applying Eq. (11.24) and Eq. (AB) we obtain 

(A I5) 

where 

-(2E sin !e",)(4m' - e)-I, 
k'k~z - k~k 

(All) and 

where 
z = cos Okk ' (- 1 :0; z:O; 1) 

and 

4[(k:k: - kk'z)' - m:m:J 

= [/ - (m, - m,)'I[/ - (m , - m,)'] > 0, 

rt is easier at this stage to work with the square 
of Eq. (All) 

, (k:k'z)' + (k:k)' - 2k:k:kk'z 
cos WI = (kik~)2 + ek'2z 'l _ 2kik~kk' z - m:m~ 

(AI2) 

Using (k:)' = m: + k' and (k:)' = m; + k", we 
see that 

~ k'le'z2+k2e'+m~k2'z2+m~e -2kik~kk'z 
cos 'WI k2k'lIZ'l+k"'k21 +m~k'3+mik2 -2kik~kk'z I 

(AI3) 
which clearly satisfies 

(A14) 

cos w, = (2E s in te .. .)(4m' - Wi, (AI6) 

Particles 1 and 3 are the fermions. E is the final 
and initial energy of the nucleon in the ,..N c.m. 1 is 
the momentum transfer for the ,..N channel; t = 

-2k'(1 - cos 8 .. ,). In this case the angles w, and 
w, are supplementary w, + w, = ,... The amplitude 
H;,. is the ,..N helicity amplitude, and H;" is the 
analytic continuation of the helicity amplitude 
(Frazer-Fulco amplitude) here I' = helicity of 
antinucieon, jj' = helicity of nucleon. 

After expansion of Eq. (AI5) and collection of 
terms we find 

H~+ = sin wlfI~+ - cos wlfl ~_ , 

H: _ = cosw,H~+ + sin WI}j~_. 
(AI7) 

If we express the H;,. and H;" in terms of the usual 
scaler amplitudes A and B for N scattering and 
eliminate A and B we find the same relation as above, 
Eq, (AI7) where 

and thus cos w, in Eq. (All) satisfies 

- I :0; cos w, :0; I. 

cos w, = (2E sin te",)(4m' - 1)-1 

(AW) and 

A similar demonstration can be carried out for the 
other angles. Thus cos w is the cosine of a real angle. 
The sine of the angle is given by sin w = (I - cos' w) I 
where the sine of the square root is taken to be 
positive for ' -1 :0; cos w :0; 1. The angle is given 
by exp iw = cos w + i sin w. There is still an arbi­
trary multiple of 2,.. that can be added to the angle 
with the above definition. However, the most that 
this mUltiple of 2 .. can contribute to the amplitude 
is a factor of a 'minus sign with no observableeffect. 

Let us apply the crossing relation Eq. (11.24) 
with angles given by Eqs. (AB) and (A9) to express 
the ,..N helicity amplitudes in terms of the analytic 
continuation of the Frazer-Fulco amplitudes." 

10 W. R. Frazer and J. R. Fulco, Phys. Rev . 117, 1609 
( \960) . 

Sill WI = (1 - cos2 
wl)l 

= (2m cos 1e" ,)(4m' - t) - I , 

We can see the rotational character of the crossing 
matrices by using vector notation in the following 
manner 

[ll: +] = [Sin WI 

If +_ cos WI 

- c~ W']IH~+], 
8m WI lH._ 

(AlB') 

The crossing relations have also been considered 
by Barut"; however, the crossing relations for the 
special frame (c.m.) helicity amplitudes are not 
worked out. 

U A. O. Barut, Pbys. Rev. 130,436 (l962 ). 
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Asymptotic Behavior of Feynman Integrals with Spin * 
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(Received 21 April 1964 ) 

Some genera.l features are investigated of the dependence of the asymptotic behavior of Fcynman 
integra.ls upon factors in the nllmerator of the integrand resulting from particles with spin. These 
resu lts are used to analyze the high-energy behavior of ladder diagrams for spin-t nucleons interacting 
with neutral vector mesons. The leading contribution is shown to consist of terms corresponding to 11 

reggeised nucleon together with certain other terms. The expected cancellation of these other terms 
by terms associated with a well-defined class of crossed diagrams is verified in detail for the sixth­
order case. Finally, other significant diagrams, different from the ladders and their a.ssociated crossed 
diagrams, are investigated and it is shown that they only provide higher-order corrections to the 
trajectory of the reggeised nucleon. 

1. INTRODUCTION 

T HE possibility that an interaction with neutral 
vector mesons has the effect of turning the 

elementary particle pole associated with a spin-t 
nucleon into a Regge pole has been discussed by 
Gell-Mann, Goldberger, Low, Zachariasen, and col­
laborators '. A great part of their analysis was con­
cerned with the behavior of perturbation theory 
integrals, a method of investigation which, though 
not rigorous, has had a fruitful heuristic influence 
on relativistic theories and which they refer to as 
a "laboratory" in which to test the plausibility of 
such notions. 

The literature developing the theory of the high­
energy behavior of Feynman integrals'-' has so far 
been concerned with the simpler case of spinless 
particles. In Sec. 2 we investigate the effect of extra 
factors in the numerator of the Feynman integrand 
such as occur in the case of particles with spin. 
Some simple examples illustra te typical effects which 
are given the names of singularity and displacement 
contributions. This section provides some of the basic 
"apparatus" for the Feynman integral "laboratory." 

These ideas are applied in Sec. 3 to analyze the 

• The research reported in this document has been spon­
sored in part by the Air Force Office of Scientific Research, 
OAR, under Grant No. AF EOAR 63-79 with the European 
Officc of Aerospace Research, United States Air Force. 

I M. Gell-Mann and M. L. Goldberger, Pbys. Rev. Letters 
9,275 (1962); M. Gell-ManD, M. L. Goldberger, F. E. Low, 
and F. ZachariaseD, Phy •. Letters 4, 265 (1963)' M. Gell­
Ma Dn, M. L. Goldberger,y . . E. Low, E. Marx, and F . Zacha­
riasen, Phys. Rev. 133, Jj 145 (1964), referred to as C; M. 
Gell-Mann, M. L. Goldberger, F. E. Low, V. Singh, and 
F. Zacbariasen, ibid. 133, B 161 (1964). 

• J. C. Polkmghorne, J . Math. Phy •. 4, 503,, 1393 (1963). 
a P. G. Federbush and M. T. Grisaru, Ann. J:'hys. (N. Y.) 

22,263,299 (1963). 
4 r. G. Halliday, Nuovo Cimento 30,177 (1963). 
• O. Tiktopoulos, Phys. Rev. 131, 480, 2373 (1963). 
• J . D. BjorkeD and T . T . Wu, Phys. Rev. 130,2566 (1963); 

T . L. TruemaD and T. Yao, ibid. 132, 2741 (1963); J. C. 
Polkinghorne, J . Math. Phys. 5, 431 (1964) 

asymptotic behavior of ladder diagrams for spin-t 
nucleons in interaction with neutral spin-l mesons. 
The behavior turns out to be somewhat more com­
plicated than was indicated in C but finally it 
reduces to the term required for the reggeization 
of the nucleon plus other terms, in general in volving 
higher powers of In t, which are associated with an 
effect called a cancellation contribution. 

These unwanted cancellation contrihutions will 
also occur, but with opposite sign, in a series of 
diagrams obtained from the ladders by crossing 
meson lines. It is also necessary to verify that these 
crossed diagrams do not provide any further un­
wanted and uncanceled terms. This is done in 
Sec. 4 for the sixth-order diagrams, both for In' t 
and In' t terms, and this completes the R eggeization 
program to order g'. It is highly plausible that 
this continues to hold in higher orders but a notation 
sufficiently succinct to deal successfully with the 
complications of the general case has not yet been 
devised. 

N -particle intermediate states lead in a spinless 
theory to Regge poles tending to I = - N + l. 
If in a theory N - 1 of these particles can have 
spin 1 it is natural to suppose that the well-known 
translation effect of spin' will produce an effect 
associated with a Regge pole tending to I = O. 
Thus, it is clear that not ocly the ladders and the 
corresponding crossed diagrams must be considered 
in order to investigate reggeization. In Sec. 5 other 
significant diagrams are considered. The simple case 
of N = 3 is discussed, although similar considera­
tions would hold for higher values of N. It is shown 
that these diagrams just correspond to a g' term in 
the trajectory function of the reggeized nucleon. 
It is important to verify that this is the case for 

7 Ya. I . Azimov, Phys. Letters 3, 195 ( 1963). 

1491 
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r. " '. p, 

" P, 

-, It l - tl ~, ~l - Itl " k,,- r~ 

p' .' p; 

p. ItJ -p •. ~ k.-r· -r, r. 
FIG. l . The basic diagram, labeling Feyuman parameters 

and momenta. 

if these terms corresponded to a separate Regge pole, 
then the corresponding zero power of In t in its 
expansion would be a bsent and this would have the 
effect of restoring the Born approximation and 
spoiling the reggeization result. 

2. ASYMPTOTIC BEHAVIOR OF 
FEYNMAN INTEGRALS 

The presence of factors in the numerator of a 
Feynman integral may affect the asymptotic be­
havior in three ways. 

(i) Explicit powers of t, the asymptotic variable, 
may appear. They may arise from external momenta 
present in the original numerator or they may arise 
from displacements of the origin of the internal 
momenta which are necessary for symmetric 
integration. 8 

This effect is crucial for the possibility of Reggeiza­
tion. A Feyuman integral with numerator unity can 
at· most produce asymptotic behavior of the form 
C' In" t. In order to get a Reggc pole associated 
with I = 0 we need a factor of t from the numerator 
to convert this asymptotic form into In" t. The 
occurrence of such factors in theories of particles 
with spin is just the translation into Feynmau 
integral terms of the familiar effect of spin producing 
a shift to the right in the angular momentum plane. ' 

(ii) The presence of internal momentum factors 
in the numerator produces terms with a decreased 
power of the denominator aftcr symmetric integra­
tion has been performed. If this power is equal to, 
or less than, the length of the minimal d-lines· ·· then 
enhanced asymptotic behavior is obtained. 

This effect proves unimportaJlt for reggeization 
for it only occnrs for terms lacking the crucial t 
factor. 

(iii) The presence of internal momentum factors 
in the nnmerator may enlarge the class of singular 
configurations which exist. These singular configura­
tions were first discussed by Tiktopoulos' for the 

• For an account of symmetric integration see Appendix 
A5 of J. M. Jauch and F. RohrJich, Theory of Photonll and 
Electr01L8 (Addison-Wesley Publishing Company, Inc., Read­
ing, Massachusetts. 1956). 

case of a </>' interaction. He pointed out that if two 
lines could be added to a d line to form a triangular 
loop then scaling this enlarged set of lines would also 
enhance the asymptotic behavior. Thus is because 
the power of C in the numerator after symmetric 
integration has been performed is 2 less than the 
power of D in the denominator. Thus, although the 
addition of two extra lines adds a factor p' in the 
numerator (where p is the scaling parameter), this 
is canceled by an extra factor of p' in the de­
nominator, since C and D both vanish like p because 
the a's round the closed triangular loop are propor­
tonal to p. 

The presence of a factor k,· k, in the numerator, 
where k, and k, are the momenta around the ith 
and jth loops respectively, produces after symmetric 
integration a term with an additional factor 

[AdjA];;/C, (2 .1) 

where A is the matrix of the quadratic form in the 
loop momenta. If the a's round the kth loop are 
scaled by p then both numerator and denominator 
in (2.1) vanish like p unless i = j = k in which case 
only C vanishes. In this latter case, therefore, a 
singular configuration would occur if three lines could 
be added to a d line to close the kth loop. 

It will be useful to illnstrate the operation of 
these effects by some simple examples. We shall 
consider integrals whose denominator corresponds 
to Fig. I with all the particles spinless and see the 
effect of various factors in the numerator : 

(a) (k: + m'). This cancels the propagator of 
the line whole parameter is {J" making the first 
loop triangular and giving a singular configuration. 
Then the leading asymptotic behavior is C' In' t. 

If we had not noticed this cancellation, but gone 
straight ahead with symmetric integration we should 
have obtained the leading result in a different way 
as the sum of two terms. One of these terms cor­
responds preciscly to the effect (iii). The other arises 
from the effect (i) due to displacement terms in k: . 
These latter include a t erm with the additional factor 

(2.2) 

where C, is the C function for the second loop. 
The presence of a,a,a, in (2.2) means that the 
natural asymptotic behavior C' In' t associated with 
the denominator is depressed to C' times some power 
of In t. However, the lost power of t is recouped 
by the presence in (2.2) of 2p,· p, ~ t. The net 
result is a term asymptotic like C' In' t, the extra 
power of the logarithm being due to the C ,C-' factor 
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in (2.2) . The preeise calculation of terms of this 
type is grcatly facilitated by the Mellin transform 
method.' A brief account of this method is given in 
the Appendix together with its application to (2.2). 

These two ways of producing the r' In' t behavior 
in this case are illustrative of general effects which 
we shall encounter many times and which will 
therefore require names. A term produced by the 
effect (i) will be called a displacement contribution 
and a term produced by (iii) will be called a sinr 
gularity contribution. 

(b) (k, - k,)' + m'. This cancels the propagator 
of the line corresponding to a" reducing the diagram 
to the product of two vertex parts whose exact 
asymptotic behav;or is t' . 

If symmetric integration is performed without 
noticing the cancellation the t' term is obtained as 
a displacement contribution. The -2k, ·k, term gives 
a contribution to the numerator which is 

-2p, ·p,·a,a,C,C,/C' . (2 .3) 

The a-dependent factors in (2.3) give an asymptotic 
bebavior of to' which is converted by the 2p, ' p, 
factor into t'. It is also possible to verify that the 
e l In 3 t, etc., terms cancel among themselves. 

These examples show that it is often an economical 
way of calculating to group together numerator 
factors in such a way that they just cancel certain 
propagators in the denominator. The resulting effect 
upon asymptotic behavior can then often be rcad 
off immediately without the need for detailed cal­
culation. This trick proves particularly useful in 
Reggeization problems and we shall call the terms 
with enhanced asymptotic behavior obtained in this 
way cancellation contributions. They contain, of 
course, sums of displacement and singularity con­
tributions. 

J . LADDER DIAGRAMS 

In this section we consider the ladder diagrams, 
of the form of Fig. 2, for the interaction of spino' 
nucleons with neutral spin-l mesons with coupling 
constant g. The external mesons may also be spin 1 
or they may, for example, be pseudoscalar mesons. 
We denote their interaction vertex by r. If they 
are spin 1, the special gauge for r given in C must 
be chosen. If they are pseudoscalar mesons then 
r is just -y, . 

The numerator of the Feynman integral is of 
the form 

-y.[ - i-y(P, - k.) + mJr[-i-y(p - k.) + mJ 

X 'Y, I -i-y(p - k._ , - k.) + "'J 
X -y • . . . r[-i'Y(P, - k) + mh. (3.1) 

IIT 
r,' ~ . 

FIG. 2. Tbe 2nth-ordcr ladder diagram. 

evaluated between free-fi eld nucleon spinors, with 

p = p, + p; = p, + p;. (3.2) 

The k, are the loop momenta which are to be inte­
grated over. In order to find the high-energy behavior 
associated with such a diagram it is necessary to 
perform certain manipulations to turn the effect of 
the -y matrices into the formation of scalar products 
of momenta. It is convenient to have a succinct 
notation to denote the momentum in a given line 
of the diagram. We shall use the capital letter of 
the Feynman parameter associated with the line. 

The procedure for manipulating (3.1) is suggested 
by that discussed in C, although we must keep many 
more terms. We first move to the right the term 
i-yA, so that the i-yp, which it contains, both ex­
plicitly and also implicity in the -i-yk, term by 
displacement, acts on u(p,) to give -m. The i-yp, 
also implicitly present in i'Yk, is easily seen to be 
negligeable since it appears multiplied by a, . . . a •• ,. 
At the same time we move i-yA •• , to the left. Each 
anticommutator with a -y factor corresponding to 
a meson vertex (other than a r) has the effect of 
pulling i-yA, further back to the left, or i-yA ... 
furthcr hack to the right, 60 that this manipulation 
is lengthy. When it is completed we have a sum 
of many terms. These terms fall into four groups: 

(i) Those containing no scalar products of A, 
or A •• , with other momenta. Neither p, nor p, 
appear explicitly in these terms. 

(ii) Terms involving the scalar product of A, 
with another momentum, X, but not involving a 
scalar product of A •• ,. Only p, appears explicitly 
in these terms. Similarly there are terms with the 
role of A, and A •• , interchanged which only involve 
p, explicitly. 

(iii) A term with A, ·A •• ,. This is the only term 
considered in C. 

(iv) Terms involving the scalar product of A, 
with a momentum X and the scalar product of A •• , 
with a momentum X'. The line carrying the momen­
tum X must lie to the left of the line carrying the 
momentum X' reading along the nucleon line in 
Fig. 2. 

In addition to the scalar products explicitly men-
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tioned in (i)- (iv), there are in each term (±i'YX" +m) 
factors associated with each nucleon line other than 
A" A •• 

" 
X, and X'. The sign is determined by the 

anticommutations necessary to form the term and 
is readily determined by inspection. There are also 
the two external meson vertex factors r which are 
always manipulated to the extreme right and left, 
respectively. Finally, there may be pairs of intemal 
meson vertex factors 'Y • ... 'Y •. They must occur 
to the left (right) of X(X') in (ii) and (iv) and cannot 
occur in (iii). If these latter factors are present it 
is necessary to reduce the terms further by moving 
the implicit factors of iyP, (iyp,), arising in internal 
lines by displacement, to the right (left) of these 
"y matrices. 

We must now consider how the scalar products 
formed in this way affect the asymptotic behavior: 

(a) There may be an explicit factor P,· p, ~ it. 
This comes solely from (iii). 

(b) A factor p, ·k. can produce a factor of t by 
displacement. In considering the effect of a factor 
we write down just the extra terms which would 
appear in the Mellin transform due to the presence 
of the factor (see the Appendix). In this case they are 

(3.3) 

where Cr •••• r • is the C function of the loops I, ... I,. 
We are only concerned with the In' t and higher 
terms in 2(n + l)th order. The presence of the a's 
in (3.3) depresses the natural asymptotic contribu­
tion and means that the term is only important if 
associated with other factons which have a com­
pensatingly enhancing effect. 

Factors of p,' k. produce similar effects but the 
combination of both types of factor leads to a 
different result. 

(c) A factor of (P,. k.)(p,· k;) can produce signif­
icant terms in two ways. It yields a singularity 
contribution 

t(P, ·p,)[C, ...• _1 ·a .. , ... a;· C; .. ...• ]C- ' , (3.4) 

if i < ;, and a similar expression if ; < i . The 
presence of the ds in (3.4) means that the term 
is unimportant (unless enhanced by other factons) 
if i "" ;. If i = ; there are no a's and we obtain 

!(Pr ·p,)[C, .. ·.-1· C", ...• ]C-', (3.5) 

which gives In''' t asymptotic behavior. 
The displacement contribution gives 

(- )"'(p, .p,)' . IC, ··· ._1 ·a •• , ... a.,,J 

X la, ... a,C; ... ..• 1· C-' . (3.6) 

The terms we are considering arise only from (iv), 
in which case i ::; ;. If i = ; then the term is 

(-)"'(P,·p,)'a, ... a.·IC, ... ,_, ·C .. , .. .• ]C-' , (3 .7) 

whose a-dependent factors give a multiple pole of 
the Mellin transform at f3 = -2 of identical struc­
ture to that given at f3 = -1 by the term (3.5). 
If n is even the asymptotic variable is u, while 
if n is odd the asymptotic variable is t. Also P, · p,~ 
it ~ -!u. We thus see that the contributions of 
(3.5) and (3.7) exactly cancel for all n, since the 
Mellin transform is with respect to -t( -u) . 

If i < ; then higher powens of some a's appear 
in (3.6) and the contribution is only significant 
if it is enhanced by other factons. 

(d) A factor of k.· k ; (i < j) yields a singularity 
contribution 

2·IC, .... _I ·a •• , ... a,C", ... ,]C-', (3.8) 

which to be significant needs both a t and an en­
hancement from other factons . The corresponding 
displacement contribution is 

(- )"+I(P, .p,) {[C, ... ;_, 'a;+ , ... a.+ ,] 

X la, .. . a;·C;+I ... ']C-' + i ...... ;). (3.9) 

The first of the two terms in (3.9) yields by itself 
an asymptotic behavior (In t)H-'. If such a term 
could be combined with, say, a p, . p, factor it 
would lead to a t(ln t);-.-I behavior. However, it is 
not difficult to see that this can never happen owing 
to the structure of the numerator of ladder diagrams. 
The terms we are considering arises from the im­
plicit presence of p, in k; and p, in k, due to dis­
placement. In the original numerator i'Y' k; terms 
appear always to the right of i'Y· k, terms if i < ;. 
In our prescription for reducing the denominator, 
the necessary scalar product can only result from 
the 'pulling back' of the implicit i'Y' p, and i'Y· p, 
terms by anticommutators with the meson vertices. 
The only scalar products that can be formed in this 
way can in fact never be combined with factors 
that do any thing more than enhance the power 
of the logarithm. The finst significant term of this 
type arises from the k, · k. factor in (iii) for the 
tenth-<>rder diagram which can in fact be enhanced 
to give a 1114 t behavior. 

The second term in (3.9) can be combined with 
a further p, . p, factor because the implicit i'YPI 
appears to the left of the implicit i'YP, factor in 
the numerator. However, the additional a's present 
in the second term mean that it can at most give 
a power of In t when so combined and this is such 
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that it would only be significant if there were 
enhancement due to further factors. 

A factor of k: yields a singularity contribution 

2· [C, .. . ;_ , ·C;., ...• IC-' 

and a displacement contribution 

(3.10) 

2( -)""(p,·p,)a, ... a. [C, ... ;_,·C; ...... ]C- '. (3. 11) 

Unlike (3.5) and (3.7) these do not cancel. 
In (3.10) and (3.11) the extra significant scaling 

round the ith loop makes them capable of combining 
with other factors to give an enhancement. For 
example with p, .p, they give a behavior of In' ·' t 
and with p,. k, they give a behavior of In' t provided 
i ~ n. 

The results obtained in (a)-(d) may be summarised 
as follows. Only the p, .p, factor produces a con­
tribution which is significant by itself. All other 
factors need further enhancement before they be­
come significant. The only factors capable of en­
hancing them are k: factors. 

The next step in the analysis of ladder diagrams 
is to note that all the enhancement due to k: factors 
can be expressed in the form of cancellation con­
tributions. Tbis then leads to the expectation that 
these contributions are cancelled by similar con­
tributions from diagrams with crossed lines. 

The argument leading to the cancellation con­
tributions is sufficiently illustrated by considering 
the example of the sixth-<>rder ladder diagram (n~ 3). 
This also provides a specific example of how the 
general discussion of (a)- (d) works out in practice. 

The numerator can be manipulated into the form 

-8(p, - k,)·(p, + k,)r[ - i-y(p + k,) + ml 

X [i-y(p - k, + k,) + mJ[ -i-y(p - k,) + mlr 

+ 8(p,·k,)(p,·k ,) r[-i-y(p + k,) + mlr 

+ 8(p,·k,)(p,·k,)r[ - i-y(p - k,) + mlr + 
(3. 12) 

where all the omitted terms are trivially not signif­
icant. By the argument of (c), the second and tbird 
terms of (3.12) are not significant. In the first term 
of (3.12) we may use the manipulation given in C 
to rewrite the expression between r factors as 

[(P + k,)' + m'J[ -i-y(p - k, ) + ml 

+ [-i-y(p + k,) + mJ[(p - k,)' + m'l 

+ [-i-y(p + k,) + mH -i-yp - ml 

X [-i-y(p - k,) + mI . (3 .13) 

TTl--- 17\--­
---~ __ iLL 

FIG. 3. The reduced diagrams associated with t.he sixth-order 
ladder diagram. 

The k: and k: terms wbich are capable of giving 
enhancement are now isolated in a form where they 
are transparently associated with cancellation con­
tributions. 

Thus, apart from the desired term 

+8(p, .p,). r[-i-y(p + k,) + ml 

X [i-yp + mH -i-y(p - k,) + mlr, (3 .14) 

all significant contributions are given by cancellation 
contributions which can be associated with the 
reduced diagrams of Fig. 3. In each of these diagrams 
there is a triangular loop which has two meson lines 
attached to one of its vertices. Similar terms would 
occur in the reduction of the diagram Fig. 4 and 
its reflection, in wbich the corresponding two meson 
lines are attached to the canceled nucleon lines in 
the reversed order. However, the occurrence of an 
extra anticommutation gives a change of sign wbich 
produces a cancellation between the sixth-order 
ladder and these crossed diagrams. This is discussed 
in detail in the next section. 

4. CROSSED DIAGRAMS 

The analysis of crossed diagrams is considerably 
more complicated than that of ladder diagrams. 
In this paper we only attempt to give a complete 
discussion of the sixth-<>rder diagram of Fig. 4. 
The coefficient of t in the denominator associated 
with this diagram is 

(4. 1) 

where 

(4.2) 

If there were no numerator factors this would give 
a leading asymptotic behavior of C' with a correction 
term of order C' In' t. We shall find that the signif­
icant contributions in our problem arise from factors 

,-

L_po:-,-.L..._,_;......JI--

FlO. 4. One oC the crossed 
diagrams associated with the 
sixth-order ladder diagram, 
labeling Feynman parameters 
and loop momenta. 
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in the numerator which contain an 0::11 which de­
presses the leading contribution, and a t', which 
makes the correction term significant. 

In the reduction of the Feynman integral cor­
responding to Fig. 4 we follow the same procedure 
used in Sec. 3, that is to say we movc i-yA, to the 
right and i-yA. to the left. This is not, however, 
quite the most appropriate procedure. The displace­
ment contributions of the two loop momenta are 

k, ~ a,C,C- 'p, - GC- 'p" (4.3) 

k, ~ a,(a, + P,)C- 'p, - H C- 'p" (4.4) 

where C, and C, are the C functions of the two 
loops and 

H = (a, + P,)C, - p,(a, + (j ,). (4 .5) 

The G in (4.3) makes the i-yp, implicit in i-yk, 
negligible but the i-yp, implicit in i-yk, cannot be 
neglected and must be moved over to the right. 
However, we find it convenient to use the same 
reduction procedure as in Sec. 3, to facilitate com­
parison, and then consider the extra terms arising 
from moving this i-yp, factor separately. 

No significant terms can arise from singularity 
contributions. The a, in (4.1) is associated with a 
five-line loop; scaling G already involves putting 
all the parameters round the second loop equal to 
zero and is in any case only relevant to the correction 
term, which needs a t' to he significant whilst 
singularity contributions can only be associated 
with at. 

When displacement contributions are considered 
the following terms lead to In' t contributions : 

(p,·p,)· (p, ·k,). (p,·p,)· (p,·k,), 

(p,·p,)·(k, ·k,), (p,·k,) ·(p,·k,), (4.6) 

(p, ' p,) ·k:, (p, ·k,)· (p, ·k,); 

while the following terms lead to In' t contributions: 

(p,·k,)·(p,·k,), (p,·k,)·(p,·k,). 

(p" k,) . (k, . k,). (p, . k,) . k: , 
(p, . k, ) . (k, . k,). 

(4.7) 

Equations (4.6) and (4.7) list the only significant 
terms which actually arise in the reduction. It is 
important to notice that the appearance of G in 
(4.3) means that terms involving (p, ·k,) or k: are 
never significant. 

The terms that arise in the reduction may bc 
classified as follows: 

(i) A term 

8(p, - k,) ·(p, + k,)r[-i-y(-k, + p) + m] 

X [i-y( -k, + k, + p) + m] 

X [-i-y (-k, + k, + 1',) + m]r, (4.8) 

corresponding to (iii) in Sec. 3. This can be manipu­
lated into the form 

8(p, - k,)·(p, + k,)r[-i-y(- k, + p) + m]r 

X [[(-k, + k, + p,) + m'] 

- 2p,·(-k, + k, + 1',) 1 + ... (4.9) 

where all the omitted terms are not significant. 
The first term in the curly brackets cancels one of 
the cancellation contributions in (3.13); the other 
is canceled by a similar term in the reflected dia­
gram. The second term in the curly brackets must 
be cancelled by other terms associated with Fig. 4. 
These arise from the second class of contributions 
we consider. 

(il) Two of the terms corresponding to (iv) of 
Sec. 3 are 

J6[(p, - k,)· (-k, + k, + p)]. [(p, + k,) 

X (-k, + k, + p)] r[-i-y(-k, + p) + m]r, (4 .1O) 

and 

-16[(p, - k,)·{-k, + k, + p) ] . [(p, + k,) 

X (-k, + k, + pJlr[ -i-y( -k, + p) + m]r. (4.11) 

These two terms together cancel the significant 
contributions from the second term of (4.7). To see 
this it is necessary to note that the significant 
contribution from (p, 'p,) ·k: is equal to twice that 
from (p,' k,)· (p,' k,); the significant contribution 
from (p" k,)· (p" k,) equals that from (p, 'p,). (k, . k,); 
and the significant contribution from (1',' k,)· k: is 
twice that from (p,·k,) · (k, ·k,). 

(ili) There are two other terms corresponding to 
(iv) of Sec. 3 but they both have a factor 

(p, - k,)·(-k, + p), (4. 12) 

which makes them negligible. 

Finally, there are the terms corresponding to 
(i) and (il) in Sec. 3. The only significant contribu­
tions are those associated with the i-yp, implicit in 
i-yk,. When these are collected together they are 
found to cancel identically. 

This completes the verification of rcggeization 
in sixth order. The same pattern is expected to 
repeat itself in higher order. For example, in eighth 
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FlO. 5. The crossed diagrams associated with eighth-order 
ladder diagra.m. 

order the crossed diagrams of Fig. 5 must be con­
sidered. However, the number of terms to be taken 
account of rises shsrply with the order and a succinct 
and powerful notation has not yet been found to 
handle them. 

5. OTHER DIAGRAMS 

The diagram of Fig. 6 has a leading asymptotic 
contribution 

r[a,(s) In (-t) / (iyp + m)]r. (5.1) 
with 

X ~ (a , + a, + a, - 1)· [-i-y)?a,a, + mCCall (5.2) 
D (a ; s) 

where C and D are associated with the contracted 
diagram Fig. 7. Although a diagram of the type 
of Fig. 6 would for spinless part icles be associated 
with a Regge pole tending to I ~ -2 this effect 
is translated to I ~ 0 by the presence of two spin-I 
particles in the intermediate state.' 

If (5.1) is regarded as a term in an expansion of 
a set of exponentials in powers of In t and In (-t) 
then the corresponding zerooOrder term is just the 
Born approximation. Trus Born-approximation term 
has already been used as the zerooOrder term in 
the reggeization program described in C. Thus, 
if this program is to succeed it is essential thst 
a,(s) may be considered as a g' term in the expansion 

FIG. 7. A contracted diagram a&- ........ ~""." 
saciated with Fig. 6 . /" ~ ~ 

of the trajectory function associated with the 
Reggeized nucleon, the g' term being the a(s) given 
in C and considered here in Sec. 3 and 4, a nd that 
these terms should not correspond to a separate 
Regge pole. In order that this should be so it is 
necessary to exhlbit the correct a(s)"'a,(s)"' terms 
in the expansion of [a(s) + a,(s)]"· .. ·, wruch itself 
arises from the expansion of (±t)"·'·)'··'·". The 
purpose of this section is to outline a proof that 
this is so for the cases (a) n, = 0, n, = 2; (b) n, = I, 
n2 = 1, respectively. 

The correct term for case (a) is obtained from 
the diagram Fig. 8. The manipulation foUows that 
used for the ladder diagrams but there are now 
two factors of i-yp , to move to the right and two 
factors of i-yp, to move to the left. A term involving 
(p, ' p,)' may be formed, which is what is needed 
to cancel the C' factor associated with the de-

FIG. 8. The diagram which gives 
the iteration of the significant 
contribution of Fig. 6. m

--
nominator. It is important to realise that the diagram 
of Fig. 9 is not significant because in its contribution 
the two factors of i-yp, combine to give p: without 
forming a (p, ' p,)' term. 

The coefficient of (p, .p,) ' has a numerator con­
taining the terms 

r[ -i-y(p + k.) + mlli-y(p - k, + k.) + m] 

X [-i-y(p - k, + k.) + m][i-y(p - k, + k,) + m] 

X [-i-y(p - k,) + m]r. 

If we write 

p - k, + k, = (p - k, + k,) - k, + k" 

p - k, + k, = (p - k, + k,) + k, - k" 

then it is possible to extract from (5.3) a term 

r[ - i-y(p + k.) + mlli-Y(p - k, + k.) + m] 

(5.3) 

(5.4) 

X [-i-y(p - k,) + m][(p - k, + k,)' + m' ]r . (5.5) 

This is the significant part of (5.3) since it cor-

FIG. 9. A di~am which does not 
give a significant contribution. 
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FIG. 10. The effective reduced 
diagram associated with t.he term 
(5.5). 

responds to a cancellation contribution associated 
with the effective reduced diagram of Fig. 10 in 
which there are now three 2-lines, giving an asymp­
totic behavior from the denominator alone of C' In' t. 
This cancellation contribution is not canceled by 
the corresponding crossed diagram since this is just 
Fig. 9 which is already known not to be significant. 
The first three factors of (5.5) are now amenable 
to the type of manipulation given in C and Sec. 3 
by writing 

FlO. 12. The diagram giving the 
cross-term cont.ribution. 
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APPENDIX 

In this Appendix we summarize some useful 
results in the Mellin transform method of evaluating 
asymptotic behavior.' 

If J(8, (3) is the Mellin transform of 1(8, -r) with 
respect to r = - t, then 

p - k, + k. = (p - k,) + (p + k.) - p. (5 .6) J(8, (3) = N·r(-ex) 

The first two t.erms of (5.6) will give cancellation 
contributions. These are expected to be cancelled 
by the diagrams of Fig. 11, though this has not 
been checked in detail. The third t erm then gives 
the correct contribution to correspond to (a). 

The terms corresponding to (b) are obtained from 
Fig. 12 and its reflection. There are two factors of 
i'YP, associated with Fig. 11 and only one factor 
of i'YP, . The desired contribution comes from the 
displacement contribution associated with the scalar 
prod'ucts (p,' p,). (p,' k,) . This gives a Mellin trans­
form proportional to 

(5.7) 

The ex, reduces the asymptotic behavior of the 
denominator to C' In' t and the C' factor is canceled 
by (p, 'p,)'. The remaining spinor factors may be 
manipulated exactly as in C and Sec. 3 and after 
cancellation by contributions from the appropriate 
crossed diagrams the correct coefficient of In' t 
remains. 

FlO. 11. One of the craBBed dia­
grams associated with Fig. 8. 

where x; are the set of Feynman parameters, 

DC-' = - [TgC- ' + J (8, x)]. (A2) 

C and D are the appropriate Feynman functions, 
M is the additional numerator term due to spin, 
N is a constant. 

The singularities of J(8, (3) in f3 give the asymptotic 
behavior. A pole of order m + 1 at f3 = -n cor­
responds to a behavior r - . In" r. These singularities 
arise from the divergence of (AI) at the edge of 
the region of integration corresponding to a set of 
Xi equal to zero. The effect of this may be exhibited 
by introducing a scaling parameter p for the set 
of Xi concerned and integrating by parts with respect 
to p. The singularity for a given value of f3 may be 
due to divergencies associated with several distinct 
sets of Xi' The number of such independent sets 
gives the order of the pole. 

The integrand associated with (2.2) is 

(A3) 

with C and J corresponding to Fig. 1. This is first 
divergent at f3 = - 2 and the independent sets are 
four in number: all a2, 13" 13i; a,; a2; aa. This gives 
the r' In' t behavior discussed in Sec. 3. 
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Bloch wa.vcs arc special solutions of Schrodiuger's equation with a periodic real potential. They 
nre plane waves multiplied by periodic functions. In this paper we prove the existence and completeness 
of Bloch waves and of the related l(ohn- Luttiuger waves in unbounded domains for a. c1ll.88 of partial 
differential equations which includes the Scbrooiugcr equation. In addition, we discuss the dependence 
of these waves and the corresponding e igenvalues on the wave vector of the associated plane wave. 
The results may be interpreted a.s the analogs for certain partial differential equations of Floquet's 
theory for ordinary differential equations or as the determination of the spectral representation of 
certain periodic Hamiltonian operators. 

INTRODUCTION 

L INEAR differential equations with periodic coef­
ficients often arise in the analysis of periodic 

structures. For example, the Schrodinger equation 
for an electron in a crystal is of this type with the 
spatialIy periodic potential occurring as a coefficient. 
In the case of ordinary linear differential equations 
with periodic coefficients, Floquet's theorem shows 
that every solution is a linear combination of special 
solutions, each of which is an exponential function 
mUltiplied by a periodic function.'" For partial dif­
ferential equations a certain corresponding result 
has been proved by Bloch.' It pertains to Bloch 
waves, which are plane waves multiplied by periodic 
functions, and they have formed the basis of the 
theory of electrons in crystals-i.e., of the theory of 
solids. It is our purpose to prove the existence and 
completeness of Bloch waves and of the related 
Kohn-Luttinger waves in unbounded domains for a 
class of partial differential equations which includes 
the Schr6dinger equation. In addition, we deduce 
some properties of these waves and the corresponding 
eigenvalues. In the theory of solids, these results are 
usually assumed to be true in three dimensions be­
cause they have been proved in one dimension with 
the aid of Floquet's theorem. 

Mathematically, our results may be interpreted as 
the analogs for certain partial differential equations 
of Floquet's results for ordinary differential equa-

• Su"pportcd in part by the National Science Founda.tion 
under Grants Nos. GP-2003 and GP-98. 

• 1 E. C. Titchmarch, Eigen.funclion Ezpansi01tS AlJsociated 
wllh Second-Order Differential Equations (Oxford University 
Press, London, 1958), Part II. 

'W. KohD, Phy •. Rev. 115,809 (1959). 
• F. Bloch, Z. Phy.ik 52, 555 (1928). 

tions. They may also be viewed as the determination 
of the spectral representation associated with certain 
periodic Hamiltonian operators. The "crystal­
momentum" representation of these Hamiltonians, 
which we consider, is the analog of Fourier analysis 
for partial differential operators with constant coef­
ficients, and it serves similar purposes. 

In Sec. 1, after some preliminary remarks, we 
define the eigenvalue problem. Section 2 is concerned 
with proving the existence and completeness of 
Bloch and Kohn-Luttinger waves and with some 
of their properties. In Sec. 3, we discuss the depend­
ence of the energy on the wave vector and prove 
the convergence of what is usually known as the k·v 
metbod. We also show that the spectrwn is the union 
of a countable number of intervals, which demon­
strates its well-known band structure. In Sec. 4, 
we cO.Delude with some remarks on Wannier func­
tions and on the representation of the position 
operator. 

I. PRELIMINARIES 

The Hamiltonian H governing tbe motion of an 
electron in an infinite periodic lattice in three dimen­
sions may be taken to have the form 

H = -l!. + V(x). (1.1a) 

Here, l!. denotes the Laplacian operator, V(x) is the 
real potential energy, and x is a vector (XII %21 x3 ) in 
the three-<limensional space R, . If the lattice is in­
variant under the group generated by some three 
primitive translations t" t" t" then both V and H 
will be invariant under the same group. For the sake 
of clarity we assume that the vectors t, are mutually 
orthogonal and directed along the coordinate axes . 

1499 
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The modifications in our analysis neccssary to treat 
a general Bravais lattice are rather obvious. 

We consider a more general operator H, invariant 
under the same group, and defined by 

3 a ( a",) 11", = - L , a", + V(x)",. 
.. f .. 1 (IX; uX j 

(Ub) 

We assume that a" is a real symmetric differentiable 
matrix wb ich renders 11 uniformly elliptic and that 
V is real and continuous, although weaker smooth­
ness conditions would suffice. Under these cond itions 
11, regarded as an operator in L ,(R,), has a unique 
self-adjoint extension,' which we also denote by 11. 
Its spectral analysis is based on the eigenvalue 
problem 

(1.2) 

To (1.2) we must add appropriate restrictions on '" in 
order to have a well-<lefined problem. In the one­
dimensional case there are no L, solut ions of (1.2) 
since all bounded solutions are sums of Bloch waves. 
Therefore, we seek solutions of (1.2) in the space of 
bounded continuous functions. 

A first step toward the analysis of solutions of (1.2) 
is provided by the following theorem of Bloch.' 
Consider (1.2) in a rectangular box whose sides have 
lengths K , L, M which are integer multiples of the 
primitive translations. Assume that '" satisfies 
periodic boundary conditions and that the eigenspace 
associated with a fixed eigenvalue A = Ao is finite 
dimensional. Then the eigenfunctions corresponding 
to Xo may be taken to have the form of Bloch waves, 

"' ... . M(X, y, z) 

= cxp [2"";(~ + ~ + ';) ]U •. I.M(X, y, z), (1.3) 

where k, I, m are integers and u is periodic. The pl'Oof 
depends upon a simple group theoretic argument. 
The corresponding theorem for the whole space does 
not seem to have been proved, although several 
authors' " indicate that it is valid. It is often incor­
rectly stated that Bloch's theorem proves that a ll 
bounded solutions of (1.2) are sums of Bloch waves'. 
We prove the existence and completeness of Bloch 
waves in the whole space. 

4 N. Dunford and J. Schwartz, Lin«J,T Operators, Part ll. 
Spectral Theory (lnterscienoo Publishers, Inc., New York, 
1963) . 

• J. S. Lomont, Applicatiom of Finite Groups (Academic 
Press Inc., New York, 1959 ). 

• G. Lyubarskii. The Application of Grou\, Theory in 
Physics (Pergamon Press, Inc., New York, 1960 . 

1 N. F. Mott and H. Jones, The Theory of /lfelals and 
Alloys (Oxford University Press, New York, 1936). 

2. EXISTENCE, COMPLETENESS, AND PROPERTIES 
OF BLOCH WAVES 

Let us consider the eigenvalue problem 

(2 .1) 

where 11 is defined by (1. 1b) and", is bounded ill Ro• 

We suppose that the whole space is decomposed into 
a countable number of rectangular unit cells with 
edges equal to the primitive translations, and place 
the origin of coordinates at a vertex of the "first" 
unit cell n. By using these cells we prove the follow­
ing lemma, which asserts the existence of Bloch 
waves. 

Lemma 1. For any real vector k there ex ist a 
countable number of solutions of (2 .1 ) of the form 

",. (x, k) = .'""·'4>.(x, k ) . (2 .2) 

Here, 4>.(x, k) is a smooth function of x which has 
the same periodicity as the lattice and k·x denotes 
the scalar product of the vectors k and x. 

Proof: By substituting (2.2) into (2. 1), we find 
that 4> must satisfy 

17.4> = t {--!-- (aiM : 4» _ ~ i .. a,.k, :4> 
1 .... _ 1 VX, v X", v X ... 

- 2i'lr4>k, ~:': + 4"' 4>a, .k,k.} + V4> = X4>. (2.3) 

We DOW consider the eigenvalue problem (2 .3) in the 
first cell only and impose periodic boundary condi­
tions on 4>. It is then easy to check that fl. , with these 
boundary conditions, defines a symmetric operator 
in the space of continuously differentiable functions 
whose first partial derivatives are absolutely con­
tinuous. The smoothness conditions which we have 
imposed on the matrix ail and on the potential V 
arc sufficient to assure that there is a unique self­
adjoint extension of fl. in L ,(n) , which we also 
denote by B •. This operator I7. , being a regular uni­
formly elliptic self-adjoint operator defined in a 
bounded domain, possesses a discrete set of eigen­
values X = A., each of finite multiplicity and cor­
responding eigenfunctions 4>.(x, k). Moreover, the 
4>. (x, k) are smooth functions of x .' By extending 
each 4>. (x, k) to the whole space by periodicity, we 
obtain a solution of the form (2.2), which proves the 
lemma. 

By varying the vector k over the whole k space, 
we obtain a set S = U. S. of the eigenvalues 
S, = {X. (k) I and a corresponding set of Bloch 
waves. We prove in Sec. 3 that the set S is exactly 
the spectrum of 1I, as an operator in L" and in this 

• S. Agmon, CommUQ, Pure Appl. Math. 15, 11 9 ( 1962). 
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section we show that the Bloch waves are complete 
in L,(R,). These results remain true even when Ie is 
restricted to a unit cell, {l', in the reciprocal lattice 
defined by the three primitive translations k, which 
satisfy the relations t, · k, = ";f. 

To show that it suffices to restrict k to the cell (l', 
we note that the set S. is the totality of the eigen­
values of the problem (2.1) under the "boundary" 
condition "'(Ie; r + t) = e""" ", (k; r). But this latter 
problem does not change if k is replaced by Ie + K, 
where [( is a reciprocal lattice vector, i.e., K = m,k, 
where the m, are integers, Hence, the set S. and 
the corresponding set of solutions are invariant under 
such a translation. Therefore, the eigenvalues and 
eigenfunctions corresponding to all k in (l' are the 
same as those corresponding to all k in Ie space. 

In order to prove the completeness of these eigen­
functions, which is the main result of this section, we 
first prove two lemmas. They define a certain tran .... 
form of L ,(R,) into L,({l) and its inverse, which 
pave the way for the completeness theorem. For 
the sake of clarity, but without loss of generality, 
we assume {l to be a unit cube and then (l' is also a 
unit cube. 

Lemma 2. Let g(x, Ie) E L,({l X (l') where {l, (l' 
are the closed unit cells and let 

f(x, n) = f g(x, k)e-"'''' die, (2.4) 
a· 

wb,ere n is a lattice vector. Then the function /(z) 
defined, a .e., by 

/(z) == /(x + n) == f (x, n), x E (l 

belongs to L ,(R,). ("a.e." is used throughout this 
paper as an abbreviation for "almost every" or 
uabnost everywhere.") 

Proof: By Tonelli's theorem, g(x, k) E L ,(fI') for 
almost every x in (l. Hence, the integral in (2.4) exists 
and by Parseval's equality, it follows that for x, a.e., 

I,. Ig(x, k) I' dk = z;: I/(x, n) I'. (2.5) 

Upon integrating (2.5) over (l, we get, 
g E L,({l X (l'), 

since 

a> > fJ". Ig(x, k) I' dx dk J L I/(x, n) I' dx 
a • 

~ fn I/(x, n)I' dx 

~ fn !l(x + n)I' dx 

f I/(z) I' dz. 
R, 

H ere we have interchanged swnmations and integra­
tions using a special version of Fubini's theorem and 
the fact that tbe sums and integrals are convergent 
in L ,. Tbe last inequality proves the lemma. 

L emma S. If hex) E L ,(R,), n is a latt ice vector, 
k E (l', and 

g(x, Ie) = L hex + n)e" "", x E {l, (2.6) 

then g is defined for a .e. x in (l and belongs to 
L,({l X (l*) . 

Proof: Let h.(x) = hex + n), x E {l; tben we have 

a> > L Ih(x)I' dx = ~ fa Ih.(x) I' dx 

= f L Ih.(x) I' dx. (2.7) 
a • 

Hence, L. Ih.(x)I' E L, for a .e. x E (l and tberefore 
g(x, k) is defined for a.e. x E fl. Parseval's equality, 
together with (2.7), now proves that g E L,({l X (l') , 

and this completes the proof of the lemma. 

F rom (2.6) and (2.4) it foll ows that 

hex + n) = f g(x, k)e-""" dk == f(x, n). 
ao 

Thus, h of Lemma 3 and / of Lemma 2 may be identi­
fied. Therefore, for any function f in L,(R,) we obtain 
the representation theorem 

f(z + n) = f L I(x + m)e" '>-(0-., dk. U, _ 

This theorem can also be derived as a special case of a 
representation theorem due to McGarvey.' 

We are now in a position to prove the complete­
ness theorem. As in Lemma 1, let cP.(x, k), ".(Ie) de­
note, respectively, the orthononnal eigenfunctions 
and eigenvalues of the auxiliary problem il.cP. = ".cP •. 
Let ",.(x, k) = e'';··'cP.(x, k). Then we prove 

Theorem 1. The set of Bloch waves B = (",.(x, k)}, 
where k varies over the whole closed unit cell (l' 

and n ranges over the positive integers, is complete 
in L ,(R, ). 

Proof: We give the proof in one dimension in which 
case both {l and (l' are the closed interval [0, 1). The 
proof applies to higher dimensional cases merely 
with a change in notat ion. 

We first prove that if I E L,( - a>, + a», then the 
scalar product (t, "') where", E B, exists in the sense 
of mean convergence. Let '" = e""'cP and consider 

• D. McGarvey, J . Math. Anal. App!. 4, 366 (1962 ). 
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the inner product (f, f) defined by 

(f, f) = ~~~ tN f*(x)e'""'<I>(x, k) dx 

= U:I~ %N {+. f*(x)e'""'<I>(x, k) dx 

= ~.:':! J,' %N f*(~ + i)e";';e""'<I>(~, k) d~ 

= J,' ~i~~ ;~N (f*(~ + J)e"";le";""'(~' k) d~ . 
Here we have interchanged the limit and the integra­
tion, which can be justified with the aid of Lenuna 3. 
The last integral exists since both", and the sum 
L~-_. f*(~ + j)e";'; belong to L,W, for a.e. k. 
Thus, the scalar product exists. 

To prove the completeness of E we must prove 
that if Ij, f) = ° for all fEE, then f a 0. From 
the above equations we have 

(t, f. ) 

= J,' {~~~ :~N f*(~ + ile";';}M, k) d~. (2.8) 

Let us define g(~, k) by 
N- ' 

g(~, k) = lim L j(~ + J)eh
;". (2.9) 

N-.a> j--N 

Then, by Lenuna 3, 9 E L,[O, 1) for a .e. k. Since the 
functions f.(~, k) are complete in L,(O, 1) for every k, 
the vanishing of Ij, f.) for fixed k implies, from (2.8), 
that g(~, k) = 0 for a.e. ~ . By varying k in [0, IJ, 
we find that g(~, k) = 0 for a .e. ~ and k . But since 

j(x + n) = J,' g(x, k)e-'';'' dk, 

j vanishes identically. Thus the theorem is proved. 

Corollary 1. "111 omentum representation oj L,-func­

tions". If j E L , and 

!N(:c;) = 1. t, f . (x, k)(f.(x' , k), f(x'» dk, 

then fN(X) converges in the mean to a function 
F(x) = j(x) a.e. 

Prooj: It is sufficient to consider x in the interval 
I = [0, 1J since F = j a.e. in I implies F = j a.e. 
in (- "', + "') because of the quasiperiodic property 
of the basis functions f.(x, k). Let j.(k) denote the 
scalar product (f., f). Then using (2 .8), and (2.9) 
and integrating over k, we have 

1. ~ .y.(x, k)f.(k) dk = 1. ~ f .( f., g(x, k» dk . 

But, since g(x, k) E L,[O, 1) for a.e. k and 
{f. (x, k») is an orthonormal set which is complete 
in [0, 11 for every k, we have 

L f.(f. , g) --> g(x, k) in L,(O, 1), 
" 

for a.e. k. (2 .10) 

Integrating (2.10), we get 

1 L M.(k) dk = 1. L f.( f., g) = 1 g(x, k) dk. 
J: " k " II 

The last integral is equal to j(x) by Lemmas 2 and 3 
above, which proves the corollary. 

Corollary 2. "Parseval's equality." The Bloch rep­
resentation is an isometry in L2' i.e. , 

Iljll = 1. ~ Ij.(k) I' dk. 

Here Iljll denotes the norm in L ,(Ra). The proof 
proceeds along lines similar to the two preceding 
ones, so we omit it. 

Corollary 3. "The Kohn- LuUinger (K-L) repre­
sentation." If k, is a fixed vector in !l*, then the 
functions 

f.(x, k) = e";'··",.(x, k,) 

are known as the K-L functions" . They are complete 
in L,(R,). The proof consists in repeating the proof 
of Theorem 1 with the new definition of f •. 

3. NATURE OF THE SPECTRUM 

In Sec. 1 we introduced the auxiliary eigenvalue 
problem f1.,p. = X.<I>. and showed that it possesses a 
discrete set of eigenvalues S, = {X.(k) I. In this 
section we prove that the spectrum q of the operator 
H in L, is equal to S = O,e n. S, (in fact, S = S = 

closure of S) and discuss the dependence of the eigen­
values X on k. 

Lemma 4. The set S = U. {X.(k) 1 is contained 
in the spectrum of H. 

Prooj: Let X be a point in S. Without loss of 
generality we may assume that X = o. Then there 
exists a Bloch wave 

f(x) = e";···",(x, k), 

where ",(x, k) is periodic and Hf = O. 
To prove that X E u we construct a singular se­

quence of functions fN in the domain of H such that 
IIHfNl l/llfNl1 --> 0 as N --> "'. We first choose a 
mollifying function ~(t) E C· such that 

to W. I{ohn and J. M. Luttinger, Phys. Rev. 97,869 (1955). 
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~(t) = {I, 
0, 

t E (-1,1), 

It I ? 2, 

and I~'I, I~"I ::; 2. Consider the sequence Y,N(X) 
~(lxI/N).p(x) where N is an integer. Then 

IIHy,NII = IH~(W)}II 
::; ~ IIV~(W)Vy,11 + ~, 116~(W)y,1I 

c c 
::; N IIVy,lIeN .• N) + N' 11y,lleN.'N), (3.1) 

where c is a generic constant, independent of N, and 
II IIN .• N denotes the norm in the region between the 
two spheres of radii Nand 2N, respectively. From 
(3.1) we have 

IIHy,NIl/IIy,NII = O[{W' IIVy,IIN.'N 

+ W' 11y,IIN.'Nl/lly,lIo.N] 

= O(I/ N) as N-> m. 

Hence, X E u. where tT, is the essential spectrum" 
of H, so A E (T and the lemma is proved. 

Lemma 5. The spectrum of Ii is contained in S. 

Prool: Let I' ;" m be a real number which is not in 
S and consider the equation (H - 1')<1> = I where 
I E L,. Then from Corollary 1, namely -the "Bloch 
representation" of I, we have 

<I> = f. ~ (f, y,;(x, k»I(J' - A;(k» dk, (3.2) 

where the right-hand side of (3.2) is a bounded 
operator on I since I' EE S. Hence I' is in the resolvent 
set of H and the lemma follows. 

Lemmas 4 and 5 show that the spectrum of H, 
being a closed set, is equal to S. It is clear, however, 
that the spectrum is identical with its essential part 
since, if there were a point eigenvalue of finite 
multiplicity, one could casily construct an L, eigen­
function common to both H and the group of 
translations, which is impossible. 

We show now that S is simply a countable union 
of closed intervals. This depends on the following 
theorem which describes the dependence of an eigen­
value A = A. on k. 

Theorem 2. Let A.(k) denote the nth isolated eigen­
value of the auxiliary problem (2 .3) . Then A. is an 
analytic, though not necessarily single-valued, func­
tion of k . 

Prool: Let k = ko + .d, where d is a fixed unit 

vector. Upon inserting this value of k into (2.3), the 
operator H. can be written in the form 

H. '" H(,) = H •. + ,B = Iio + .B. 

Here H •. = Ho is the operator H. with k = ko and B 
is defined by 

B ~ [4' d iJ 2' d iJa,. = L.-J - l1l"'a,,,, I -;-- - 1.71" I -;--
1''''_ 1 (IX.. vX ... 

+ 41r'a,.(kOld. + ko.d,) + E4'-'a,.d,d.} 

To prove the analytic dependence of A on , 
amounts to proving the convergence, in E, of the 
formal perturbation series for A = A(,) . Although 
this can be deduced from general theorems about 
regular perturbations of a self-adjoint operator in 
the sense of Rellich, II the situation above is simple 
enough to give another proof. Let z denote a real 
number; then for large enough z, the resolvent 
operator 

R.(H.) '" (H(,) + z)-' = (Ho + .B - .)-' 

exists as a bounded operator in L,. This follows 
simply from the semiboundedness and self-adjoint­
ness of H(,). But 

R,(H,) = R,(Ho)[I + .BR.(Holr'. (3.3) 

Now, since B is relatively bounded with respect to 
H o, i.e., since IIV<I>II ::; C[II<I>II + IIHo'I>lll, for all <I> 

in the domain of H" tbe operator BR. is bounded, 
and hence the geometric series for [1 + ,BR.r' 
converges uniformly for small , . But then the eigen­
values 1'(') of R,(H,) depend analytically on ,." 
The same statement is then true for A('), which 
proves the theorem. It is clear now that the set 
S. = (A.(k)}, being the image under a continuous 
function of the closed unit cell, is itself a closed 
simply connected set. 

We end this section with a few remarks. 
(i) We have proved that the spectrum is equal to 

the closure of U.e •. (A.(k)} = U. S •. The sets S. 
are closed "intervals" by the above theorem. It is 
possible to show that the countable union of these 
sets is again closed because .of the asymptotic be­
havior of the eigenvalues A •. Then one has (T = U. S •. 

(ii) In the special case when the eigenvalues 
A.(k) E S. are all simple-i.e., the case of nonde­
generacy of the nth band- the proof of the lemma 
sbows that A(k ) is a single-valued holomorphic func­
tion of the three · complex variables k" k" k, in the 
domain Re k E n*, 11m kl ::; ,for small enough ,. 

II F. Rellich, Uperturbation Theory of Eigenvalue Prob­
lems," New York University Notee, (Courant Institute of 
Mathematical Sciencea, New York, 1953). 
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(iii) The dependence of the eigenfunctions f.(x, k), 
regarded as elements in L,(O), is also governed by 
Theorem 2. This follows from results of Rellich" 
and Brownell." If the eigenvalues are simple, then 
we again have holomorphy in the complex sense. 

(iv) The perturbation method described in Theo­
rem 2 is usually called the k· v method because it 
was first applied to the case k = 0; then, = k and 
iV is proportional to v. It is widely used, but no 
proof of its convergence seems to have been given 
previously. 

4. M1SCELLANEOUS REMARKS 

A. Operator Representation 

The Bloch representation discussed above is 
simply the "Fourier" analysis of the operator H , 
and hence it makes H diagonal. As in the theory of 
Fourier transforms, it is interesting to discuss the 
form which other operators take in the Bloch repre­
sentation. One important operator is the position 
operator x, concerning which the following lemma 
is useful. 

Lemma 6." Let l(x) E L" xl(x) E L" and let 1.(k) 
and g.(k) be the Bloch components of l(x) and xl(x), 
respectively. Then 

2"g.(k) = if:(k) - i L: A •.• (k)f.(k) (4.1) . 
where 

( aq,. ) l' aq,~ A •.• = ak' q,. = 0 ilk q,. dx 

and q,. is defined by (2.3). 

Proof: We assume that the phase of q, is chosen 
to be analytic in k. The definition of f.(k) is 

f.(k) = (y,., f) = L:~ fm.-'·;·'q,!(~, k) d~ . (4 .2) 

By Theorem 2 we can differentiate (4 .2) with respect 
to k to get 

2"U.(k) = i ~ - i L:~ f(~)e-"{" a:,.: d~. (4.3) 

By substituting for fW its Bloch representation, 
we get 

2 - ~ - . "1 f (k') 1rg .. - ak 1. ~ ,t' ... 

x i:" e-";"H·)q,.(~, k') aq,Jt) dt dk'. (4.4) 

II F. H. Brownell, J. Ma.th. Anal. Appl. 6, 190 (1963). 
11 The lemma is proved by Blount,H but our proof is 

somewhat different. 

We now expand the periodic function 

A •.• (k, k') ". (aq,~(~, k)/ak)q,.(E, k') 

in a Fourier series in E and substitute into (4.4), and 
the result follows . 

In the Kohn- Luttinger representation, the second 
term in (4.1) is not present and the x operator 
corresponds simply to differentiation with respect to 
k as in the theory of Fourier transforms. 

The representations of many other operators are 
given by Blount." Our Theorems 1 and 2 may be 
used to make the derivations of those representations 
completely rigorous. 

B. Wannier Functions 

\Vannier functions arc band functions which, by 
definition, arc proportional to 

a.(x) = J y,.(x, k) dk. (4.5) 
Q' 

Equivalently, if n is a lattice vectol', we have 

a.(x - n) = J e-""··y,.(x, k) dk. 
Q. 

(4 .5a) 

A most important property of Wannier functions 
is that they are localized, i.e., that a.(x - n) is con­
centrated around the lattice point x = n. This has 
been proved in the one-dimensional case by Kohn.' 
We now indicate a proof of their localized nature in 
three dimensions, although in a rather special case. 

The definition of the bands, i.e., of the set of 
eigenvalues U. {A.(k)} = S. of Theorem 2, depends 
essentially on the analytic continuation of A.(O) as a 
function of k. We mentioned in See. 2 that the eigen­
value problem Hy, = AY" where y,(x + t) = 

.";" ' y,(x), is unchanged when k is increased by a 
reciprocal lattice vector K. Therefore, for every • 
there exists an m such that A.(k) = A.(k + K) . 
Suppose now (a) that no two bands overlap, and (b) 
that the eigenvalues in each band are simple. Then 
one can label the hands in orde.r of increasing energy, 
and the eigenvalues will be periodic in k. Further­
more, the eigenfunctions can be chosen to be periodic 
and complex analytic in k, by remark (ii) , Theorem 2. 
Then, application of the Riemann-Lebesgue lemma 
to the integral (4.5a) proves that the Wannier func­
tion decays exponentially with Ix - nl. This dem­
onstrates that these functions are localized in the 
case when Conditions (a) and (b) above are satisfied. 

It E. L Blount, in Solid-State Physia, edited by F. Seib 
a.nd D . TurobuU (Academic Press Inc., New York, 196 1), 
Vol. 13. 
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Extending an idea of Good, a modified WKB approximation using radial wavefunctioDs having the 
form of free-particle solutions to the radial wave equation rather than an exponential form is developed. 
The lowes~rde~ phase shifts are the same as those of the usual WKB approximation, but are improved 
by the contributIOn of the next order. The method is applied to two examples: the radial Dirac equation 
in the high-energy limit and the radial SchrOdinger equation. 

I. INTRODUCTION 

IT is our purpose, in this paper, to develop a modi­
fied WKB approximation for partial-wave phase 

shifts by extending an idea first proposed by Good.' 
Partial-wave phase shifts are obtained, of course, 

from the asymptntic behavior of the radial wave­
function. Now, in the customary WIG3 approxima­
tion, one writes the radial wavefunction in the form 

U(T) = A(T) exp [i s(r)/ h], (1.1) 

and assumes a solution to the wave equation can be 
found by developing A(T) and S (r) in a power series 
in h. As is well known, the resulting wavefunctions 
are singular at the classical turning point. The ques­
tion was raised by Good as tn whether the func­
tional form used in Eq. (1.1) is the most appropriate 
one when dealing with radial wave equations. He 
suggested that rather than the exponential form, 
the form of the free-particle solutions to the radial 
equation be used. He then made the customary 
development in powers of h and was able to define 
the phase function S(T) in such a way that it is real 
everywhere except perhaps for a range of r in the 
vicinity of the turning point and also such that the 
wavefunction is everywhere finite.' The latter makes 
unnecessary the use of connection formulas across 
the turning point. 

The key point in our generalization of Good's 
method lies in the recognition of the fact that the 

• This work supported in part by the U. S. Atomic Energy 
Commission. 

t Permanent address. 
t Present address: Department of Physics, Cornell Uw- . 

versity, Ithaca, New York . 
• R. H . Good, Jr., Phy •. Rev. 90, 131 ( 1953). 
2 For somewhat related work on modifications of the WKB 

method which also result in wavefunctions which are non­
singular at the classical turning point, see C. E. Hecht and 
J. E. Mayer, Pbys. Rev. 106, 1156 (1957), and J. S. Nodvik, 
UCLA Tech. Rept. No. 3- 1-58. -

higher derivatives of the zero-order functions- the 
free-particle solutions-can be reduced to zeroth and 
first derivatives (for the second-order equations we 
are interested in). Hence, we need use only two func­
tions of S(T). For purposes of illustrating the method, 
we give two practical examples in Sec. II and III, 
applying the method to the Dirac radial equation in 
the high-<mergy limit and to the Schriidinger equa­
tion, respectively. We show that in both cases S(r) 
may be defined such that it is finite and real every­
where, including the vicinity of the turning point. 
The lowest-order phase shifts, which are the same 
as those obtained in the usual WKB approximation, 
are improved by the next higher order. In the last 
section we indicate several further possible 
applications. 

ll. ELECTRON-SCATTERING PHASE SHIFTS 

A. Lowest-Order Approximation to Radial 
Wavefunctions. 

We are interested in scattering at energies high 
enough so that we may neglect the mass term in the 
Dirac equation. We begin, therefore, by considering 
the coupled Dirac radial equations, written in dimen­
sionless form 

(dF/ dx) - [(I + l )/xlF - (1 - v)O = 0, (2.1) 

dO/dx + [(I + 1)/x]O + (1 - v)F = 0, (2.2) 

where the radial variahle is in units of k - ' = ~, 

k = E/ f'" , v(xl = V(T) / E 

and E, of course, is the total energy. Note that we 
describe the interaction between the electron and the 
nuclear charge distribution by a static central 
potential V(r ). For reasons that later become clear, 
we put Eqs. (2.1) and (2.2) intn a more symmetrical 

1505 



                                                                                                                                    

1506 M. ROSEN AND D. R. YENNIE 

form by defining the two functions 

M(x) = F(x) + G(x), N(x) = F(x) - G(x). 

We find that 

dM /dx = /(x)N, dN/dx g(x)M, 

where 

/(x) = (/ + 1)/x - (1 - v), 

g(x) = (/ + 1)/x + (1 - v). 

(2.3) 

(2.4) 

(2 .5) 

In accordance with the ideas expressed in the 
previous section, we want to find a function S(r) 
which will enable us to approximate the radial wave­
functions by functions of the form of the unperturbed 
solutions of Eqs. (2.4). We denote the unperturbed 
solutions by !lfo and No, respectively; they satisfy 
the equations 

dMo/dS = [(I + 1)/S - I ]No a /o(S)No, 

dNo/dS = [(I + 1)/S + IJMo a g,(S)Mo' 
(2.6) 

The functional behavior of M 0 and No can be inferred 
from the fact that 

Fo = !(Mo + No) ~ Sj,(S), 

Go = HMo - No) ~ Sj,.,(S), 
(2.7) 

where ;, is the spherical Bessel function of order I. 
The solution regular at the origin is chosen in antic­
ipation of the fact that the modified WKB wave­
functions are well defined everywhere. 

In lowest order we, therefore, write 

M(x) = ao(x)Mo(S), N(x) = bo(x)No(S), (2 .8) 

and neglect the derivatives of a, and boo Substituting 
Eq. (2.8) into Eq. (2.4) we obtain 

= /(x) boNo , 
or 

aoloS' = bo/. (2.9) 

Similarly, 

bogoS' = aog, (2.10) 

where a prime denotes the derivative of a function 
with respect to its argument. Note that the compari­
son functions M 0 and No do not appear in Eqs. (2.9) 
and (2.10); they have dropped out. We proceed in 
higher approximations in such a manner that this 
occurs in each order. Solving the a bove equations 
for S', we obtain 

/og,(S')' = Ig (2.11') 

or r (_/ogo)1 da = t (-jg)I dp. (2 .11) 

We define S such that it is everywhere real and 
that S' is finite at the classical turning point x,­
defined to be that point where f(z) vanishes. We 
therefore take the lower limit of the left-hand integral 
to be 

S, = 1 + 1. 

Although we are primarily interested iu the region 
x > x" Eq. (2.11) is of course valid for all x and S, 
including x < x, and S < S,. An equation for S(r) 
similar to Eq. (2. 11) was also obtained by Good . He 
also chose the lower limjts of his integrals to be x, 
and S, = 1 + 1, respectively, although for a dif­
ferent reason. The integrands in his equation had 
branch points at p = x, and a = 1+ 1, respectively, 
which led him to associate them with each other. He 
obtained an S(r) however that was, in general, not 
everywhere real. 

We also find from Eqs. (2.9) and 

(ao/bo)' = go///,g· 

(2. 10), that 

(2 .12) 

To completely detennine a, and bo, it is necessary to 
take a look at the next higher approximation. 

In first order, we cannot neglect the derivatives of 
a, and bo; thus when we substitute Eq. (2.8) into 
Eq. (2.4), these introduce terms containing Mo and 
No, respectively. However, if we write 

M(s) ~a,!lfo(S) + a,No(S), 

N(x) ~ boN o(S) + b,M 0(S), 

(2.13) 

(2 .14) 

and neglect the derivatives of a , and b" the functions 
Mo and No again drop out, resulting in the following 
set of equations: 

I 1 [a, ] l a~ ] 
- loS' b, b~ 

(2.15) 

The matrix on the left, however, is a singular one, 
its determinant vallishing according to Eq. (2.11'). 
Therefore, ~ and b~ must satisfy a solvability condi­
tion of the form 

a~ + (3b~ = 0, 

. and indeed we see that 

/oS'a~ + /b~ = 0. 

This, together with the fact that 

ao/bo = II/oS' = UoS'/g 

(2.16) 
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yields 

aobo = canst = J. (2 .17) 

We may set the constant equal to unity, as this 
affects only the normalization of the wavefunction. 
It follows that 

<10 = b;' = (goflfog)! = (flfoS,)1 = (goS ' lg)l . (2 .18) 

The amplitudes ao and bo are finite everywhere and in 
particular at the turning point, thus ohviating the 
necessity of connection formulas . Furthermore, in 
most cases of interest, they deviate only slightly 
from unity. 

The lowest-order wavefunction is now fully 
determined and we are in a position to calculate the 
lowest-order phase shift. The asymptotic solutions 
to Eq. (2.8) , valid for large x, are 

M '" cos [S - (I + i)tn-l 
N '" cos [S - (I + i)tn-l; 

therefore, denoting the lowest-order phase shift 
by 11 (0 ) , we have 

~ '" lim (S - x - "y In 2x), 

where 

"y = Za, 

Z is the atomic number of the target nucleus and a 
is the fine-structure constant. The logarithmic term, 
of course, takes into account the phase distortion at 
infinity due to the long tail of the Coulomb potential. 
From Eq. (2.11), we find 

lim S = lim l' [(1 - v)' - (I +, 1)'JI dp 
,. ... "" _DO,., P 

+ (I + m .. , (2.19) 

and hence 

v'" = lim {1' [(1 - v)' - (I +, 1)2JI dp 
_ .. :... P 

- x - "y In 2x + (I + 1)tn-}. (2.20) 

This is just the expression given by Baranger' 
for the WI(B approximation to the phase shifts for 
the elastic scattering of high-energy electrons from a 
central potential. Our lowest-order phase shifts, then, 
are just those given by the usual WKB approxi­
mation. 

A perhaps useful piece of information comes out 
of the above analysis. Calling the quantum number I 
which characterizes the solutions to Eq. (2.4) the 

J E. Baranger, Phya. Rev. 93, 1127 (1954) . 

index of these functions, then the lowest-order phase 
shift is independent of the index we choose for the 
comparison functions M 0 and No . For example, if 
we denote the index of M 0 by k, then according to 
Eqs. (2.8) and (2. 19) 

{[ l ' ( (l + [)')I 
Mo ~ cos ~~~ " (1 - v)' - p' dp 

+ (k + !)t .. J - (k + i)tn-} 

~ cos b~ J.: [(1 - V)2 

-e ~ 1)']' dp - t .. } 

This leads us once more to Eq. (2.20). There is 
therefore an infinite class of modified WKB approxi­
mations all giving the same phase shifts in lowest 
order, but which will not, ill general, agree in higher 
orders. It seems reasonable to take k equal to I, 
but it is conceivable that with some other approach, 
it might be advantageous to choose k differently. 

It is also of interest to see how condition (2.17) 
affects the function that plays the role of the W rons­
klan in Dirac scattering theory. Eq. (2.4) has two 
linearly independent sets of solutions which we de­
note by (M 'l) , N 'l) and (M'2), N(2», respectively. 
The Wronskian is then given by 

W(x) = (Mu'N'" - M "'N ' l); 

it follows directly from Eq. (2.4) that 

W'(x) = o. (2.21) 

If we substitute Eq. (2.8) into Eq. (2.21), we obtain 

d[aobo(M~l) N~2) - Mi" N i")]/dx 

= d(Mil)Ni2) - Mi"Ni")ldx = o. 
Thus, the Wronskian is independent of x both exactly 
and also in lowest order. 

B. First-Order Phase Shift 

We now go on to further consideration of Eq. 
(2.15). It is convenient to write. (a" b,) as the sum 
of two terms-one a solution of the homogeneous part 
of Eq. (2.15) and the other a particular solution: 

where 

f ][8]= 0 
- foS' t 

(2.22) 
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We can make the separation explicit by writing 
(a" b,) in the following way: 

[
a,] 1 {[gOS' -f ][a, ] 
b, = (fo + go)S' -g -foS' b, 

+ [foS' f ,] [a,]} , 
g goS b, 

from which we obtain 

m = - (fo + go)S' , n = 

From Eq. (2.22), we find 

s = p(x)f, 

(fo + go)S" 

t = p(x)goS', 

(2.23) 

(2.24) 

(2.25) 

where the function p(x) is determined only in the 
next higher order. 

It is not difficult to see that as x -> 00 

and 

Therefore 

aO I bo~l, 

1n, n ---+ 0, 

s-> -p(oo), t-> p( oo). 

M ~ Mo - p(oo)No, 

N ~ No + p(oo)Mo, 
(2.26) 

from which, assuming p( co) to be a small correction, 
we find 

M(x) ~ cos [S - (l + m". + p(oo)], 

'N(x) ~ cos [S - (1 + m". + p(oo)]. 
(2 .27) 

We see that p( 00) is a correction to the lowest-order 
phase shift. 

Going on to the next order, we write 

M(x) = aoMo + a,No + a,Mo, 

N(x) = boNo + b,Mo + b,No, 

and, proceeding as before, find 

[ 
- foS' f ,] [a' J [a:]. 

g - goS b, b, 

The coefficients a, and b, must satisfy a solvability 
condition 

or 

+ .!!... (f S') + S' dill + f dn = 0 dx go p go dx dx . (2.28) 

Therefore 

-1 
p(x) = 2(fgoS')t 

X l' goS'(dmldx) + f(dnldx) d + const 
.. (lgoS')t x (JgoS')I' 

Now we want p to be real since our equations and all 
the quantities we have dealt with are real; we there­
fore require that the constant be zero . This also 
means that p is everywhere finite, which is necessary 
if our whole approach is to be meaningful. Thus 

,dm dn 
- 1 l' goS d; + f ax 

p(x) = 2(fgoS')t.. (JgoS')1 dx, (2 .29) 

and the first-order correction to the phase shift is 

~O) = lim p(x) . 

C. Point Coulomb Phase Shifts 

For the case of scattering from a point Coulomb 
field, the lowest-order phase shift is easily calculated. 
We have 

17 to) [1' ( 2 A')I lim 1 + 2 - -, dp 
.,_<I>:r, P P 

- :r - '( In 2x + (I + I) ·~". ] 

= '( - A tan- ' ~ - '( In (I + I) 

+ [(1 + 1) - AU"., 
where 

A' = (1 + I)' - '(' 

and we havc uscd thc fact that 

x, = (l + I) - '(. 

(2 .30) 

Now, the exact-point Coulomb phase shift ~ . is 
given by· 

. _ (A - i'() r(A - i,() . 
exp 2,~c - (I + I ) r(A + i'() exp [",(I + 1 - A)]. 

If we use the asymptotic form of the gamma function 

In r(x) = ! In 2". 

- X + (x - t) In x + O(l/x), 

we find 

~. ~ '( - A tan- ' h i A) - '( In (I + I) 

+ [I + 1 - AH".. 

(2.31) 

(2.32) 

4 N. F. Mot.t and 1:1 . S. W. Massey, 7'he Theory oj Atomic 
Collisions (Oxford University Press, London, 19(9), p. 79. 
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The WKB phase shifts therefore are just those 01:>­
tained by replacing the gamma functions in the exact 
expression by Stirling's approximation. We shall see 
that the contribution from ~ (1 ) is just that correction 
to Eq. (2.32) obtained by neglecting only terms 
O(I/x') in Eq. (2.31). 

To calculate the first-order correction to the 
phase shift, one has to evaluate the integral in 
Eq. (2.29); since p is a small correction, we do this 
onJy approximately. It is convenient to expand the 
quantities occurring in Eq. (2.29) to first order in the 
potential. We therefore let 

where 

w(y) = 411' l' t'q(t) dt 
y , 

+ 4". r tq(t) dt; , 
x 

y =­
x, 

(2.37) 

and the dimensionless reduced charge density q is 
normalized such that 

411' f q(t)t' dt = 1. (2.38) 

S = (l + I )(y + /l(1 - y)U(y)], 

where 

We can estimate the integral in Eq. (2.29) in a 
(2.33) manner similar to that in the point Coulomb case; 

the function U(y) is now given by 

{l = "'I/(l + 1), 

and, taking /l to be a parameter of smallness, perform 
aU further calculations only to first order in /l. The 
equation for U(y) is obtained by substituting Eq. 
(2.33) into Eq. (2.11') and neglecting terms of 
second and higher order in /l. We find 

y(y + I )(y - I)U'(y) 

+ (y(y + I) + I]U(y) = y', (2.34) 

from which we obtain 

y [f' (z - 1)1 ] U(y) = (y _ I )(y' _ I) ' ,dz\z---=t=J' + const . 

Since U must be real (because S is real) the constant 
is zero. Hence 

Y f' (z - 1)1 
U(y) = (y _ I )(y' _ I) ' , dz\z---=t=J' . (2.35) 

The integral can now be done to first order in {l and, 
after lengtby but straightforward manipulation, we 
obtain 

nO ) = "'1/12(1 + 1)'. (2.36) 

This is indeed the correction to Eq. (2.32) which is 
obtained if the 1/12x term in the asymptotic ex­
pansion of the gamma function is retained and higher 
terms are neglected. 

D. Scattering from a Distributed Charge 

In the case of scattering from an extended nucleus, 
the phase shift is given in terms of the Coulom b 
potential of the extended charge distribution. The 
potential may be written 

vex) = -("'I / x,)w(y), 

U(y) 

11 f' (t - 1)1 
(y _ 1)(y' - I )' , tW(t) t + I dt, (2.39) 

where W (y) is dcfined by 

w(l) - w(y) = (I - y)W(y) . 

Expressing 11(t ) in terms of the charge distribution, 
we find in a straightforward manner 

= 12(l + 1)' 

x [1 + 211' r 2Y~(;; ~' ~,z q'(y) dy 1 (Z.40) 

Now it is clear from Eq. (2.20) that n (OJ is not 
strongly affected by the details of the charge distri­
bution; the second term in 11(1) is a correction which 
takes into account a more detailed feature of the 
distribution- its radial derivative-while the first 
term is seen to be a correction to the point Coulomb 
part of 11 (0) • 

To make clearer the dependence of ~(" on I we 
evaluate it explicitly for a simple case-that of a 
uniform charge distribution with radius R. We find 

~co (uniform) 

= 11Z(l : 1)" R < x, 

, [ _.lZX:-X,+Z] 
"'IZ""("'l ""+-:-1)"" 1 , x,(x,(x, - 1)]' , R > x" 

(Z.41) 

where 

x, = (R/x,)', 

and x, is to a good approximation, proportional to 
(l + 1). We see that as the turn ing point approaches 
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the surface of the charge distribution from the left, 
the correction hecomes singular as [- (R - x,) - I). 
but is finite and positive as the surface is approached 
from the right. This discontinuity is a consequence 
of the sharp discontinuity in the charge distribution; 
in the case of a smooth distribution ~ ' " is finite for 
all values of I-although remaining peaked and of 
opposite sign on opposite sides of the surface. 

Rather than proceeding as we have done above, 
we could have written from the start, following the 
ideas sketched in the introduction, 

M{x) = a{x)M,{S) + c{x)N,{S) , 

N{x) = b{x)N,{S) + d{x)M,{S). 

Substituting these into Eq. (2.4) and equating the 
coefficients of Mo and No to zero, we obtain 

f
' g,S' fx m, + I fx n, 

X {f S')l dx, k odd, 
.. . Yo 

(2.43) 

where 

{f, + g,)S' , n,l; = 
{fo + g,)S' 

Thus, with this method, we can only obtain informa­
tion about that part of the charge distribution which 
lies outside the turning point; e.g., if the turning 
point lies outside the charge distribution we could at 
best obtain pure point Coulomb phase shifts. This 
follows from the fact that 

M ~ (I - p,{",) - P.{",) - .. ·)M, 

- (p{"') + Pa{"') + .. ·)N" 

a' + cS'g, = df, 

bS'g, + d' = ag, 

as'f, + c' = bf, 

b' + dS'f, = cg . 

(2.42) N ~ (I - p,{ "') - P.{ "') - . .. )N, 

If we take S{r) to he as defined ahove, these form a 
set of four first-order equations for the four coef­
ficients. Since the coefficients are generally slowly 
varying, these equations would lend themselves to 
numerical methods of solution. What we have 
actually done however, is equivalent to Wl'iting the 
coefficients as follows, 

a=ao+a,+a.+ 

b = b, + b, + b. + 
c = c, + c, + c, + 
d = d, + d, + d, + 

where the indices denote order of smallness. The 
coefficients ao and b, then satisfy Eqs. (2.9) and 
(2.10); c, and d, are just the coefficients we have 
previously denoted by a, and b" respectively. 

If one follows through the analysis in Secs. 1 and 2, 
it is seen that, in all orders, the modified WKB phase 
shift depends only on the potential outside the 
turning point. Indeed it is straightforward to show 
that the even- and odd-order corrections, respect­
ively, are given by 

p,{x) = 
1 

2{ffoS')! 

f
' foS' fx m, + f fx n, 

X.. (f/,S')! dx, keven, 

p,{x) 

+ (p{"') + p,{",) + .. ·)M,. 

This expansion may be asymptotic if the potential 
is analytic, and, of course, must be so if it is not. 
Indeed it is clear that the expansion eventually 
diverges if there is a discontinuity in, say, the nth 
derivative of the potential. For if V,·, is discontinuous 
or singular then so also are ari'" and b~") and hence 
m~ .. -I) , n!,,-D, and PI (x) (II-I) . Each successively 
higher order coefficient becomes discontinuous or 
singular at one lower order of the derivative, so that 
eventually all the coefficients beyond a certain order 
are discontinuous or singular. From Eqs. (2.1) and 
(2.2), however, it is seen that if the potential con­
tains a discontinuity or singularity in its nth deriva­
tive, then the exact functions contain a discontinuity 
or singularity only in the (n + l )st and higher 
derivatives. 

As an example, let us examine a case we have 
already treated above-that of a uniform distribu­
tion. Here v{x) and v'{x) are continuous but v(2) 
is discontinuous at the radius R of the charge dis­
tribution. We have seen that ao and bo are indeed 
continuous, as are also a~l) and b~1) (and consequently 
1nl and nl); aci2), b~'), m~ll and n~1) are discontinuous 
at x = R. We see also from Eq. (2.28) that P:" (x) is 
discontinuous there and, moreover, its discontinuity 
is considerably enhanced if the turning point lies 
near the discontinuity. This accounts for the singular 
behavior of ~'" as a function of I in Eq. (2.41). 

It should he noted that if we use the exact equa­
tions for a, b, c, and d, this singular behavior does not 
occur, for although their derivatives may be dis­
continuous, the coefficients themselves are not. 
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TABLE I. Point Coulomb phase shifts for scat.tering !r'om 
gold; ~ - 0.5765. 

Corrected 
(I + 1) WKB WKB Numerical-

1 +0.36175 +0.40979 +0.40736 
2 -0.24973 -0.23772 -0.23797 
3 - 0.53832 -0.53298 -0.53303 
4 -0.72957 -0.72657 -0.72659 
5 -0.87289 -0.87097 -0.87098 
6 -0.98756 -0.98623 -0.98623 
7 - 1.08316 -1.08218 - 1.08218 
8 - 1.16513 -1.16438 -1.16438 
9 -1.23688 - 1.23629 - 1.23628 

10 -1.30068 -1.30020 - 1.30020 
11 - 1.35811 - 1.35771 -1.35772 
12 - 1.41034 - 1.41001 - 1.41001 

• See Ref. 5 . 

The modified WKB phase shifts, in lowest order 
and with first-order corrections, together with phase 
shifts ohtained hy the numerical integration of the 
radial Dirac equations'" are given for several dif­
ferent charge distributions in Tables I - III. The 
difference between the exact and the corrected WKB 
phase shifts are indicated in Fig. 1. It is seen that the 
error is appreciahly smaller for the smoother Fermi­
shaped distribution. The test however is in the angular 
distribution and in Fig. 2 are compared the WKB 
and the exact angular distrihutions for the scattering 
from gold for k = 10" cm- ' (~197 MeV), using a 

TABLE II . Phase shifts for scattering (rom gold, using a 
uniform dist.ribution with kR - 8.0, l' - 0.5765. 

Corrected 
(I + 1) WKB WKB Numerical-

1 -0.83551 -0.83552 - 0.83553 
2 -0.85283 -0.85287 -0.85289 
3 -0.86140 -0.86149 -0.88136 
4 -0.92079 - 0.92093 -0.92116 
5 -0.97028 -0.97056 - 0.97034 
6 - 1.02887 - 1.02935 -1.02902 
7 -1.09498 -1.09582 - 1.09683 
8 -1.16607 -1.16797 - 1.16829 
9 -1.23688 -1.23629 -1.23710 

10 -1.30068 -1.30020 - 1.30033 
11 -1.35811 -1.35771 - 1.35773 
12 - 1.41034 -1.41001 -1.41001 

• See Ref. 5 . 

• D. G. Ravenhall and D. R. Yennie, Proe. Phys. Soc. 
London, 70A, 857 (1957). 

• B . C. Clark, R. Herman, and D . G. Ravcnhall, (private 
communication). The small differences between the exact 
phase shifts for the Fermi-s.baped distribution given above 
and the earlier published set of Ravenhall and Yennic i are, 
to the accuracy Quoted, due entirely to small but significant 
differences in the dimensionless parameters on which the 
calculation depends. SpecificaUy, the earlier values and the 
prceent ones are as (ollows: '"Y was 0.5765, is here 0.5764854; 
kc was 7.576 1421, is here 7.58; kt was 2.788356 1, is here 2.79. 

TABLE III. Phase shifts for scat.tering from gold, using a 
Fermi sha.pe distribution with kc .,. 7.58, kt - 2.79 (c is 
t.he distance to the half point. and t is the 90% to 10 % dis­
tance), ~ - 0.5764854. 

Corrected 
(I + 1) \vKB WKB Numerical· 

1 - 0.83606 -0.83606 -0.83607 
2 - 0.85403 -0.85407 -0.85406 
3 -0.88365 -0.88375 - 0.88375 
4 -0.92437 -0.92457 -0.92457 
5 -0.97528 -0.97565 -0.97557 
6 -1.03500 -1.03567 -1.03576 
7 -1.10129 - 1.10242 -1.10267 
8 -1.17055 -1.17183 -1.17179 
9 -1.23818 -1.23867 - 1.23864 

10 -1.30094 -1.30080 - 1.30086 
11 - 1.35814 -1.35783 -1.35787 
12 - 1.41032 -1.41001 -1.41 002 

• See Ret 5. 

Fermi-shaped distribution.' The result is somewhat 
disappointing. One expects, of course, the modified 
WKB approximation to improve with increasing 
energy (and with more diffuse surfaces of the charge 
distributions), but on the other hand, the exact 
angular distribution drops off more steeply and 
necessitates greater accuracy in the phase shifts. 
Clearly a comparison of the WKB and exact angular 
distributions at higher energy is needed to check 
the usefulness of the modified WKB approximation 
in analyzing the elastic scattering of high-energy 
electrons from heavy nuclci. Although these results 
would discourage us from using the WKB phase 
shifts for a complete practical calculation, it is 
possible that one could use them in combination 
with phase shifts obtained by numerical integration 
of the radial wavefunctions. 8ince the greatest 
errors occur for those partial waves whose turning 
point lies in the surface, onc might for example use 

- UNIFORM OISrRIBUTlON (TA BLC J/) 

--- FCRMI SHAP£D DISTRIBurlON 
(rA BL£ III) 

" 

IA • 

\ 1\ • , . , . - , -, 
J\/ [\ 

--

o 10 11 14 II 

Fro. 1. Deviation of the corrected WKB phase shuts (rom 
the exact ones obtained by numerical integration of the 
radial equations. 
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FJO . 2. Angular distributions a.t k - 1011 em-I (Q: 197 MeV) 
(or scattering by the Fermi shape kc - 7.58, kl - 2.79, for 
gold with y - 0.5764854. 

the WICB phase shifts for small and large I: 

(I + 1) <' (kR - kilo (I + 1) >' (kR + kl), 

and the exact ones for the critical region. In this way, 
it might be possible to reduce considerably comput­
ing-time requirements while retaining reasonable 
accuracy in the angulJJ.r distributions. 

m. APPLICATION TO THE SCHRODINGER 
EQUATION 

A. Modified WKB Wavefunction 

In this section, we show that the essential ideas 
outlined in the previous sections can be used when 
dealing with the Schrtidinger equation also. 

We may write the radial wave equation 

", "() -2m U T 

q'(p) ~ 1(1 + 1)/ p' + v - I 

k' ~ 2m lEI 
h2 I 

(E> 0) , 

v(p) ~ V(r). 
lEI 

If we could factor Eq. (3.2) into two linear equa­
tions having the same form as Eq. (2.4) , we would 
be able to treat the radial Schrodinger equation in 
exactly the same way as we did the Dirac radial 
equations. Unfortunately, there is no natural factori· 
zation of Eq. (3.2) and we must proceed in a Borne­
what different manner. 

As before, we want to approximate the solutions 
of the radial equations by functions of the same form 
as the unperturbed solutions to Eq. (3.2). We denote 
the unperturbed solut ions by Uo; they satisfy the 
equation 

u;'(S) - q:(S)uo(S) ~ 0, (3 .3) 

where 
q:(S) ~ 1(1 + 1)1 S' - 1. 

We write therefore in lowest approximation, 

u(p) ~ ao(p)uo(S). 

SUbstituting this into Eq. (3.2), we find 

(a~/uo + 2a~u~S' + ao(S') 2u~ ' + ao~S") 

(3.4) 

- aoq'uo ~ 0. (3 .5) 

By making use of Eq. (3.3), all derivatives of Uo may 
be reduced to expressions containing no derivatives 
greater than the first. In picking out the dominant 
terms in Eq. (3.5) , we take, uo, u~, and u~' to be of 
comparable order, but assume that derivatives of ao 
are relatively small. We also assume that second and 
higher derivatives of S are also small . We then 
obtain 

(3.6) 

This equation was also obtained by Good, but his 
treatment differs from ours in that he separates 
1(1 + 1) into two terms, [(I + I )' - (I + 1)] and 

+ [ V(r) + 1(12;;,,J,l"']u(r) ~ Eu(r) , (3. 1) assumes the second term to be small relative to the 
first. 

where 

u(r) ~ ry,(r), 

I is the angular momentum quantum number, and E 
is the total energy (positive for positive energies 
and negative for bound states) . Equation (3. 1) can 
be rewrit.ten in dimensionless form 

u"(p) - q'(p)u(p) ~ 0, (3.2) 

where 

Using Eq. (3.6) to define S, we proceed using the 
ideas described above, and write 

u(p) ~ a(p)u,(S) + b(p)u;(S). 

Substituting this into the wave equation and equat­
ing the coefficients of Uo and u~, respectively, to 
zero, we find 

a" + 2(q:S')' (djdp)[(q:S')'bj ~ 0, 

b" + 2(S')'(dl dp)[(S'1'aj ~ 0. 

(3.7) 

(3.8) 
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As in the case of the Dirac equation, it might be 
interesting to solve these equations directly. Since 
the rapid oscillations of the wavefunction have been 
removed, they may lend themselves to an economical 
numerical procedure. However, we do not proceed 
along these lines, hut instead write 

a=ao+a:a+a,,+ 

b = bl + b, + b, + 
where the indices indicate orders of smallness. 

We are satisfied for our present purposes with 
calculating phase shifts only to the two lowest 
orders and, therefore, in determining only the coef­
ficients a, and bl. We find that they satisfy 

2(S,)I(d/dp)[a,(S,)I] = 0, 

a;' + 2(q;S')I(d/dp)[b l (q:S')I] = o. 
(3.9) 

(3 .10) 

These equations, together with Eq. (3 .6), are suf­
ficient to determine the coefficients a, and bl . 

B. Calculation of Phase Shifts to First Order. 

To find the lowest-order contribution to the phase 
shift, we need to know the behavior of S for large p. 

From Eq. (3.8) 

r (-q;)lds = r (-q')ldr . 
• , p~ 

(3.11) 

As before, we choose the lower limit of the integral on 
the left in such a way as to keep S' everywhere finite 
and real. We therefore take 

S, = S(p,) = [1(1 + 1)]1 '" A, 

where p" the classical turning point, is defined by 

q'(p,) = O. 

From Eq. (3. 11 ) we now find 

S ~ ~~".! J.: (- q')1 dr + A!". . (3.12) 

Since the field-free solution to Eq. (3.2) regular at 
the origin is the spherical Bessel function of order l, 
the lowest-order phase shift, ~(.), is obtained from 

~ (O) = lim (S - p - a In 2p), ,--
where the presence of the logarithmic term is due to 
the (assumed) presence of a Coulomb potential, 

a = ZZ'e'/fw, 

Z and Z' are the atomic numbers of the nucleus and 
incident particles, respectively, and v is here the 
relative velocity of the incoming particle and the 

nucleus. Therefore, 

~ Io) I!.?: [1.: (-q') ! dr - p 

- a In 2p + At".]· (3. 13) 

It might be noted that it is not true here, as it is 
with the Dirac equat ion, that the lowest-order phase 
shift is independent of the index of u •. 

The solution to Eq. (3.9) is 

a, = const (S,) - I. 

As the constant affects only the normali zation of the 
wRvefunction, we may set it equal to unity; thus 

This is finite everywhere, which means in particular 
that our wavefunction is finite at the turning point. 

The solution to Eq. (3.10) that is everywhere real 
and finite is 

(3.14) 

Now since in the asymptotic region Uo and uri are 
t ". out of phase and a, approaches unity, we see that 
b l ( '" ) is the first-order correction to the WKB phase 
shift . 

We can write bt in a more convenient form. If we 
let 

Q(p) = -q'(p), 

we find 

2b l (",) 

1 f- 1 d (Q:') 1 f- 1 d (Q") 
= 12 A ds Q! ds Q; - 12 " dp Qf dp CT 

5 {Q;I- Q'I-} 1 {Q:' 1- Q" I-} + - ril -ril - - NnJ -NnJ . 
24 Q. A Q" 12 Q,Q. A Q Q " 

The integrals are convergent, but the integrated 
terms must be considered carefully. To investigate 
the behavior at the lower limit, we expand Eq. (3.8) 
about the turning point and find that in the neighbor­
hood of p, 

S = A + C(p - p,) 

[
1 Q:' 3 C] + C 10 Q: + 10 A (p - p,)' + ... , (3. 16) 

where 

c3 = ! AQ~. 

From this, it is easy to show that the integrated 



                                                                                                                                    

1514 M. ROSEN AND D . R. YENNIE 

terms cancel. We therefore have, after performing 
the integration over S, 

I I fm I d (Q") ~,( "') = SA t .. - 24 .. dp Qf dp Q' . (3.17) 

It is remarkahle that this reduces to an integral over 
p of only explicitly known functions of the potential. 
This was unfortunately not the case with the Dirac 
equation. 

Note that Eq. (3.17) does not hold for S wavcs. 
Here the comparison function is purely oscillatory 
and of a very different character from u when a 
turning point ex.ists. Indeed, we find that S' vanishes 
at the turning point and is no longer everywhere real; 
also a. and b, are singular at p,. 

As we have seen, the lowest order yields just the 
usual WKB approximation to the phase shift. Now 
an old rule of thumh, justified hy Langer,' states 
that an improved result is obtained if one replaces 
l (l + I) by (l + t)'. In order to introduce the (l + !)' 
in a natural way, we make the following transforma­
tions 

and then 

u = e!'w(x) , 

where w(x) satisfies the equation 

w" + e"[1 - v(e') - (I + !)'e-b]w = o. 
Proceeding as with Eq. (3.2), we obtain 

where 

. p .(S)[S'(x)l' = P(x) , 

<1.(x) = (S,)-I, 

d~' - 2(P.S,)1 :. Ib,(P.S,)I) = 0 , 

p . = e"[1 - (l + tj'e-"), 

P = e"[1 - 1I(e') - (l + t)'e-"] , 

(3.1S) 

(3.19) 

(3.20) 

(3 .21) 

and where we denote the (l + !) phase shifts and 
coefficients by a bar. Setting u = eS

, we obtain from 
Eq. (3.19) 

1" ( X')I f' [ 1'JI _ 1 - T ds = I - v(p) - -, dp, (3.22) 
It S It. P 

where 

x = (l + t); 
and from Eq. (3.21) 

7 R E . Langer, Phys. Rev. 51, 669 (1937 ). 

2b,(",) 1 {1m 

I d ~~') = - dsVl- -, 
12 ,. A p. dS • 

I" 1 d ~")} - ax DI - -;cr- . 
" P dx 

The first integral vanishes since P:,' = 2P{,; hence 

- 1 1m 

1 d (P") b,("') = -24 .. dx pi dx P' . (3.23) 

The lowest-order phase shift is obtained from the 
asymptotic behavior of u, [since w.(S) ~ J, . , (u)], 
and is seen to be the same as the one previously ob­
tained except that l (l + 1) has been replaced by 
(I + i)'. As a consequence, ~ (O) is independent of the 
index of the comparison functions. Expressing b, ("') 
explicitly as a function of the potential we find 

I f" I d b,( "') = - 24 dp PQ'a 
.. p 

(
4(1 - v) - 5pV' - p'v") 

X 2(1 - v) _ pV' , (3.24) 

where 

Q(p) = I - v(p) - (l + t)' / p'. 

It is clear that the previous difficulty with S waves 
is not encountered here. 

C. Point Coulomb Scattering 

Consider Eq. (3.11) with 

A' 
-g'-I--

0- 8' , 

We find 

, 2a A' 
- q = 1 --- 2 1 

P P 

S ~ p - a In 2p - a 

ZZ' 
a=-' 

Iw 

+ ta In (a' + A') + A tan- ' (a/A), 

alld consequently, 

~ ~O) = - a + !" In (a' + A') 

+ Atan- ' (a/A); 

it is also easy to show that 

~~O) ~ -a + !a In (a' + X') 

+ i\ tan-I (a/X) . 

(3.25) 

(3 .26) 

Now the exact Coulomb phase shift is given by 

~c = arg r(l + 1 + ia); 

i.f we employ Stirling's approximation, we find 

~c (Stirling) = ~' O) + § X' : a' + o(X' : J. 
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Including the next term in the asymptotic expansion 
of the gamma function, we obtain an additional 
contribution of - a/ 12(i\' + a'); thus 

~. ("extended" Stirling) 

= ~'O) + 2~ (i\' :) + O(i\' : a')' 

When 6,( 00) is evaluated, we indeed find 

6,( 00) = n[a/(i\' + a')] . 

It is also easy to show that 

b () I a + I _, a 
,00 = 24 A' + a' 8A tan A:' 

(3 .27) 

In Table IV, values of the exact and approximate 
point Coulomb phase shifts are given for special 
values of I. One may note that the ~'" and ~'" 
terms bring substantial improvement in the WKB 
phase shifts and also that the Langer-type approxi­
mation is the better of the two. As one would expect, 
the approximation improves as l or ex increases. 

4. Further Applications 

The modified WKB approximation outlined above 
can be applied, of course, to potcntials other than the 
ones we have used. For instancel no essential changes 
need be made for a spin-{)rbit potential. The only 
difference would be that the potential would now be 
a function of 1 and j, the orbital and total angular 
momentuf!1 quantum numbers, respectively. 

If however, V(r) is no longer real, then the wave­
function u(p) is no longer required to be real, nor is 
the classical turning point on the real axis. Our dis­
cussion must therefore be suitahly modified. Nodvik' 
has treated Eq. (3.6) (which he obtained in a some­
what different manner) in some detail for the case 
of a complex well, and so we restrict ourselves to a 
few descriptive remarks. 

We allow p and S to assume complex values and 
understand the integrals in Eq. (3. 11 ) to be contour 
integrals in the complex p and S planes, respectively; 
the square roots and integration paths can be defined 
in some convenient manner. In order that in the 
limit of real potentials the method reduce to that 
described above, the lower limits of the integrals are 
still to be defined by the zeros of q' and q:, respec­
tively-but here complications arise. V(r), in 
general, is not analytic along the real r axis. Also, 

TABLE IV. Nonrclativistic Point Coulomb pbaae shifts. The 
parameter of the Coulomb potential is a - ZZ/el / llV . The 
two different WKB approXimations defined in Sec. 3 are 
shown. 

WKB Corrected W KB 
a '7 ( 0) '7(0) + '1(1) Exact 

l1i 0.04348 0.05386 0.05298 
J1 0.18333 0.22263 0.21959 
2 1.14278 1.24 111 1.23680 
8 10.73262 10.86105 10.85695 

2 ~ 0.Jl204 0.11551 0.11540 
0.45137 0.46498 0.46457 

2 1.97980 2.02308 2.02219 
8 12.11383 12.18359 12.18277 

a ij ( O) ij ( O) + ij(ll Exact 

l1i -0.08537 -0.06576 -0.07138 
J1 -0.28059 -0.23892 -0.24406 o 
2 +0.10983 +0.129'14 +0.1 2965 
8 9.40532 9.41050 9.41051 

l1i 0.05083 0.05313 0.05298 
J1 0.21170 0.22003 0.21959 
2 1.22352 1.23685 1.23680 
8 10.85191 10.8569·1 10.85695 

l1i 0.Jl459 0.11542 O.JlMO 
J1 0.46144 0.46465 0.46457 2 
2 2.01413 2.02226 2.022 19 
8 12.17802 12.18276 12.18277 

q2 in general has more than one zero in the complex 
plane. Nodvik points out, however, that V(r) 
usually is analytic on the real r axis except at a finite 
number of isolated points which thus divide the 
axis into a finite number of intervals; that in each 
interval there is a VCr) defined which can be ana­
lytically continued into the complex r plane. He 
takes as r. the zero of that particular q' which lies 
closest to tbe real axis. If thc imaginary part of 
V(r) is small, this will be near the "real" turning 
point. Further details may be found in Nodvik's 
report. 
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The slowing down of 1\ particle by a homogeneous isotropic moderator is considered. It is shown that 
finding the collision density of the particle as a function of space and energy is equivalent to finding 
the probabiljty distribution of a certain random functional . By means of this ra.ndom functiona.l, ex­
pressions for the spatial moments are obtained without imposing any restrictions on the variations of the 
scattering kernel or crQ8B section wi th energy. These momenta are then used to obtain thengeequation, 
the deriva.tion given here differing from others in tha.t no a priori assumptions arc made on the collision 
density itself. Finally, as a special co.ac of the above, the time-encrgy moments arc found. 

I. INTRODUCTION 

I N an earlier paper, random functional s were used 
to derive the moments of the neutron time­

energy distribution.' The methods presented there 
can however be considerably simplified and extended. 
It is the purpose of this paper to make these exten­
sions to the case where the spatial distribution of the 
particle (as a function of energy) is the quantity of 
interest . The class of scattering kernels and cross­
sections covered is much larger than that allowed for 
in Rcf. 1 (main restriction: infinite homogeneous 
medium at 0° temperature), and in fact is sufficiently 
broad that our more general title-"particle modera­
tion" rather than just "neutron moderationJ/­
appears justified. 

Stochastic methods have heen relatively ignored 
in recent years, moderation theory relying chiefly on 
the transport equation. Nevertheless, the classic 
paper of Fermi' 'used a stochastic approach to find 
the mean-square distance (r'(E» for a neutron to 
slow down to a given energy E with a hydrogen 
moderator. The determination of (r'(E» for a 
moderator with atomic mass greater than unity, how­
ever, has been done through a solution of the impor­
tant "moment" equations of transport theory .1S 

While a general analytic solution of the moment 
equations has not yet been given, extensive compu­
ter programs for their numerical solution have been 
written.' For the one-dimensional case, tln(n + 1)] 
coupled equations must be solved to obtain the first 
n moments (x'(E»(j = 1, ... , n) of the distance 
to slow down to energy E. Recently, group-theoretic 
techniques have been applied to neutron moderation 
notably by Guth and InonU' and by Wigner.' 

, M . A. Leibowitz, J . Math. Phys. 4, 446 (1963). 
I E. Fermi, Ric. Sci., 7, 13 (1936) . 
• R. E. Marshak, Rev. Mod. Phy •. 19, 185 ( 19<17 ). 
4 H . Goldstein, Fundam.ental Aapects of Reactor Shieuling, 

(Addison-Wesley Publishing Company, Inc., H.eading, Mas­
sa.chusetts, 1959), Chap. 6. 

• E. Guth and E. In6nu, J. Math. Phy •. 2, 451 (1961). 
'E. Wigner, Phys. Rev. 94, 17 (1954). 

We proceed here, as in Ref. 1 by showing that 
finding the particle collision density as a function of 
space and energy (lethargy) is equivalent to finding 
the distribution of a certain random functional. This 
is based on the assumption of an infinite, homo­
geneous moderator at rest consisting of nuclei of 
only one kind (this last condition is removed in the 
Appendix), but no assumption is made on the cross 
section (scattering and absorbing) or on the scatter­
ing kernel (it need not be isotropic in the center of 
mass frame). In Sec. 6 we find the moments of this 
functional and hence of the collision density. The 
results are in the following form: each moment is 
expressed recursively in terms of the previous 
moments by means of an integral over lethargy. In 
the equations for the first n moments there appears n 
functions of lethargy which can be given as solutions 
of n integral equations. But in contrast, to the mo­
ment equations (which are tln(n + 1)] in number), 
these equations are uncoupled and under special 
conditions (e.g., scattering-angle distribution inde­
pendent of energy, scattering and absorption cross­
sections proportional) permit an analytic solution. 
Moreover, since we do not require the particles' 
source direction to be isotropically distributed, these 
results should give information on the slowing down 
of a beam of particles. 

In Sec. 7, the expressions for the moments are used 
to obtain the age equation. Though this result is 
well known, the proof given here differs from the 
usual one in that no prior assumptions are made con­
cerning the collision density itself (e.g., it is not 
assumed that only the first two terms of the Legendre 
polynomial expansion of the collision density are of 
significance in passing to the age limit: this fact 
follows from the proof). Finally, in Sec. 8, we return 
to the time-energy moments which can now be 
readily found as a special case of the space moments. 

It is of course true that any result obtained 
through the use of random functional s is, in princi-

1516 
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pie, obtainable by means of tbe transport equation.' 
The two methods are after all equivalent. Neverthe­
less, the use of random functionals can claim at least 
two advantages: (1) It is less formal in remaining 
closer to the physical situation, which is essentially 
a random walk; (2) It is keeping with a trend which 
has appeared in other parts of Mathematical Physics; 
namely, the formulation of problems in terms of 
random functionals." 

2. THE SCATTERING KERNEL 

We consider an infinite, homogeneous isotropic 
moderator consisting of free atoms at rest, and sup­
pose that at time t = 0, a particle with velocity v, 
enters the medium, at a point which will be taken to 
be at the origin of a rectangular coordinate system; 
through collisions with the atoms the particle will 
slow down. Let v be the particle velocity at any time 
and u = In(v, / v) its lethargy, so that u is a nan­
decreasing function of the time. 

At scattering collisions, particles suffer an instan­
taneous change in direction and lethargy, the random 
nature of the change being fully described by the 
scattering kernel K(O·O', u, u') giving the proba­
bility density for a particle to have a direction of 
motion along the unit vector 0 and a lethargy u 
after collision assuming that it had direction 0' and 
lethargy u' before collision. The scattering kernel 
may be factored as 

K(O·O', u, u') = K(O·O' I u, u')f(u I u'), (u' ~ ,,). 
(1) 

In (1), fCu I u') is the probability density of a particle 
having lethargy u after collision given that it had 
lethargy u' before, and K(o·olu, u') is then the 
probability density of 0 given u, u', and 0'. Note 
that the scattering kernel, because of the isotropy 
of the medium depends on 0 and 0' only through 
the cosine of the scattering angle o. 

For neutron moderation, which is the case upper­
most in mind in this paper, the most important 
scattering kernel is the one resulting when the 
additional assnmptions of elastic scattering and 
ISOtropic scattering in the center-of-mass frame are 
imposed. Then, if M is the atomic mass of the scatter­
ing nucleus, we have 

feu - u') 

4M e o < .:\.u < In (M + I)' 
- - M-1' 

= {

(M + 1)' _ ,. _ •. ) 

o otherwise, 
; E. Guth and E. 1nonO, PhYB. Rev. 118, 899 (1960). 

48 d96~: Gelfand and A. M. y.glom, J . Math. Ph", . 1, 

K(O·O' I u, u') 

= 6[0·0' - M sinh !(u - 11' ) - cosh t(u - u')] . 
(2) 

Note that in (2) the quantities 'U and u' enter only 
through their difference .:\.u = u - u'; this is the 
main advantage in introducing the lethargy variable. 
Implicit in the above is that there is only one kernel 
corresponding to the assumption of only one type of 
scatterer; this will be taken to be true for the present 
though it will be removed later. 

The quantity of chief interest in transport theory 
is F(r, u, 0) the average number of particle colEsions 
per unit lethargy and per unit solid angle and volume. 
For our purposes, F(r, u, 0) must be reinterpreted 
since its definition involves the phrase unumber of 
particles" while here the functions of interest arc 
probability densities over the ensemble of all possible 
ways a given particle may slow down after leaving a 
source. 

Let W(u I u')du be the probability that a particle 
with lethargy u' will at some later moment have a 
lethargy in the small interval (u, u + du). For a 
particle leaving the origin with lethargy zero (i.e., 
u' = 0) W (u I 0) is just the normalization factor 
for F (r, u, 0): 

W(u I 0) = f F(r , u, 0) dr dO. (3) 

Hence 
F(r,O I u) == F(r, u, o )/W(u I 0) (4) 

is a probability density and has the following mean­
ing: F(r, 0 I u)drdO is the probability that a particle 
with lethargy u while moving with a direction in the 
solid angle [0, 0 + dO] will make a collision in the 
volume [r, r + drJ. under the conditian that the 
particle does in fact have the lethargy u at some 
moment in its life. The simpler probability densities 

F(r I u) = f F(r, O I u) dO, (5) 

F(O I u) = f F(r, (l I u) dr (6) 

are also of importance and easier to obtain . 
For the special case of the kernel (2), W (u I u') 

waS first introduced by Placzek.' In general, 
W(u I u') satisfies the integral equation (assuming 
no absorption) 

W(u I u') = 6(u - u') 

+ {f(U I u") W(u" I u') du", (7) 

• G. Placzek, Phys. Rev. 69, 423 (1946). 
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which simplifies to 

W(u) = 5(u) + { feu - u') W(u') du' (8) 

when feu I u'), and hence W(u I u') depend only on 
the difference u - u', i.e., W (u I u') = W(u - u'). 

Equation (7) follows on noting that 
. 

W(u I u') = L Wi(u I u'), 
i-O 

where Wi (u I u') is the probability density of the 
lethargy j collisions after the lethargy u' is attained. 
But 

Wi(u I u') = f feu I u")W,_,(u" I u') du". 

3. RANDOM FUNCTIONAL FORMULATION" 

Let r i denote the position of the particle when it 
makes its jth collision so that 

r i = M, + M, + ... + M i , (9) 

where 6r, = r, - r,_,. To make the dependence of 
r i on the scattering cross section ~ (u) explicit, we 
introduce random variables 6'1', related to M, by 

(10) 

where u, is the lethargy just after the ith coll ision. 
Then 

r, = ~+~+ ... +~. (11) 
~(Uo) ~(u,) ~(Ui- ') 

The variable . 6~, has a simple physical meaning: It 
is the change in position between the (i - l)st and 
ith collision in a fictitious medium such that for all u 
~ (u) = 1. 6~ " in turn, may be factored into 

(12) 

with 0, being a unit vector in the direction of the 
particles' motion just after the ith collision, and 61, 
the distance (path length) traveled between tbe 
(i - l)st and ith collision [if ~ (u) = 11. The 61, 
are independent random variables with density 
e- 41

• Then (11) becomes 

r, = 0 ,61, + 0,61, + ... + 0 ,_,61, . (13) 
~(Uo) ~(u,) ~(Ui) 

To proceed, it will be necessary to write (13) as an 
integral over lethargy. Define the random function 
leu') by 

leu') = 0, 

leu') = I" 

u' = 0, 
(14) 

10 We restrict ourselves here to a moderator containing 
only onc type of scatterer with no absorption. 

where I, = 6 1, + 61, + ... + 61,. leu') would be, if 
~ (u) == 1, just the distance traveled by the particle 
until it makes the collision which slows it down past 
the lethargy u'. 

In addition, define the random function O(u') by 

O(u') = 0" 

O(u' ) = 0 

(u, - .) ~ u' ~ (u, + .), 
otherwise . 

(15) 

Here t: may be any small positive number, greater 
than zero, chosen such that the intervals u, -
• ~ u ~ u, + • do not overlap. As will be seen, 
O(u') may be entirely arbitrary outside these inter­
vals, but for definiteness we will suppose that it 
vanishes. 

Now, assume that Ui _ t = 'U, and write rj as rj(u); 
then 

ri (u) = { ~(~') O(u') dl(u'), (16) 

where the integral includes the contributions due to 
the jumps at u' = 0 and u' = u. 

To see the equivalence of (13) and (16) one need 
only observe that the function l eu') has jumps of 
magnitude ill. +, = l; + 1 - l; at the points u' = U;, 

and at these points O(u,) = 0 ,. 
Note that in Eq. (16), the number of collisions, j, 

made by the particle no longer appears on the right 
side. Let us then drop the requirement that the 
lethargy u be attained at the jth collision and merely 
demand that there be some collision just after which 
the particle has the lethargy u. Then if r (u) is the 
position of such a particle when it makes its next 
collision, we have [dropping the subscript j in (16)1 

r (u) = 1" ~(~') O(u') dl(u'), (17) 

and r (u) has by definition the probability density 
F(r I u) . The moments of the random variable r (u) 
may be obtained from (17): 

1" 1" 1 1 (r(u)r(u) .,. r(u) = , .,. , ~(U') ... ~(u"' ) 

X (O(u') ... O(u'·')(dl(u') . . . dl(,,'·')), (18) 

where (r(u)r(u) ·' . r (u)) represents anyn-fold product 
of the three components of r (u), and similarly for 
(O(u') ... O(u'· '). For simplicity we restrict our­
selves to the one-dirnensional case. Then if I' denotes 
the x component of the vector 0, (17) and (18) 
become 

x(u) = 1" ~(~') I'(u') dl(u') (19) 
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and 

(XO(u» = { . ,. { :!:(~') ... :!:(~'" ' ) 
X Mu') '" I'(u"'» (d l(u') . . . dl(u'O'», (20) 

with the probability density of x(u) being denoted by 
F(x 1 u). 

Before any use can be made of (20) however, the 
quantities (dl(u' ) ... dl(u"'» and (I'(u') . .. I'(u" '», 
must be obtained in an explicit form (which we pro­
ceed to do). 

4. THE MOMENTS (dl(u' ) ... dl(u"')) 

Consider first the quantity (dl(u'». We 

(dl(u'» = lim (I(u' + du') - l(u')} d ' 
.h ...... O du' u . 

have 

(21) 

l(u' + du') - l(u') vanishes unless the particle 
slows down past u' and u' + du' at different col­
lisions; o~ ~quivalentlYI unless the particle has, after 
some colhslOn, a lethargy in the interval (u', u' +du'). 
Let us denote the probability of this event by 
P(u 1 u' 1 O)du' indicating by tbe notation that this 
probability is taken only over particles which at 
some moment have had the lethargy zero and would 
have the lethargy u at a later time. Because of this 
last condition, P(u 1 u' 10) is not given by W(u' 1 0) 
but rather by 

P(u lu'I .O) = W(u 1 u')W(u' 1 0). (22) 
W(u 1 0) 

Hence, since the mean distance between a collision 
if :!: (u) == 1 is simply unity, one has 

(dl(u'» = W(u \;;2~~)' 1 0) du'. (23) 

Now, let us consider (dl(u')dl(u"» for u" ::; u'. 
One has 

(dl(u') dl(u"» 

= k W(u 1 u')W(u' 1 u")W(u" 1 0) du' du" , " 
W(u 1 0) , (u ~ u ) 

Where 
(24) 

k _ {2 u' = u" 

1 u' ¢ utI. 

I~ fact, for ".' "" u" Eq. (24) is simply the probability 
~ ,the partICle having lethargies in the intervals 
u .+ du'), (u" + du") [otherwise dl(u')dl(u") 
va~,shes] given that it in.itially had lethargy zero 
an would later have lethargy u; multipled by the 

product of the mean distances traveled to the next 
collision when the particle has lethargy u" and when 
it has lethargy u'. But this factor k is just unity. 
When u" = u', however, k is not the product of the 
mean of two different "intercollision" distances but 
rather the mean square of a single intercollision 
distance: 

k = J e-·'(Ill)' dill = 2. 

10 general, 

(dl(u') dl(u") . .. dl(u"'» 

= k, I k, ! . . . k; ! W(u 1 u')W(u' 1 u") . . . 

X W(u'O-n 1 u'O')W(u'" 1 0) du' du" . . . du'" , 

(k, + k, + .,. + k; = n;u' ~ u" ~ . . . ~ u"'), 
(25) 

where j is the number of distinct values occurring 
among the numbers 11.', u/', .. , , u(") and k. is the 
number of times the ith value appears. In obtaining 
(25) one uses the fact that 

J (Ill),e-'·" dill = k!. (26) 

5. THE MOMENTS (P(u') ... ~(u"')) 

Let D (I'(u) 1 I' (u'» be the probability density of 
the direction I'(u) of a particle just after it obtains the 
lethargy u given that it had direction I'(u') at some 
previous lethargy u'(u' ::; u). Implicit here is the 
condition that the particle does obtain the lethargy 
u at some collision. 

Suppose that the probability density of I' (u') is 
A(I')" [if I'(u') is specified in advance then A(I') 
reduces to a delta function]. After a collision at which 
the lethargy u, is attained, the particle's direction 
will have a different probability density A, (I' 1 u,; u') 
where 

A,~ 1 u,; u') = J 2~ K(lHl' 1 u" u')A~) dO'. (27) 

We introduce the Legendre polynomial expansions 

- 2 + 1 
K(n.O' 1 u, u') = ?:; n 2 K.(u, u')P.(O·O'), 

(28) 

- 2n + 1 A~) =?:; 2 a.P o~) · (29) 

SUbstituting from (28) and (29) into (27), using the 
addition theorem for Legendre polynomials and 

11 \Ve sUp'pose the particle's initial direction has 3. sym­
metric distribution around the ::t axis: A(.u) "'" 1/2.,... A(O). 
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integrating we find 

A.v. 1 u.; u') = t. 2n -: 1 K.(u., u')a.p.v.) . (30) 

Similarly, if A ,(I' 1 U., u" ... U ; ; u') is the proba­
bili ty density of I' after j collisions giving the particle 
lethargies u., u" ... , u; (starting with lethargy u'), 

then repeated use of (27) and (30) gives 

. ,_~2n+ 1 
A j ("" j U t,U21 .. . ,'Uj,u) - L..J 2 .-. 
x [K.(u" u')K.(u" u.) ... K.(u" u;_.)la.P.(I'). (3l) 

Hence, letting U; = u and defining A.(I') = A (I') = 
0(1' - I' (u'», 

D (I'(u) I I'(u'» = i:: W;(u 1 u:) [f A ;(I' 1 u •. u, . ... U;_., ui,,')f(u •• ~') .. . feu. u; _,) duo ... du;- .J . (32) 
;-0 W(u 1 u ) W;(u 1 u ) 

The expression within the bracket is just the proba­
bility density of I' (u) conditional on the lethargy u 
being obtained j collisions after letbargy u, and tbe 
probabili ty of this event is W,(u 1 u') / W(u 1 u') . 
Substituting from (31) to (32) one finds that 

Dv.(u) 1 I'(u'» 

-2n+ 1 / = ?; 2 B.(u 1 u')P.v.) W(u 1 u'), 

where 

B.(u 1 u') = o(u - u') + feu , u')K.(u, u') 

+ t. f f(u" u') ' " feu, u,)K.(u., u') 

X K.(u, u,) duo .. . du;. 

(33) 

Thus B.(u 1 u') is the solution of the integral 
equation, 

B.(u 1 u') = o(u - u') 

+ { feu, u")K.(u, u")B.(u" 1 u') du", 

wh ich simplifies to 

B.(u) = Ii(u - u') 

+ 1." feu - u')K.(u - u')B.(u') du' 

(34) 

(35) 

in the special case of a kernel like (2) which is a 
function only of ~u = u - u', since then B.(u 1 u') = 
B.(u - u'). 

The calculation of v.(u') ... I' (u" ' » is most 
elegantly performed by the use of matrices. Let P(I') 
be the infinite-<iimensional vector whose components 
are just the Legendre polynomials P, (I'). Then, 
rather than just (l'(u')I'(u") . -. I' (u"'», we con­
sider the more-general vector quantity 

(PlI'(u)lI'(u') ... I'(u"'» , 

where PlI'(u)] denotes the vector P(I' ) evaluated at 

I' = I'(u) . The introduction of this vector moment is 
not only a matter of convenience, but permits us to 
obtain information on F(x, I' 1 u) instead of just 
F(x 1 u). 

In what follows, we use the fact that the random 
variables I' (u) , I' (u'), . .. , I'(u" ' ) are part of a 
Markoff process: this means that the probability 
distribution of I'(u"-O) given I'(u"') is independent 
of J.I. (il I . . . , ,u ".) . Thus, let us first find 

(P[I'(u)] II'(u'», 

the average value of PlI' (u) ] given I' (u'). Multiplying 
D (I' (u) II'(u'» by P.(I') integrating and using the 
orthogonality conditions, we find that 

(P.lI'(u)] II'(u'»=B.(u 1 u')P.lI'(u')]/W(u 1 u'). (36) 

In matrix form, 

(PlI'(u)] II'(u'» = B(u 1 u')PlI'(u')]/W(u 1 u'), 

where B(u 1 u') is a diagonal matrix with elements 
B.(u 1 u'). T o obtain (PlI' (u)]I' (u') I I' (u"» we multi­
ply the right-hand side of E q. (36) by I' (u' ). From 
the recursion formula for Legendre polynomials, 

(i + l )P'Hv.) - (2i + l)I'P,v.) + iP,_ .v.) = 0, 
(37) 

it follows that the vector I'P(I') may be written 

(38) 

where A is a matrix with elements a" given by 

(i+ 1) ( i ) a" = 0, .,_. 2i + 1 + 0, .,+ . 2; + 1 

(i, j = 0, 1,2, ... ). (39) 
Thus, 

(PlI'(u)lI'(u') I I'(u" » 

= B(u 1 u')A(PlI'(u')] I I'(u"»/W(u 1 u') 

= C(u 1 u')(PlI'(u')] I I'(u"»/W(u 1 u' J, (40) 

where 

C(u 1 u') = B(u 1 u')A (41) 
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ill given by 

0 Bo 0 0 

tB, 0 jBI 0 

C(1' 1 1") = 
fB, 0 iB, (42) 

[i/ (2i + I )JB, o [(i + 1)/(2i + I)JB; o 

with B, = B,(u 1 u'). The elementsc,; of C are simply 

c,,(1' 1 u') = B,(1' 1 u')ail' (43) 

Evaluating (P[p (u')J 1 I'(u"» in analogy with (36) 
we have 

(PlI'(u)Mu') 1 ,,(u"» 
= C(u 1 u')B(u' 1 u")PlI'(u")] / W(u 1 u')W(u' 1 u"). 

(44) 

Continuing in this way, we obtain 

(PlI'(u)Mu' ) . . . l'(u'O- ") 1 ,,(u"'» 

X W(u 1 u')W(u' 1 u") ... W(u'o-" 1 u" ' ) 

= C(u 1 u')C(u' 1 u") .. . C(u" - " 1 u'O')PlI'(u" ' )]. 
(45) 

(PlI'(u'O')]), however, depends on the initial distri­
bution of the particles' direction. Let us denote this 
initial direction by &10 with "0 being the projection 
along the x axis and assume that "0 has the proba-
bility density W(l'o) such that . 

- 2i + 1 
W~) = ~ -2 - w,P,~o). (46) 

Then, noting the initial lethargy is zero, 

(PlI'(u"')]) = J (PlI'(u'O')] 1 " ,)W("o) dl'o 

= [B(U'" 1 0) J P(",) W~o) d"oJ / W(u'" 1 0) 

= B(u'O' 10)Wo/W(u'O' 10), (47) 

where Wo is a vector with components Wi ' Thus, we 
have shown using (45) and (47) that 

(PlI'(u)Mu') ... ,,(u'O'» 
X W(u 1 u')W(u' 1 u") ... W(u'O' 1 0) 

= C(u 1 u')C(u' I u") . .. C(u'O-" 1 u'O')B(u'O' 10)Wo. 
(48) 

6. CALCULATION OF THE MOMENTS OF x(u) 

We return to the expression (20) for (x'(u) P lI'(u)]). 
Because of the symmetry of the integral with respect 
to u' , u", . .. , u("), the region of integration may be 
divided into all possible subregions of the form 
u ;::.. u' ;::.. u" ;::.. . . . ;::.. u '0'; the total numher of all 
such regions is n!/ k, !k,! ... k,!, where k, + k, + 
. .. + k; = n. Here j is the number of different 
values which appear among u', u", ... I U hi), and 
k;(i = I, ... , j) is the number of times which the 
ith value occurs. Note that, because of delta-function 
singUlarities which appear in them, the integrations 
over a region in which some of the u', ... , 14 h.) are 
equal cannot be ignored even though it is of less than 
n dimensions. Fortnnately, the factor [k,!··· k; tr' 
cancels the factor appearing in 

(dl(u') dl(u") .. . dl(u'O'» 

(cf. Eq. 25) so that we may write 

(XO(u)P lI'(u)]) 

= n! [ [ . ... [" - " (P [,,(u)lI'(u') ... ,,(u"'» 

X [2: (u')··· 2: (u" '>r'(dl(u') dl(u")··· dl(u'O'»*, 
(49) 

where the asterisk on (d/(u')dl(u") ... dl(u"' »* 
means that in evaluating it the factorial factors in 
(25) are to be ignored. In (49) the integration in­
cludes all singularities appearing at the lower limit 
and at the npper limit, bnt otherwise no special 
provision is necessary in the case of any equality 
among U/, u", . .. , u h•J• 

SUbstituting from (25) and (48), we obtain 

(XO(u)P[,,(u)])W(u 1 0) 

X [2: (u') ... 2: (u'o'>r'C(u 1 u')C(u' 1 u") ... 

X C(u'O- " 1 u'O')B(u'O' 1 O)Wo. (50) 
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Equation (50) is the main result of the moment cal­
culation. The expression for (x'(u)P,[~ (u)J) gives the 
nth momcnt of the jth Legendre coefficient of 
F(x, ~ I u). It might appear that the use of Eq. (50) 
requires the mUltiplication of inflllite matrices. 
Actually, this is not the caSe if one is content with 
only a finite number of moments of the initial terms 
of the Lcgendre expansion of F(x, ~ I u). This is made 
clear below. 

I t might be noted that simplifications occur for 
the kernel (2). If the cross-section has special forms 
(e.g., a sum of exponentials) then (50) can be written 
as the inverse of a readily obtainable Laplace trans­
form. This is more obvious from Eq. (51) below. 

The special structure of the C matrices allow a 
number of general conclusions to be drawn con­
cerning the dependence of the moments on the B 
funct ions and the initial vector Woo Consider any 
element C;f(U) of the matrix resulting from mult i­
plying any of the C matrices together. Apart from a 
factor independent of the lethargy variables, c;,(u) 
will he a sum of terms of the form B;B"B" ... B ,,_, 
(lethargy arguments have been omitted), where 
j. = i ± 1, j. = j ._. ± 1, j = j,_. ± 1. This follows 
from Eq. (42) . Suppose now we consider a specific 
component of the moment vector (x' (u) P[~(u)J), say 
the ith. Then, referring to Eq. (50) , (x'(u) P;[~(u)J) 
will be an integral over the lethargy variables of 
sums of products of the form B;B"B;.·· ·B;.w,. 
with j. = j ... ± 1. Thcrefore, 

(a) (x'" (u)P; [,. (u)j) can depend only ou the func­
tions B._"" B._nHI ... I B;, 8,"-+ 1, "'J Bi+ .. , and 
only on the (i - n)th to (i + n)th components of 
the initial vector Woo In particular, if the initial 
distribution of J1. is isotropic, (w ; = 0, i > 0), then 
(x'(u)P;[~Cu)J) v",nishes for i > n. 

Cb) Conversely, any function B; or any initial 
component Wi can influence only those moments 
(x"Cu)p.[~ Cu)J) satisfying the inequalities i - n :<=; 

k :<=; i + n. 
In particular, for k = 0, (x'Cu» can depend only 

on the functions B., ... , B" and if all but Wo 

vanishes, only on Bl1 . . . , B ft • As examples, we give 
(omitting argumelits) the products which enter into 
the calculation of (x' Cu» for n = 1, 2, 3, 4. 

n = 1 : BoBtw t ; 

n = 2 : BoB.Bowo, 

n = 4 : BQBIB2BIBowoI 

BoB.B,B.B,w" 

BoBtB..,B3B2W21 

BoB,B,B,w.; 

BoBIBOBlBowo1 

BoB.BoB,B2 w"" 

BoB lB..,B3B.w ... 

To find (x'Cu», these products must be multiplied by 
suitable constant factors due to the A matrices, 
summed and integrated. For the special case of 
n = 2 and isotropic source Cinit ial direction), we have 
the result found in Ref. (3) through the use of 
Laplace transforms. 

Equation (50) may be written in a recursive form. 
We have 

(x'Cu)P [J1.Cu) J) WCu I 0) 

= n f ~C~') C(u I u')W(u' I O)(x' - ' Cu')P[~Cu')]) du' 

Cn = 1,2, ... ), (51) 

with 

(XOCu)P["Cu)]) = BCu I O)Wo. 

Though (51) is useful for theoretical purposes, the 
presence of delta-function singularities in C(u I u') 
makes it unsuitable for computation. To obtain a 
recursive expression free of such singularities we 
introduce a random variable x*(u) which is the 
x coordinate of a particle's position when it obtains 
the lethargy u. Hence, 

xCu) = x*(u) + [t.l/2:Cu)Mu), 

and 

(x"(u)P["Cu)]) 

t. j!Cn ~ ,)! (X" Cu)rCU)p["CU)])((2;~~r') 
II n' A"-i . 
L ~ [ C )f-' (x*'Cu)P["Cu)]). (52) 
""01. Eu 

Here, in expressing ~"-'P (~), the relation ~P(~) = 

APCJ1.) has been successively applied. In a more con­
densed notation, (52) reads 

" II 11.1 A"-i 
(x (u)P["Cu)])W(u 10) = ~ 11 [2;(u)]" , E,Cu), (53) 

where 

E,Cu) = (x"Cu)P["Cu)])/WCu 10) . (54) 

The expression for E,(u) in terms of the C matrices 
is identical to the right-hand side of Eq. (50) except 
that the integration is only over u' < u, the contribu­
tion of the delta function in C(u I u') when u' = u 
not being included . This fact leads to Eq. (53) , with 
the term 
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resulting from taking u = u' = 11," = ... = U(,· - i) 

and U{ .. -H > t,( .. -i-I) in the integration in Eq. (50), 
and noting that the singular part of C(u I u') is 
just o(u - u')A. 

To obtain a recursion for Eo (u), consider the 
expression on the right of Eq. (50), with u' < u, so 
that this expression gives Eo(u). Now in performing 
the integrations, singUlarities can arise when 11,' = u" 
with 11.," > U(3 ) or u' = u" = 11,(3 ) and u(3) > U{4' , , 
etc. 'rhe singularity at 11, = 11," with 11," > 11,(3) gives 
the term 

(n ~I I)! {[2: tu,J C(It I u')AE._,(u') du"; 

the singularity at u' = u" = u(3) with 11,(3) > u W
, 

the term 

(n ~! 2)! { [2:(:') ]'C(U I u')A'E._,(u') dlt", etc. 

Considering all possible cases, we obtain 

nl A" 
E.(u) = [2: (u = 0)]' 

"-, nil" C(u I u')A"-; , , 
+ ?: ·1 [2:( )]"; E;(u ) du , ,-0 J. 0 u 

Eo(u) = B(u 10)Wo• 

(55) 

(56) 

In (55), the integration is only over It' < u, the 
singularity of C(u I u') at u = u' not being included; 
and similarly in (56) the singularity of B(u I 0) at 
u = 0 is to be ignored. The formulas (55) and (56) 
permit then a numerical evaluation to be made 
since they involve only functions which are always 
finite. 

7. ASYMPTOTIC BEHAVIOR 

Because of the difficulty in obtaining exact results 
and their complexity in the few cases in which they 
can be obtained, approximate theories play a key 
role in moderation theory. These are generally of 
the asymptotic type, becoming increasingly accurate 
as certain parameters or variables take on extreme 
values. Perhaps the one best known is age theory. 

Under general conditions (see below) on the cross 
section and the scattering kernel, age theory provides 
a good description of the distribution of particles 
which have made a large number of collisions since 
leaving their source. It is closely related to ordinary 
diffusion and the central limit theorem and can be 
derived on the basis of the latter." Our aim, here, is 

II M. A. Leibowitz, Rigorous Derivation of Fermi Age 
Theory, Ph.D. thesis, Harvard University (l061). 

to obtain the agc result for an infinite homogeneous 
medium using the expression for the moments (50). 

The condition of "many collisions" can be in­
corporated into our treatment (in which the collision 
number does not appear) by the following device. 
Let ~ be the mean lethargy gai.n at a collision (assume 
that it is lethargy independent) and n, the number 
of collisions suffered by a particle. Then by the law 
of large numbers, if n is large, n ~ u/~ . For the 
important case of elastic scattering, ~ is asymptotic­
ally proportional to 11M where M is the ratio of 
particle to scatterer masses. Thus we may write 
~ = U M where r = reM) = O(n as M --> 00, and 
n~MuH· 

The condition of large n is essentially equivalent 
to a condition of large M with" fixed, and in fact, 
age theory gives the first term of an asymptotic 
expansion of F (x, po I u) in powers of 1/ 1011. On the 
other hand, if M is kept fixed, the requirement of 
large n can be achieved by letting the lethargy " 
become large. Actually this latter case can be trans­
formed into the former by introducing a new lethargy 
variable u* defined by u = u* U where u* remains 
fixed as u and U approach infinity. Then n ~ 
Mu'U If, so that u· and U correspond here to u and 
M in the limiting case of u fixed, M tend ing to 
infinity. This explains the applicability of age theory 
to moderation in very light elements such as deuter­
ium at sufficiently h igh lethargies. For definiteness, 
we shall suppose that it is the case of u fixed, 101 
tending to infinity that is being considered . 

We begin by obtaining the asymptotic behavior of 
the B matrix for large M. First, consider Bo(u I u') = 

W(u I u') . As above, it wil l be assumed that feu I u') 
actually depends only on ~u = u - u'; i.e., 
feu I u') = f eu - u'). This is true then of W(u I u') = 
W(u - u') so that 

W(u) = 6(0) + f feu - u' )W(u') du'. (57) 

The dependence of f ( ~u) and W(u) on M will be 
made explicit by writing f (~u, !If) and W(u, M). It 
will now be assumed that 

Assumption (1) . The function (l/M)f(~uIM, M) 
approaches a probohility density g (~u) which is not 
purely singular; i.e., g(~u) has a continuous com­
ponent as well as perhaps a delta-function part. 

(E .g., i.f f(~u, 101) = Me-"", 

~ = 11M and g(~u) = e- ·'.) 

The validity of our assumptions for the important 
kernel (2) is readily seen . It follows immediately 
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that t == (t.u) = to! M + oeM) as M --> ~, where 
to is independent of M. Let 

<pip, M) = J e-""/(t.u , M) dt.u 

and 

.vip) = J e- ·Og(t.u) dt.u. 

Since (57) is an integral equation of the convolution 
type, it may be solved by Laplace transforms. We 
have 

1 J e'o 
W(u , M) = 2"': 1 _ <pip, Ai ) dp, (58) 

the integral being taken over a line to the left of all 
poles and parallel to the imaginary axis. Evaluating 
by residues, 

W(u , M) = ~ + ~ R,r + o(u = 0) . (59) 

The term l! t comes from the poles at p = 0 in (59), 
the terms R ,e"o from the poles at p = p" with 
R, = -1j<p'(p, M) . From (58) it is clear that the 
real part of p; is negative: the p; and R; are actually 
functions of M, and to determine their asymptotic 
behavior, Assumption (1) above is used. Now 

.vip) = ;:~ ;[ J e-,·o/(~, M) dt.u 

= lim J e- ,M'O/(t.u, M) dt.u 
M-<> 

= lim <p(Mp, M). 
M -<> 

It follows that if r; are the nonzero roots of .v(p) = 1 
then there is a correspondence between the p, and r, 
such that 

p; = Mr, + oeM) (60) 

Again, Eq. (62) is of the convolution type and its 
solution is given by 

B,(u , AI) = f 1 _ "" lip, M) e- '" dp, (63) 

the integrand being taken over the same contour as 
in (58), and <p .(p, M) being defined by 

<p ,ip, M) = f e-~K,(t.u, M)/(t.u, M) duo (64) 

In (63) and (64) the dependence of the different 
functions on M is explicitly indicated. The integrand 
in (63) has poles at the points where 

<p,ip, M) = l. 

Let us denote these points by p;;(M) (j = 1, ... ) 
with residues R,,(M) . We will assume that the 
p,{(M) are hounded away from zero for all i, j, M: 

Ip,,(M)1 > ~, (65) 

where ~ > 0 is not dependent on M. This assumption 
is actually a consequence of a simpler one Oil the 
scattering. Note that for <p,(0, M) to equal unity it 
is necessary that K,(t.u, M) = 1 for all t.u. This 
follows from (64) using the normalization condition 
for / ( t.u). But K, (t.u, M) by definition is the mean 
value of P,('Y)(-Y = n·n') for a change t.u in lethargy 
at a collision. Hence, since P,('Y) = 1 only for 
"I = 1 or -1 (if i is even), inequality (65) is equi­
valent to 

Assumption (2). There exist positive numbers 
o < ~', ~" < 1 independent of M, such that the proba­
bility 0/ the inequality 1"11 < ~' is greater than ~". 

In other words, scattering does Ilot tend to become 
directly forward or directly backward as M tends 
to infmity. The effect of Assumption (2) is that after 
a large number of collisions all t race of the particle's 
initial direction is lost. 

In addition, we make 
and 

R, = -M/>V'(r,) + oeM ). 
Assumption (3). The limit of K;(t.u! M, M) as M 

(61) goes to infinity exists. 

Thus both R, and p; are of the order of M, as M 
tends to infinity. 

Turning to the higher-<>rder functions B,(u I u') 
(i = 1, 2, ... ), let us assume that K;(u I u') also 
depends only on the difference t.u = u - u'. Hence 
we may write K;(u I u') = K;(u - u'), and as well 
R;(" I u') = R;(u - u') where 

R,(u) = o(u) + J K,(u - u')f(u - u')B;(u') du' . 

(62) 

Then by the same argument leading to Eq. (60) one 
can show that there are numbers r ij with negative 
real parts, and numbers R;~ such that 

p" = Mr" + oeM), R,; = MRt; + oeM). (61) 

Again the validity of the above assumption can be 
readily verified for the elastic scattering kernel. 

Finally we require 

A ssumption (4). For som.e function L(M), 
lim,, __ L(M) ~ (u, M) exists for all u and is positive. 
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The point of Assumption 4, is to exclude cross 
sections of the form 2; (1', M) = .-'"". This case 
results if proton moderation at very large letha"gies 
is considered (M then is the lethargy scale) because 
of the l /v dependence of the cross section. For con­
venience, we take L(M) = Mt which can always be 
achieved by a suitable transformation of the length 
scale . 

Consider the moments (x'(u» for large M. Accord­
ing to Eq. (50), (x'(u» will be composed of integrals 
over different products of n + 1 of the B, functions. 
Since B, is of the order of M (Eq. 59) while B,(i > 0) 
is of the order of unity," the dominant contribution 
will be from the term containing the maximum 
possible number of the B,. If we take n to be even, 
this is just the term consisting of the product 
BoB,B,B, .. . B,B" where the B, alternate with 
the B,. Let us consider (x'(u» . Keeping only the 
dominant term, 

W(u I O)(x'(u» = ~ I," 0,(1' ~u'";? du' 

X 1" B,(u' - u")B,(u") d " 
, 2;(1''') l' . 

(66) 

We have for the inner integral, with Bo(u) re­
placed by 1 /~ and B,(u) by L, R".'''· + cl(u), 

1" B ,(u - u')B,(u') 
o 2;(1") 

_ RH 1" ePf,CIi-.. ·) du' .! _ 1_ 
- ~ ~, 2;(1") + I; 2;(1') 

1 1 lR · 1 
= - ~( ) - L - -" - ( ) + lower order terms. 

~ ~ l' ,I; PH 2; l' . 

The last equation comes from integrating by parts 
and noting Eq. (61)." But 

1 _ L Ro = 1 I = 1 
,p" 1 - 'P,(P) ,_0 1 - (1') 

(1' = 0·0') . 

Hence we finally have for (x'(u», with B,(u) taken 
to be 1 /~, 

, 21" 1 du' 
(x (1'» ="3 0 W - (1'» l:'(u) (67) 

Note that B,(u' - 1''') in the integral in (66) acts 
just like the delta function cl(u' - 1''') / (1 - (1'» . 

11 Though the term R'i eli{ / .. tends to zero exponentially 
fast with increasing Af for a. fixed tt, on integra.tion onc 
obtains R'j/Po; which is of order unity in M. 

14 The assumption on the cross section was used here. 
If, e. g., 1:(1.£) ~ e- J. .. M, then 2:'(u) ro.J M e- hAL and tbis would 
lead to additiona.l terms of tbe same order as those retained. 

Using this fact, one can establish (with B,(u) = 1/1;) 
the recursion for the largest terms, 

( '(» n(n - 1) 1" 1 1 ( " - "( '»d ' 
x l' = 3 ,l:'(u') 1;(1 _ (1'» x l' l' . 

Using (67), solving for (x'(u» explicitly, and taking 
into account the symmetry of the integral, 

(x'(u» = 2 ·n~~/2) I (~r[[ r;(u')~~' - (1'» l 
(n even). (68) 

Note that since 2; (1') ~ M-t, I; ~ l / M, the even 
moments are of the order of unity. On the other hand, 
the odd moments will be of the order of M - t since 
they will contain one less cross-section term and one 
less B, term then the next highest even moment. 
Thus (x"(u» -> 0 (n odd) as M -> 00. Hence to the 
highest order the moments of F(x I 1') are given by 
Eq. (68). But these are just the moments of the 
Gaussian distribution 

F(x 11') = [2.-(x'(u))]-t exp [-x'/2(x'(u»). (69) 

This is the age result for an infinite homogeneous 
moderator. 

8. THE TIME MOMENTS 

Let F(u, t) be the average number of neutron 
collisions per unit time and lethargy interval. Cor­
responding to F(u, t), we introduce the probability 
density F(t I 1') defined as the probability density 
of the time that a particle with lethargy l' makes a 
collision, given that the particle does attain the 
lethargy l' after some coUision. We assume, as before, 
that the particle leaves the origin at time zero with 
lethargy O. Then 

F(t 11') = F(u, t)/W(u I 0) . (70) 

The moments (tCu» of F(t I u) can be 
mediately from the analysis of (x'(tL» . 

found irn-

Using the random functional 

1" 1 
t(u) = 0 2;(u')v' dl(u') (71) 

(where v' is the velocity of a particle with lethargy 
u'), one obtains from Eq. (25) 

(t'(u»W(u I 0) 

= n! f: du' /." . du" ... /." ' "-" du"'[ l:(u')v' 

X ~(u' " » v"'r'W(u I u')W(u' 11''') 

X W(U'H' I u'"')W(u" ) 10). (72) 
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Just as before, we can introduce a singularity-free 
recursion formula for the moments. Following the 
notation of Ref. 1, we let W"'(u)/W(u I 0) be the 
nth moment of t' (u), the position of the particle 
wben it obtains the lethargy u . Then, by the identi­
cal argument that led to (55) and (56), 

W"'(u) = n! W(u 10) 
2:(u = O)vo 

and 

~ n! 1" W(u I u')W'O(u,) , + £... ., [~( ') 'j'_' du 
,"' 0 t.. 0 ~ u v. (73) 

" _ " n! W'O(u) 
(t (u»W(u 10) - ?: ., [~( ) j'_" (74) 

. -0 '1.. ,wuv 

wbere in tbe integral in (73) the term o(u - u') in 
W(u I u') is to be ignored. 

We can obtain the asymptotic expression for 
F (t I u) in the age limit by substituting from Eq. (59) 
into (72), and in so doing reta ining Assumption 1 
above on frau, M). However, Assumption 4 on the 
cross section must be altered . In fact, it is required 
here that not 2:(u, M) but rather v2:(u, M) = 

voe-"" 2:(u, M) have an asymptotic behavior that 
is the same for all u. Thus the age approximation 
cannot be valid for both the space-lethargy and 
time-Ietbargy distribution of a slowing-down process. 

In the age limit, (I') becomes tben 

[1" d' J' (I") = 0 ~2:(:')v' , (75) 

so that 
F(t I u) = o(t - (t(u»), (76) 

i.e., tbere is no dispersion in the time to slow down to 
a given lethargy. 

APPENDIX : EXTENSION TO THE CASE 
OF MANY SCATTERERS 

Let us consider the case where more than one type 
of scattering occurs. Corresponding to the ith mode 
of scattering (i = 1,2, .. . ,n) there will be a scatter­
ing cross section 2:, (u) and a scattering kernel 
K,(n ·n', u, u'). The key result is that such a 
moderator is eq uivalent to one having only one type 
of scatterer with cross section 2:(u) given by 

2:(u) = 2:,(u) + 2:,(u) + ... + 2:,(u), (77) 

and kernel given by 

K(n ·o ', u, u') = :t 2:,(.(u» K,(o·n', u, u'). (78) 
,"' 1 ~ U 

This follows inlmediately by comparison with the 
cOlTesponding transport equation and can be seen 
readily using our stochastic point of view. In fact, 
the probability density of the distance s between 
any two collisions is exp [- 2:(u)s], while tbe factor 
2:,(u) /2:(u) in (78) gives the probability that 
if a collision occurs it will be with the ith type of 
scatterer. 

An absorbing medium is just a special case of the 
above with the total cross section 2: (u) being the 
sum of the absorbing and scattering croas sections, 
and tbe "scattering kernel" at a collision with an 
absorber taken to be identically zero. 

ACKNOWLEDGMENT 

Part of this work was done while the author was at 
Harvard University. Thanks are due to Professor 
G. Birkhoff for his advice, and encouragement and 
to the Office of Naval Research for tbeir support. 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 5 , NUMBER J J SOVEMBER 1964 

Solution of the Initial-Value Transport Problem for 
Monoenergetic Neutrons in Slab Geometry* 

ROBERT L. BOWDEN ... ND CLAYTON D. WILWAMS 

Physic8 Department, Virginia Polytechnic Institute, Blacksburg, Virginia 
(Received 28 ApriI1964) 

The initial-value transport problem of monoenergetic neutrons migrating in a thin slab is solved 
by applying the normal-mode expansion method of Case to the results of Lehner and Wing. Fredholm 
integral equations .are derived for the expansion coefficients. In addition, exact expressions for the 
eigenvalues of the problem are derived and the results of calculations are present.cd. The solution 
is shown to have properties expect.cd from elementary diffusion theory. 

I. THE PROBLEM 

SEVERAL solutions to neutron transport prob­
lems have been found with the use of the 

normal-mode expansion method of Case.' This paper 
presents an application of this method to an initial­
value problem involving the monoenergetic neutron 
transport equation in slab geometry with isotropic 
scattering. We consider a slab of material extending 
from x = -a to x = a and surrounded by a vacuum. 
The neutron distribution N(x, 1', t) at the time t 
depends on the single position variable x (measured 
in units of mean-free paths) and corresponding direc­
tion cosine I' and satisfies the equation 

aN aN at + ~Vl' ax + ~vN 

c~v l' N( ') d ' = 2 -1 X, jJ • t jJ, ( I .1) 

subject to the houndary conditions 

N(±a, 1', t) = 0, I' 5 0, t > 0, (1.2) 

where ~ is the total cross section of the medium, 
v the speed of the neutrollS, and c the net number 
of neutrons produced' pel' collision. The boundary 
conditions (1.2) simply express the fact that no 
neutrons enter the slab from outside. To complete 
the problem we specify that 

N(x, 1', 0) = f(x, 1') (1.3) 

and we wish to find the subsequent neutron distribu­
tion. 

We may simplify the problem somewhat if we 
introduce 

u(x, 1', t) = N (x, 1', t)e'" (1.4) 

to obtain 

• This work has been supported in part by thc U. S. 
Atomic Energy Commission. 

, K. M. Case, Aun. Phys. (N. Y.) 9, 1 ( 1960). 

au(x, 1', t) = A ( t) at U x, Ji.. , (1.5) 

u(±a, 1', t) = 0, I' 5 0, t > 0, (1.6) 

u(x , 1', 0) = f(x, 1'), (1.7) 

where the operator A is defined as 

A = -I' E.... + E l' ·dl". (1.8) 
ax 2_, 

The formal application to Eq. (1.5) of the Laplace 
transformation with respect to t yields 

[8 - A ]u(x, 1', 8) = f(x , ,..), (1.9) 

where 

u(x, ,..,8) = 1~ u(x, ,.., t)e-" dt. (1.10) 

Proceeding formally, we write the solution of Eq. 
(1.9) as 

U(X,,..,8) = [s - Ar'f(x, ,..) , (1.11) 

where [8 - Ar' is the operatol' inverse to [s - A]. 
Finally, we apply the inverse Laplace transformation 
operator to Eq. (1. 11) to obtain 

1 r'·i. 
u(x, 1', t) = :~r::! 2"'; Jo-;w [s - A r'f(x, I')e" <is, 

(1.12) 

where b is to the right of all the singularities of 
[s - Ar'f(x, 1'). These singularities occur when 
the operator [s - A]-' fails to exist, that is, when 
s is an eigenvalue t:<; of the operator A . Hopefully 
these eigenvalues are poles of the integrand of 
Eq. (1.12). Assuming that [s - Ar'f(x, 1') is 
otherwise sufficiently well behaved, we may move 
the line of integl'ation in Eq. (1.12) to the left 
and pick up the residue contributions. For many 
years, it was assumed on the basis of physical 
argument and analogy with oLher mathematical 

1527 
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physics prohlems that the eigenvalues {a;) formed 
a denumera bly infinite set and by deforming the 
contour of Eq. (1.12) arbit rarily far to the left a 
formal expansion of the form 

u(x, 1' , t) 

would be obtained . 

m " ( )'" £....Jg;x ,p. e 
; .. 0 

(1.13) 

Several years ago, Lehner and Wing'·' showed 
tbat the form of E q. (1.13) is not correct. They 
found that the set {a, } is, in fact, fin.ite in number, 
and that the integrand of Eq. (1.12) is not sufficiently 
well behaved to move thc line of integrat ion arbi­
trarily far to the left. They proceeded to show that 
the expansion analogous to Eq. (1.13) should consist 
of a finite series plus a residual or continuum term. 

To be more precise let us introduce the following 
notation. Let H be the Hilbert space of complex 
functions g(x, 1') square in.tegrable on Ixl ::; a, 
11'1 ::; I: 

t. L Ig(x , 1')1' dx dl' < "' , ( I .14) 

and let the domain d" of the operator A be the 
linear manifold of those functions 9 E If such that 

Ag E H, g(±a, 1') = 0, I' ~ O. (1.15) 

The inner product of functions 9 and h in II is 
defined by 

(g, h) = t L U(x, I')h· (x , 1') dx dl' , (l.l6) 

where the • indicates complex conjugation. The 

where 

[s - AJR(x , 1' , s) = I (x, 1') , R(x, 1' , s) E d". (1. 21) 

The function R (x , 1', s) is analytic (for fixed x and 1') 
in the right half complex plane of 8 (Re s > 0) 
except for simple poles at the eigenvalues {a ;) of 

These eigenvalues are rcal, positive, distinct, and 
finjte in number, and we order them as 0 < aM < 
. . . < ao. Thc eigenfunctions '¥ ;(x, 1') are the solu­
tions to the adjoint eigenvalue problem 

t t t t 
A '¥ ,(x , 1') = a ,'¥ ,(x , 1') , '¥ ,(x, l') E d" (1.23) 

and have the same eigcnvalues as the eigenvalue 
problem (1.22). We have assumed that the eigen­
functions are not degenerate and that 

(l.24) 

Although Lehner and Wing obtain an explicit 
expression for R (x, 1', s) {Ref. 3, Eq. (1.17)J, their 
analysis of the sla b problem docs not suggest either 
the shape of the eigenfunctions '¥ ,(x,!,) or the 
character of the distribution of the eigenvalUes 
{a;} as functions of 2:, c, and a. Schlesinger' has 
devised a numerical scheme based on the above 
results to approximate some of these quantities. 

Below we apply Case's method dircctly to the 
results of Lehner and Wing to obtain a more complete 
solution to the initial-value problem. That is, we 
find "elementary" solutions of the equations 

[s - AJ.y(x, 1' , s) = 0 (l.25) 

adjoint operator At is given hy and 

A ' = I' .i.. .+ ". 1' ·dl" ax 2 _, 
(1.17) 

with domain d: consisting of those functions gt E If 
such that 

A' ' E If 9 , g'(±a,l') = 0, I' ~ O. (1.18) 

The principal result of Lehner and Wing is the 
following: 

M 

u(x , 1', t) = L (I, '¥ ;)'¥ ,(x, 1')0'" + rex, 1', t) , ,-0 (1.19) 

r ex, 1', t) 1 j " '. lim -2. . R(x , 1', s)e' ds , 
.. _ COl '1rt 1'-'" 

(l.2O) 
J J. Lehner and C. M. Wing, Commun. Pure Appl. Math. 

8,217 (1955). 
a J. Lehner and C. M. Wing, Duke Math . J. 23, 125 

( 1956 ). 

[s - A '].y'(x, 1' , s) = 0 , (1.26) 

then construct solutions to the problems (1.21), 
(1.22), and (1.23) as superpositions of these " ele­
mentary" solutions. 

II. ELEMENTARY SOLUTIONS 

The form of Eq. (1.25) suggests the solution 

.y(x , 1', s) = </>(1', P, sV"" , (2.1) 

where the spectrum of p and the shape of </> (1', P, s) 
for each value of 8 are to he determined. With this 
assumption Eq. (1.25) reduces to 

- ". 1' (' ) , - 2 _, </>" , P, S dl' . (2 .2) 

~::i. 1. Schlesinger, LA-1908 ( 1955) (unpublished). 
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The normalization of cf>CI", ., s) is at our disposal, 
and it is convenient to normalize so that 

E, cf>CI"', v, s) dl"' = S . (2 .3) 

We have then 
[. - I"1cf>(I", v, s) = tcv . (2.4) 

The general solution of Eq. (2.4) is 

c • 
cf>(I",., s) = -2 P - - + A(v, s)o(v - 1"), 

v - I" 
(2.5) 

where the P indicates that the principal value is 
to be taken in any integral involving tbis term and 
0(. - 1") is the usual Dirac delta function. Two 
cases must be distinguished: (a) v EE (-1, 1) and 
(b). E (-1 , 1). 

(a) Discrete solutions: For. EE ( - 1, 1) the solu­
tion of Eq. (2.4) is 

c v 
cf>(I", ., s) = -2 - -. 

v - ~ 

The normalization condition (2.3) yields 

s = tv tanh- ' (1M, 

(2 .6) 

(2.7) 

and cf>(~, v, 8) of Eq. (2.6) will ·have the proper shape 
only if Eq. (2.7) is satisfied. This situation can be 
expressed as follows. If we define !lev, 8) such that 

!l(. , 8) = 8 - Cv tanh-' (1 I v) , (2.8) 

the. of Eq. (2.6) will be correct only if it is a zero 
of !l(., 8) which lies in the complex plane of ., cut 
along the real interval (-1, 1). 

We now list some properties of the zeros of 
O(v, 8). Since !lev, 8) is even with respect to ., the 
zeros occur in pairs a·s ±"o. Consider the counter­
clockwise contour C. (Fig. 1) in the complex plane 
8 defined by 

C. = {s = a + i{31 " = ~ f3 tanh-' ~}. (2 .9) 

We label by S, the set of s values lying to tbe left of, 
but not on the contour C •. Similarly, the set of 
all 0 such that sEES, V c. is denoted by S •. The 
zeros of !lev, s) may then be enumerated as follows. 
If 8 E S, V C., there are two zeros of !l(., 8). 
If 8 E S" the two zeros ±.o do not lie in the real 
interval (-1, I). However, if sEC., then the two 
zeros are ±.o = 2{3I 7rc and lie in the real interval 
(-1, 1). Finally, if s E S., the function !l(., 8) 
has no zeros. A proof of these facts is sketched 
in Appendix A. 

Tbus it is found that Eq. (2.7) represents the 

i!£ • 

i ~c -, 

5, 

c, 5; 
R£ AL ,I,XI$ 

5, 

FlO. 1. The contour C •. 

condition for discrete solutions. In fact, from the 
above results, we have discrete solutions of the form 

where 

s E S" 

C Vo 
cf>.(~, s) == cf>C!", ± Yo , s) = -2 - -

110 =F Jl. 

and we have no discrete solutions if s E S •. 

(2.10) 

(2.1I) 

(b) Continuum solution: For v E (- 1, 1), Eq. 
C2.5) represents the solution of Eq. (2.4) at a point 
of the continuous spectrum of •. We can determine 
A(v, .) from the normalization condition (2.3), which 
yields 

A(.,.) = s - cv tanh-! •. 

Therefore, the continuum solution is 

>/I(x, ~, v, s) = cf> C~, ., .)e- " ' ·, 

(2.12) 

(2 .13) 

with cf>(I", v, s) given by Eq. C2.5) and A(v, s) by 
Eq. (2.12). 

The functions (distributions) cf>.(~, 0) and <p(I", v, .) 
(-1 ::0; v ::0; 1) are orthogonal on the interval 
-1 ::0; ~ ::0; 1 with respect to the weight function 1". 
That is, 

L ,"",CI", ., s)cf>(I", v' , .) dl" = 0, v .. v'. (2 .14) 

The proof of Eq. (2.14) follows closely that of Case 
(Ref. 1, Theorem I) and is omitted here. 

We can evaluate the last integral when. = ... 

In the case of the discrete solutions we obtain 

= ±cvo (~- 8) 
2 Vo - 1 ' s E S" (2 .15) 

and for the continuum case we find 
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Another very useful formula is 

f. wl>(l', v, 8) f. Q(v' )<I>(I', v' , s) dl'dv' 

= Q(v)N(v,s), (2 .17) 
where 

N(v, s) = v[0' ,..'v'/4 + X'(v, s) l (2.18) 

and Q(v) is some sufficiently well behaved but other­
wise arbitrary function defined on -1 ~ v ~ 1. 

The functions <1>.(1', s) and <1>(1', v, s) arc complete 
for any sufficiently well-behaved function defined 
on - 1 ~ I' ~ 1. The restrictions on this function 
seem to be very weak. However, for our purposes, 
a sufficient condition is that its product with I' 

obey an Fl * condition' on (- 1, 1). A fu nction Q(I') 
is said to obey an l/* condit ion on the interval 
(a, b) if (i) with 1', and 1', belonging to any closed 
interval contained in the open interval (a, b), there 
exists a constant C and a positive number ~ such t hat 

(2.19) 

and (ii) near the endpoints a and b, Q(,,) behaves as 

Q( ) 
Q(I') 

I' = (I' - il)' ' 
O ~o< l, (2.20) 

where d stands for a or band Q(,,) satisfies the in­
equality (2.19) on tbe closed interval (a, b). 

By completeness, then, we mean tba t if I'F(,,) 
(-1 ~ I' ~ 1) obeys a n l/* condition on (- 1, 1), 
the following expansion is possible 

F(,.) = a.(8)<I>.(1', 8) + a_(8)<I>_(I' , 8) 

+ f, A(v, 8)<1>(1' , v, 8) dv, s E S;, 

f, A(v, 8)<1>(1', v, 8) dv, s E S •. , (2.21) 

With such an expansion we can evaluate the co­
efficients from the orthogonality relations. For ex­
ample, multiplying Eq. (2.21) by 1'<1> . (I', 8) and 
integrating on I' over (- 1, 1) we get 

1 l' a.(s) = N .(8) _. I'F(I')<I>.(I', 8) dl', 8 E S;, (2.22) 

where N .(B) are defined by Eqs. (2.15). 
Let us define F' (1') by 

F' (,,) = F(p.) - a.(B)<I>. (I', s) 

- a_(8)<I>_(I', 8), s E S;, 

= F(p.) , s E S" (2.23) 

where a.(8) are given by Eqs. (2.22). The expansion 
(2.21) is then rewritten as 

F'(,.) = X(I', s) A(", s) 

+ P l' Ov A (v , 8) dv, 
- 1 2 It - P. 

s E S ; V S. , (2 .24) 

where we have used the explicit expression for 
<1> (1', P, 8) . The last equation has tbe form of a 
standard singular integral equation. Thus the expan­
sion (2.21) is valid if we can demonstrate the exist­
ence of the solution of this singular integral equation 
for arbitrary F'(I' ) (subject to the H* condit ion). 
The proof' of the existence of this solution essentially 
parallels that given by Case (Ref. 1, Theorem II) 
and will not be presented here. 

The validi ty of the expansion (2. 21) allows us 
to expand any solution of Eq. (1.25) in terms of 
<1>. (I' , s) a nd <1>(1' , v, s) with coefficients depending 
on x. These coefficients must be proportional to 
e~u/". and e- ozl

" as can be seen by substituting 
directly into Eq. (1.25) . Therefore, the general solu­
tion of Eq. (1.25) is of the form 

'l> (x, 1', s) = a.(8) "'.(X, 1', 8) + a_(s) "'_(x , 1', 8) 

+ f. A(v, 8) ",(x, 1' , v, 8) dv, s E S;, 

= L'. A(v, 8) "'(x , 1' , v, s) dv, BE S.. (2 .25) 

Ill. THE EIGENFUNCTIONS '" ;(x,. ) 

Since the eigenvalue problem (1.22) has solutions 
only for positive real values of 8, we can write its 
general solution as 

'l>(x , 1' , s) = a. (s) "'.(x , 1' , B) + a,(s)"'_(x, 1', 8) 

+ J'. A (v , 8) "'(X, 1', v, B) dv, (3.1) 

where the expansion coefficients are obtained from 
the boundary conditions 

'l>(±a, 1', s) = 0, I' :'> 0. 

These boundary conditions imply that 

° = a. (s)<I>.(I' , B)e··I 
.. + a,(s)<I>_(", 8)e-.. I •• 

+ f, A (v, S)<I>(p. , v, s)e'"" dv, I' > 0, 

0 = a, (B) <I> .( -I', 8).-'·'" + a,(s)<I>_(- I', B)e··I 
• • 

(3 .2) 

(3 .3) 

+ J'. A(v, s)<I>( -I' , v, SV··,· c/v, ,,> 0. (3 .4) 
--:-:-:-. 

6 N. 1. MlIskJlcJishvili, Sinrrular Integral Equatio1!.8 (C. P . 'R. L. Bowden, Ph .D. thesis, Virginia Polytechnic Iu-
NoordhoIT Ltd., Gronillgcn, The Netherlands, 1953). stitu te (unpublished), 
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It is convenient to let and 

A (v, 8) = A,(v,8)If(v) + A,(-v, 8)lI(- v) , (3.5) h,(~ , 8) = (vi - / )(8 - O)X(-~, 8)p(~, 8) 

where X [XCV"~ 8) Y, .( -a, ~, 8) 

H(v) = 1, v > 0 

= 0, v < O. 

± X( - v" 8) Y,_( -a , ~,8) ]. 

(3 .6) n ,(o) = -!(cv,)X(v,,8)e"'" 

(3. 14) 

Then by noting that ± !(cv,)X( -v" 8).-"''' , (3.15) 

",+(~,S)=",_(-~,8), "'(I',V,o) = ",(-~,-V, 8) (3.7) where 

and defining 
(3.16) 

a, (0) ± a,(8) = a. (8) , 

[A, (v,8) ± A,(v, o)]e"" = A ,(v, 8J. 

The function X(z, s) is analytic in z on the complex 
(3.8) plane cut along the real interval (0, 1) and is de­

fined by 

we add and subtract Eqs. (3.3) and (3.4) to obtain 

o = a.(8)["'.(~, 8)e'·'" ± "'-(I', 8)e-""' ] 

+ J.' A ,(v, 8)["'(~, v, s) 

(3.9) 

We note that for ~ > 0, "' (~, - v, s) is nonsingular, 
so that Eqs. (3.9) are singular integral equations 
whose kernels have singular and nonsingular parts. 
These equations can be reduced to equivalent 
Fredholm integral equations. This reduction is in­
dicated in Appendix B. The results are 

A:~, s) = -h+(~, s) 

- J.' K(~, v, 8)A:(v, s) dv, s E S., (3 . lOa) 

A~~, 8) = -h_(~, 8) 

+ J.' K(~, v, 8) A~(v , 8) dv, s E S., (3 .lOb) 

provided the following conditions are fulfilled: 

n+(s) = -~ J.' vX( -v, s)A:(v, s).-"o', dv, s E S., 

(3.11a) 

n_(8) = ~ J.' vX( -v, 8)A~(v, 8)e-"0" dv, 8 E S., 

(3.11b) 
where 

a.(8)A;(v, s) = A . (v, s). 

The kernel K(~, v, 8) is given by 

K~, v, s) 

(3.12) 

= av(v: - ~')(s - o)X( -~, 8)X( -v, 8)p(~, sV'"' ' 
2~ + v) 

X ( ) = cxp r (z, 8) 
Z, S ] _ Z I o E S., (3 .17) 

where 

r (z, 8) = l' In ~(~', s) d~', 0 E S, V s .. (3.18) 
o J.I. - z 

TCil 8) = A (~, 8) + !i.-c~. (3.19) 
, A (~, 0) - ,i.-cl' 

Equations (3.10) are Fredholm integral equations 
of the second kind which have bounded kernels 
(Re 8 > 0), and they determine A;(v, 8). It is 
apparent from the above that a. (8) are arbitrary 
at this point. This is entirely proper because a.(s) 
represent the amplitudes of the eigenfunctions and 
should depend on how these eigenfunctions are 
"excited" by the initial distribution f(x, ~). We 
shall assume that a.(s) are determined from Eq. 
(1.24) . Since they depend only on s, c, and a, Eqs. 
(3.11) are determining expressions for the eigen­
values {ad. In fact, we know from the results of 
Lehner and Wing that these equations have solutions 
at only a finite number of values of 8 and these 
values are real and positive. However, suppose 
Eqs. (3.lOa) and (3. 11a) have a nontrivial solutiou 
at s = a,; then it is not apparent whether Eqs. 
(3.lOb) and (3.11b) also have a nontrivial solution 
at the same value of 8. 

We proceed by setting 

a_(a.) = A~(v, a,) = 0 

in Eqs. (3.8) to obtain 

a,(a ,) = a,(a ,) = a+(a.)/2 == a, .. 

A,(v, a,) = A,(v, a,) 

(3.20a) 

(3.20b) 

(3.20c) 

(3. 13) Substituting these values into Eq. (3.1) and denoting 
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'l'.(x, ~) == 'l'(X, ~, a,) yields 

'l' .(x ,~) = a.+{",+(X'~' a.) + y,_(x ,~, a,) 

+ l' A, +(v)[ y,(x ,~, v, a ,) 

+ y, (x ,~, -v, a.» ) dv}. (3.21) 

Similarly, if Eqs. (3.lOb) and (3. Ub) have a non­
trivial solution at s = iXk, then we set 

to obtain 

a,(a,) = -a,(a,) = a_(a,)/2 == a,_, 

A,(v, a,) = - A ,(v, a,) 

= A _(v, a,)e-""'/ 2 == a,_A,_(v). 

(3.22a) 

(3.22b) 

(3.22c) 

Substituting these values into Eq. (3.1), we get 

'l',(x , l') = a,_{",+ (X, 1', a,) - ",_(x, 1', a,) 

+ l' A,_(v)["'(x ,~, v, a,) - "'(x, ~, -v, a,» ) dv} . 

(3 .23) 

These eigenfunctions have exactly the required 
symmetry properties noted by Lehner and Wing, 
that is, 

(3 .24) 

where the plus sign goes with Eq. (3 .21) and the 
negative sign with (3.23). 

IV. THE ADJOINT EIGENFUNCTIONS "' ,,(x,.) 

We look for solutions of Eq. (1.26) by separation 
of variables in the form 

'( ) '( ) .. I . '" X , Ji , S = cp Il, v, S e I (4.1) 

where again the spectrum of v and the shape of 
</>'(1', v, s) are to be determined for every value 
of s. We find that Eq. (1.26) becomes 

we get 

[v - ~J</> '<~, v, s) = 1cv , (4.4) 

which is the same as Eq. (2.4) . Therefore, the 
spectrum of v is the same as that obtained in Sec. II 
and 

</> '(~ , v, 8) = </> (1' , v , s). 

Thus, Eq. (1.26) has the discrete solutions 

y,:(x , 1', s) = </> .(~ , .)0""" 

and the continuum solutions 

",'(x, 1', v, s) = </> (~, v, .)e"" . 

(4 .5) 

(4 .6) 

(4 .7) 

W e use the completeness property of the </>'s to 
express the general solution of the eigenvalue 
problem (1.23) as 

'( ) tit t ) 'l' x , ~ , 8 = a,(.) y,+(x , ~, .) + a,(8) y, _(X , ~,8 

l ' , , 
+ _, A (v, .) y, (x ,~, v, 8) dv, (4.8) 

where the expansion coefficients arc obtained from 
the boundary conditions 

'l" (±a, 1', .) = 0, ~ ;:: O. (4.9) 

These boundary conditions imply that 

o = a:(8) </> +(~, 8)"" " + a:(s)</>_(~, .)e-"' ·' 

+ E, A '(v, 8)</>(~, v, .) ... " dv, I' > 0, (4 .10) 

and 

o = a:(.) </> .( - ~ , 8V"' " + a:(.) </>_( -~, .)e' ·'" 

+ E, A '(v, .) </>( -~ , v, 8)e-"" dv, ~ > O. (4 .11) 

But these equations have exactly the same form 
as Eqs. (3.3) and (3.4) . Therefore, the expansion 
coefficients of the adjoint eigenvalue problem (1.23) 
are the same as those of the eigenvalue problem 
(1.22). Likewise, the eigenvalues of these problems 
coincide. This agrees, of course, with the results 
of Lehner and Wing. From the general form of the 
solutions we readily find that 

(4. 12) 

= ~ E, </>'(~', v , .) d~' , 
aod normalizing so that 

this result was a lso noted by Lehner and Wing, 
(4. 2) and, in fact, could have been used to find 'l' ;(x, ~) . 

E, </>'~, v, .) dl' = " (4 .3) 

V. THE RESOLVENT R(x,., $) 

We can obtain an expression for the resolvent 
function R(x, ~, s) of Eq. (1.21) from the Green's 
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function G(x, 1', 8; xo) which satisfies the equation 

[8 - AJG(x, 1' , s; xo) = ~ (x - x.)f(x., 1') (5.1) 

and the boundary conditions 

(1.25). We can determine the behavior of G near 
x = Xo by integrating Eq. (5.1) on x over (xo-', xo+') 
and passing to the limit as' ...... ° to obtain the jump 
condition of the Green's function : 

G(±a, /" S; xo) = 0, 1' ;; 0, (5.2) G(xo+, 1', S; xo) - G(x.-, 1', S; x.) 

viz., 

R(x, /" s) = f. G(x , /" S; x.) dx.. (5.3) 

For x '" xo, G(x, 1', S; x.) obviously satisfies Eq. 

= f(xo, 1') / 1' . (5.4) 

We look for a linear combination of the elementary 
solutions of Eq. (1.25) which will satisfy the jump 
condition (5.4) and the boundary conditions (5.2). 
First we introduce 

Go(x - xo, 1', s) = o.(x., s)"'.(x - xo, 1' , s) + l' C(Xo, v, s)"'(x - xo, 1', v, s) dv, x > x ., s E S" 

= -c_(x., s)"'_(x - x., 1', s) - 1°, C(Xo, v, s)"'(x - xo , 1', v, s) dv, x < xo, 8 E S" 
(5.5) 

l' C(Xo, v, s)"'(x - xo, 1', v, s) dv, x > xo, s E S., 

-1°, C(Xo, v, s)"'(x - xo, 1', v, s) dv , x < Xo, s E S" 

and insert it into the jump condition to obtain 

f(x., 1')/1' = c.(x., s)</>.(!', s) + O_(Xo, S)</>_(/" s) 

+ [" C(x., v, s)</>(/" v, s) dv, s E s;, 

= L C(x., v, 8)</>(/" v, s) dv, 8 E S,. (5 .6) 

For arbitrarily fixed xo, we know from the complete­
ness property that the expansion (5.6) is possible. 
In fact, from Eq. (2.22) we have 

I l' c.(x.,S) = N .(s) _, f(Xo,I')</>.(I',s)dl', sE S;. (5 .7) 

Multiplying Eq. (5.6) by 1'<1>(1', v', s) and integrating 
on I' over (-1, I), we obtain, with the use of Eqs. 
(2.17) and (2.18), 

I l' C(x., v, s) = -N() f(x., I')</>(/" v, s) d/" 
V,8 -1 

S E S; V S •. (5.8) 

= G.(x - Xo, 1', s) 

+ [" D (x., v, s) "'(x, 1', v, s) dv, s E S.. (5.9) 

where the expansion coefficients are to be determined 
from these boundary conditions. However, it is more 
convenient to work with R(x, /" s) directly, which 
according to the prescription (5.3) is then of the form 

R(x, /" s) = ~(x, /" s) 

+ b, (s) "' .(x, 1', s) + b,(s) "' _(x, 1',8) 

+ [" B(v, s) "'(x , 1', v, s) dv, s E S" 

= ~(x , /"s) + L B(v,s)",(x, /" v,s) dv, s E s" (5.10) 

where in this case the expansion coefficients b,(s), 
b,(8), and B(v, s) are determined from the boundary 
conditions 

In order to satisfy the boundary conditions (5.2), R(±a, /" s) = 0, 1' ;; ° (5 .11 ) 
We add to G.(x - x., /', 8) an appropriately adjusted and ~(x, 1', s) is given by 
solution of Eq. (1.25) to obtain 

G(x, /" S; x.) = G.(x - x., /" s) ~(x, /" s) = 1: Go(x - x., /" 8) dx.. (5. 12) 

+ d,(x., s)"'.(x, /" s) + d,(xo, s)"'_(x , 1', s) 

+ 1: D(x., v, s)"'(x, /" v, s) dv , 8 E S" 

It can be readily shown that R(x, /', 8) given by 
Eq. (5.10) is the general solution to Eq. (1.21). 
N ext we define 
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~. (I', B) == -~(±a, 'FI', B) ~ , .(B)"'_(-a, 1' , B) 

+ .c , (±v, B)"'( -a, 1', -v, B) dv, BE S; 

= i' r(±v, B)",( -a, 1' , -v, B) dv, 8 E S,' (5. 13) 

where 

I l' l' r .(B) = -- "'~(x" 1'" B)i(x" 1',) dx, dl' , N _(B) _. _, 
(5.14) 

and 

I 
r ev, B) = N( -v , B) 

X L. L ",'(x" 1'" v, B)i(x" 1',) dx, dl', . (5. 15) 

If we now let 

B (v , B) = B, (v, B)H(v) + B,( -v, B) H ( -v), (5. 16) 

where H(v) is defined by Eq. (3.6), the boundary 
conditions (5.11) require that 

~_(I', B) = b,(s)",.(-a, 1', s) + b,(s) ",_(-a, 1', s) 

+ i' {B, (v, 8) "'( -a, 1', v, 8) 

+B,(v,8)",(-a,I',-v,8)}dv, 1'>0, 8ES;, 

= i' {B, (v, 8)"'( -a, 1', v, B) 

+B,(v,B)",(-a,/,,-v,8)}dv, 1'>0, BES" (5 .17) 

~ +(I', B) = b,(B)"'_(-a, 1', 8) + b,(8) ",.(-a, /" 8) 

+ i' {B,(v , B)"'( -a, 1', -v, s) 

+B,(v,s)",(-a,l',v,s)}dv, 1'>0, BES; 

By adding and subtracting Eqs. (5.17) and (5.18) 
and letting 

b, (B) ± b,(B) = b.(s), 

[B,(v, s) ± B ,(v , s)}eool, = B.(v, 8), 

we obtain 

~_(I', 8) ± ~ +(I', s) 

= b.(s)[4>.(I', B)eool" ± 4>- (/', s)e-ool"J 

+ i' B.(v, B) [4>(/, , v, B) 

± 4>(1', - v, s)e-"'I' J dv, I' > 0 , BE So, 

= i' B.(v, B) [4>(/, , v, 8) 

(5. 19) 

± 4>(/" -v, 8)e-' 00Io
J dv, I' > 0, B E S , . (5.20) 

Again, for /' > ° Eqs. (5.20) are singular integral 
equations whose kernels have singular and noo­
singular parts. These equations can also be reduced 
to equivalent Fredholm integral equations. As these 
reductions are quite lengthy, we state the results 
here and outline the reductions in Appendix B. We 
find that Eqs. (5.20) reduce to the relations 

B. (/" B) = g.(I', B) - b.(s)h.(/" B) 

'F i' K(/" v, 8)B.(v, 8) dv, 8 E So, 

= g.(/,,8) 'F i' KCIl ,v,s)B.(v,s)dv , sE S., (5.21) 

plus the conditions 

b.(B)n.(s) = m.(8) 

'F ~ i' vX( -v, B)B.(v, B)e-'ool. dv, 8 E So, (5.22) 

where for 8 E S; the kernel K(I', v, s) and the func­
tions h.(/" s), n.(B), and X(z, B) are defined by 
Eqs. (3.13)- (3.16) and, for B E S,' 

= i' {B, (v, 8) "'(-a, /" -v, s) 

+B,(v,B)",(-a,/"v,s)}dv, /,>0, BES,. (5.18) KCIl , v, 8) 

Equations (5.17) and (5.18) are coupled singular 
integral equations involving the expansion param­
etersb,(B), b,(8), B, (v, B), and B,(v, B) for the resolvent 
R(x, 1', B). We find that these equations are sufficient 
to determine these parameters. However, the prob­
lem can be uncoupled if we do not solve for the 
parameters directly, but for a combination of them 
by a procedure similar to that used in Sec. III. 

_ "vX( - 1', B) [XC - I',B) + (B - O)p(I',B)X( -v, B) Je-'oolo 
- 2C1l + v) 

(5.23) 

and 

X(z, B) = exp r(z, B) (5.24) 

with r (z, B) defined by Eq. (3.18). Finally, 
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Q,(I',') = (v~ - 1',)(. - O)P(I'")X(-I"'){X(-v,,.)[<_(.) ± <.(s)j"'_(-a, 1',.) 

+ J.' X( -v, .)[.( -v, .) ± «v , s)J"'( -a, 1' , -v , s) dv}, 

= X'( -I', ')[~_(I', s) ± ~ .(I', s) J - (s - o)p~, s)X( -I', s) 

s E Sf, 
(5.25) 

X J.' X ( -v, s)[.( -v, s) ± «v, s)J"'( - a, 1', -v, s) dv, s E S. 

and 

m,(s) = c~, [<_(s) ± T. (S) JX(-v" s).-u". 

.E Sf , 

(5.26) 

Equations (5.21) are Fredholm integral equation 
of the second kind with bounded kernels (Re s > 0); 
they determine B.(I', .) apart from the parameters 
b,(s). Equations (5.22) then determine b.(s). 

If we next define B,(I', .) so that 

B,~,.) = g.(I', s) 

=F J.' K(I', v, .)B,(v, s) dv, s E S ; V S.. (5.27) 

then 

B.~, s) = B:~, s) + b.(s)A,(I', s), sE S" (5,28) 

where A:(I', .) satisfy Eqs. (3 .10)_ We then solve 
for b.(.) to obtain 

m.(.) =F ~ J.' vX( -v, .)B:(v, s).-'··'· dv 
b.(.) = , (5,29) 

n .(s) ±~ J.' vX(-v, s)A:(v, 8)-'"' ' dv 

Our originnl expansion coefficienta in Eq. (5.10) may 
now be expressed in terms of b.(s) and B . (I', s) 
with the use of Eqs. (5.16) and (5.19) . Note that 
the singularities of R(x, 1', s) occur when the de­
nominators of b.(.) vanish; comparing Eqs. (5.29) 
with Eqs. (3.11), we see that these singularities occur 
at the eigenvalues ["';], just as expected. 

The appearance of terms containing p(l', .) in 
R(x, 1', s) may seem to require special attention 
in the integral of Eq. (1.20), since II p(l' , s), • E C" 
vanishes for some value of I' (depending on the value 
of .). However, this difficulty must be illusional since 
R(x, 1', s) is defined by Eq. (5.28) for. E S; V S. 
and the requirement for the existence of the integral 
in·Eq. (1.20) is that R(x, 1', s) tend to a definite 
limit as s approaches a point on C •. This convergence 

is guaranteed by the analytic property of R(x, 1', s) 
in the right half complex plane of 8 with the set 
of eigenvalues ["';] deleted from it. 

VI. CALCULATION OF THE EIGENVALUES 

It is evident that the above analysis does not 
give an explicit expression for the distribution of 
eigenvalUes as functions of 0 and a. However, the 
expressions (3.11) determining the eigenvalues arc 
quite amenable to numerical calculation. These 
eigenvalue conditions can bc made to depend only 
on the ratio sic and the product ea, and it is therefore 
convenient to represent the distribution of eigen­
values as a sequence of curves in a:;/c versus ca. 
These curves have the following properties: 

(1) ",,10 -> 0 as ca -> O. 
(2) a,lo -> 0 as oa -> k" i = 1, 2, . .. , where 

k,,, > k, > 0 and the sequence [k;] has no 
finite accumulation point. 

(3) the ",,Ie are continuous and increasing func­
tions of ca. 

(4) a,le -> 1 as ca -> "'. 

Properties (1)-(3) follow from the results of Lehner 
and Wing. Property 4 follows from the fact that 
for sic real, A,(I', s) of Eqs. (3 .10) vanish in the 
limits as ea -> '" and sic -> I. This is true since 
for large values of ea, the Neumann series solutions 
of Eqs. (3.12) converge uniformly, and in passing 
to the limits above, the series converges to zero 
since each term of the series vanishes. The eigen­
value conditions (3.13) are then identically satisfied 
in these limits since each side of the equations 
vanishes. 

For s real and si c < I, we write 

1 l' 0(1'" X(z, s) = - - exp -:p!!-L dl", 
l-z o p.-z 

(6. 1) 

where 

o( ) = ! ta - , [ "1'/ 2 ] IJ n _ I . 
" sic - I' (anh I' 

(6 .2) 
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----SC~ES!NG[fiS A[ $IJIJ'S 

_ PRESENT RE SULtS 

ca. 
FIo. 2. The eigenvalues aj. 

Now if we let 

J, = l' 0(1" ) d' 
12 2 1.1.. 

Q}l - "0 
and 

and define D , (I', 8) by 

iY(I',8) D ( ) ' .... I, A '( ) 
(1 ') +1',8e = + I',S, 

Jl - liD 

(6 .3) 

(6.4) 

(6.5) 

(6.6) 

(6 .7) 

Eqs. (3.10) may be rewritten for the above range 
of 8 as 

D.(1',8) = d.(I', 8) 'F J,' K'(I', v, s)D.(v, s) dv, (6.8) 

where the symmetric kernel K'(I', v, .) is given by 

K'(I' , v, s) 

_ Y(I' , s) Y(v , 8)X( -I', .)X( -v, 8)e- .. I 'e-"' · 
- 2(1'0 + v) (6 .9) 

Y(I'/~tr' 8) [(I' - Iv. I') sin u 

+ Iv.1 (I + 1') cos u]e-"" , (6.10) 

Y(I',s)X(-I',s)[( I I') l + 1"01 2 J.L - 110 COS q 

- Iv,l (1 + 1') sin u]e-"", (6. 11) 

with 

u = Iv.l l , - sa/lv.l. (6. 12) 

We now rewrite the eigenvalue conditions (3.11) as 

f.,(s) = 0, (6. 13) 

where 

f. +(8) Iv, l cos" + sin u 

1 l' -:2 • Y(I', s)X( -I', s)D.(I', s) dl' , (6.14a) 

f._(S) = - cos u + Iv.1 s in u 

(6.14b) 

Equations (6.8) and (6.14) wcre used to calculate 
the sequence {"del as a function of ca by numerically 
solving for the zeros of f..(s).' The results for 
ca :0; 20 are d isplayed in Fig. 2. The curves cor­
respond alternately to eigenfunctions given by Eq. 
(3.21) and (3.23), the first corresponding to Eq. 
(3.23). For comparison purposes, the results of 
Schlesinger (Ref. 4, calculated from T able III) are 
also shown ill Fig. 2. 

VII. ASYMPTOTIC SOLUTION 

With the transformation (1.4) we have for the 
actual neutron distribution at time t the expansion 

" N(x, 1' , t) = .L (1, "';)"';(x, I')e- o -.",., 
j_O 

+ , (x. 1' , t)e- z". (7.1) 

For large values of t we expect the j = 0 term to 
dominate. Therefore, in the limit of large times, 
the asymptotic solution is 

(7 .2) 

where 

I. = (I , "'!), (7.3) 

and "'.(x, 1') is given by Eq. (3.21) with j = O. 
Let us assume that A~+ (v, 8) = O. Since this is 
strictly true for ca --> "', we expect this assumpt ion 
to be valid sufficiently far from the slab edges in 
large systems. Then 

N.(x , 1', t) = I.a.+ [</>+(1', ".)e-·"'" 

and the neutron density 

p(x . t) = f. N.(x, 1', t) dl' 

is given in this approximation by 

pix, t) = I ,a .. ". cos ("",/lv.ile- o- •• )% .. 

(7.4) 

(7.5) 

(7.6) 
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Letting 

Po(x) = ioa .. a. cos (aoX/1vo1) , (7.7) 

we note that Po(x) obeys the standard diffusion 
equation 

d'Po(x)/dx' + (a./Ivol)'po(x) = O. (7 .8) 

where (ao/lvoll' plays the role of the "buckling" 
parameter. Also, in this approximation the eigen­
value condition (3.11) becomes 

X(vo,ao)/X(-vo,ao) = exp(-2a<>0/ vo). (7.9) 

Now from Eq. (6.1) we find 

X( -v., ao) _ 1 - Vo [-2 l' 0(/,') d,J 
) 

- exp -Yo 12 2 J.L I 
X(1I0 I ao 1 + Vo 0 J.L - "'0 

= ~ ~ :: exp [21' eCi"){d~' tanh-' :) d/,' J. (7.10) 

Intcgrating by parts we find 

X(-vo, ao)/X(vo, ao) = exp (-2<>oZ./v.) , (7.11) 

where 

- l' E.".! [ ao + c/,' /(1 - /,") J{ ill -, /,'} , 
Zo - 0 2 aD X'l(p.' I aD) + 'Jr2(j2p,/2/4 tar Vo dJl, 

(7.12) 

so that Eqs. (7.9) and (7.11) yield the condition 

cos ([a./lv.IJ[±(a + zo)Jl = O. (7 .13) 

Therefore, Zo is the so-called extrapolation distance 
for the time-dependent slab problem in this approxi­
mation. 

Let us now assume that the medium is free from 
fissionable material so that 

C = I;,/I;, (7.14) 
where 

z = ~G + ~., (7.15) 

with I;, and I;. the total scattering and absorption 
cross sections respectively. From Eq. (7.2) we note 
that the time behavior of the system after a long 
time can be characterized by the decay constant 

AO = (1 - ao)I;v. (7.16) 

Let us expand ao from Eq. (2.7) in a power series 
in the buckling (ao/hll': 

I;' (ao)' I;' (ao)' aoI; = I;, - 3I;, ];,1 + 45I;: ];,1 +.. . . (7.17) 

Then 

,,(ao )' DvI;' ( ao )' Ao = I;.v + Dv2:- - - - - , - + ... , (7.18) Iv.1 15I;, Ivol 

where 

D = -tz. (7. 19) 

is the diffusion coefficient from elementary diffusion 
theory. Now since 

lim a./ Ivol = O. (7.20) 

we find in this limit the well-known result 

(7.21) 

The second term in the expansion (7.18) is due to 
leakage of neutrons from the slab and, in fact, 
is just the result that one would expect from elemen­
tary diffusion theory. Finally, the third term is the 
first transport correction term to diffusion theory 
(cf. Nelkin'). 

VIII. CONCLUSION 

In the solution of the initial-value problem of 
monoenergetic neutrons migrating in slab geometry, 
as displayed in Eqs. (1.19) and (1.20), it has been 
shown that the eigenfunctions ~ ,(x, /,) and 'l' ;(x, /,) 
can be exactly represented by an expansion of 
elementary solutions of Eqs. (1.25) and (1.26) in 
the forms of Eqs. (3. 1) and (4.8), respectively, 
and R(x, /" s) can be represented by an expansion 
of the form of Eq. (5.10). Furthermore, integral 
equations have been derived which determine the 
expansion parameters. In addition, exact expressions 
for the distribution of eigenvalues {ad as functions 
and C and a have been derived and calculations 
presented for ca :$ 20. Finally, in the limit of long 
time and large slab widths the results have been 
shown to have properties expected from elementary 
diffusion theory. 

APPENDIX A 

The number of zeros m of !lev, 8) in the complex 
plane of v cut along (- I, 1) is given by the principle 
of the argument in the form.. 

1 1 f !l'(v, s) 
m = -2 li e . arg !l(v, s) = -2· n() dv, 

7r fi c. ~,v, S 
(A I) 

wbere the prime indicates differentation with respect 
to v and lie, arg !lev, s) represents the change of 
the argument of !lev, 8) around the contour C, 
(Fig. 3) generated by letting P -> O. This is true 
unless s = c, in which case Iv.1 = .,. We, therefore, 

1 M. Nelkin. N ucl. Sci. Engr. 7, 210 (1960 ). 
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~ 

i • 
c,. 

c' , 

FlG. 3. The integra.tion contour CI. 

assume for the rest of this appendix that s .. c. 
Since n(v, s) is sectionally analytic. 

lim f n'(v , s) dv = 0 (A2) 
....... 0 c ,:t. Q(v, s) , 

so that 

m = d,.. (li e ,' arg n ' cp,s) + ll e , - arg n-(I', s) }. (A3) 

where n * (I', 8) are the boundary values of n(v, 8) 
as v approaches the cut (- I , I) from the left (+) 
and from the right (-). From Plemelj's formulas,' 
we find 

(M ) 

Let 8 = a + ifJ, SO that 

arg n'(I' . 8) = arg (a - Cl' tanh- ' I' + i(fJ ± !,..Ol') 1 
(A5) 

and, in particular, 

arg O'(±I. s) = arctan (0). (A 6) 

We first note that if a < 0 or IfJl > , .. c, then 
O(v, 8) has no zeros. Thus to complete the proof 
of the behavior of the zerOS of n (v, 8) stated in 
Sec. II, we need be concerned only with a ;:: 0 
and IfJl :-:; i,..c. Let us consider s EE C. and denote 
by 1'; and 1', a zero of the imaginary and real part 
of the arg 0' (1', s), respectively. Common zeros occur 
only for 8 E C., which we have excluded for the 
moment. We now note that if Il'd > 11',1 then 
O(v, s) has no zeros. But it is simple to show that 
11';1 > 11',1 if and only if s E S •. For s E So, we have 

arg 0 +( "1'1,8) = arg O-(±l. 8) = "1'... (A7) 

Hence from Eq. (A3), we find that 

I 
'" = z.. ( .. - (- .. ) + ,.. - (-".) 1 = 2, s E S, . (AS) 

Finally, we consider 8 E C., in which case 

O(v, 8) = 2fJ tanh- ' 2fJ + ifJ 
,.. ,..0 

- Cv tanh-' (lM. 8 E C •. (A9) 

Setting a (v, 8) equal to zero and solving for Ilvo, 
we obtaiO 

.! = taM {~tanh- ' 2fJ + ifJ}. sEC.. (AlO) 
Po 1rWo 1rC CliO 

This equation has the solutions ±vo = 2fJI,..c, as 
may be easily seen by direct substitution, and these 
two solutions, which are zeros of O(v, s) for sEC" 
lie in the interval (-I, I). We now show that these 
are the only zeros of n{v, s) for 8 E C •. Consider 
the contour C, (Fig. 4) as p --> 0 and T --> o. As above, 
the number of zeros to the left of C, is 

f O'{V. 8) 
111 = li e. arg n(v. s) = n{) dv. sEC •. (A ll ) 

c , ~''', 8 

The contribution from the segments C •• will be zero 
as hefore . Since n'{v, s)/n(v, s) has simple poles 
at ±2fJI " c. 

f n'{v. 8) 
lim O{v sJ d. 
r_a C,:t. ' 

= -i,.. R e s (±2fJI,..c) -i7r. {AI 2) 

The contribution to the change in arg O(v, s) from 
the contour C" is then 

(-i,.. - i,..) / 2"; = -I . {A 13) 

It remains only to evaluate 

li e., arg O'{v. s) = li e., arg (a - 01' tanh- ' I' 

+ i(f3 ± "'01'/ 2) I. sEC.. (AI4) 

We find that 

li e., arg n'(v. s) = ,... sEC.. (AI5) 

so that 

m = -I + (,.. + ".)Iz.. = 0 (AI6) 

as was to be shown. We note here the well-known 
result th.t if 8 is real and 0 < 81c < 1. then v, is 
pure imaginary. 

FlO. 4. Tbe integration cont-our Ct. 
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APPENDIX B 

In order to reduce Eqs. C5.20), let us define 

r.CI',8) = -b.(8)~.CI' , s) + ~-CI', 8) ± ~ .(P, 8) 

=F J.' B .Cv , 8)</>(1', - v, 8)e- .. •I , dv, s E S" 

= ~-CI', 8) ± ~.CI', s) 

=F J.' B.Cv, 8)</>(;., -v, 8V,,·f, dv, 8 E S.. (BI) 

where 

£.CI',s) = </>. (I',8)e,·I" ±</>_CI',s)e-.. I .. , 8 E S,. (B2) 

We can then write Eqs. (5.10) as 

I.CI' , 8) = XCI', 8)B.(I', 8) 

+ P r' E vB.Cv, s) dv, 8 E S, V S, . (B3) 
Jo 2 ,,- ~ 

These types of singular integral equations may be 
solved with a method treated extensively by 
Muskhelishvili.' We shall assume that s E S, V S, 
only. Let us also assume that B.CI', 8) exist and 
obey an H* condition on (0, 1) and introduce the 
sectionaUy analytic functions 

H ( ) = -1-1' E .B.(. , s) Au 
:t; Z, S 2' 2 "", no v-Z 

(B4) 

which vanish as I /z as Izl-> 00. Applying Plemelj's 
formulas to H .Cz, 8) we get 

H ' ·'C ) + H H( ) = .!.. P l' E vB.(v, s) d • III S .to III S . 2 v, m 0 v-Z 
(B5) 

H~·'(I', 8) - H~-'CI', 8) = !CJ<ll.(I' , 8). (B6) 

We can write the singular integral equations (B3) 
in terms of II~" (I', 8) as 

T(I', 8)H~·'(I" s) - H~-'CI', s) 

The solution of this problem is readily found to be 
that given by Eqs. (3.17) and C5.24). We can now 
write Eqs. (B7) as 

.X·CI', 8)H~·'CI' , 8) - X-CI', 8)H;-'(I', s) 

= "(1',8)1.(1',8), (B9) 

where 

C I'X-(I', 8) 
"(I', 8) = 2 XCI', 8) - !i,..ol' ' (B1O) 

and look for functions X(z, 8)H .Cz, 8) which are 
solutions of Eqs. (B9). From Plemelj's formulas, 
we see that the solutions are 

X(z, 8)II .(z, s) 

= ~ r' " (1", ~)I.(I' " s) dl" + Ph(z) , (Bll) 
2,.... 1, I' - z X(z, s) 

where PhIz) are arbitrary polymonials. Therefore, 

1 1 
H.CZ, 8) = 2m: XCz, 8) 

X r' " (1", ~)I .CI", s) dl" + Pu(z) . CBl2) 
1, I' - z X(z, 8) 

We have arrived at Eqs. CBI2) by assuming that 
B.CI', 8) existed. On the other hand, given our 
XCz, 8), if H .Cz, 8) defined by Eqs. CBI2) are sec­
tionally analytic functions which vanish as l/z at 
infinity, then B.CI', 8) defined by Eqs. CB6) will be 
the solutions of the singular integral equations CB3) . 
The only property which gives us any difficulty is 
the behavior of H .Cz, 8) at infinity. In order that 
H .Cz, 8) vanish as Izl -> 00, we must set PhCz) 
equal to zero. We also find that for 8 E S, the follow­
ing conditions must hold: 

J.' "CI", 8)1 .CI" , 8) dl" = O. (B13) 

tel'l.(I', s) 
A(I', s) - ti".OI' ' 

Assuming this is true, we use Eqs. CBB) to write 
(B7) the solutions of Eqs. CB3) as 

where T(I', 8) is defined by Eq. (3. 19). Thus the 
problems are reduced to the following nonhomo­
geneous Hilbert problems in the case of an arc': 
to find the sectionally analytic functions II .(z, s) 
vanishing as l /z at infinity which satisfy the complex 
boundary value problems (B7). 

Let [X(z, 8Jr' be the sectionally analytic function 
which is the solution of the homogeneous part of 
Eqs. (B7): 

T CI' , s) = X ·(I', 8)/rcl', 8) . CB8) 

B.(I', s) = X(I', s)pCI' , 8)1.(1', s) 

( )P 1'"CI'"s)!:'(I'"S)d' - q III S , IJ. , 
o f.' - p. 

(B14) 

where pCI', s) is given by Eq. (3.16), 

q(;., 8) = {r(l', s)[A(I', s) + i,..cl'/2W' (B15) 

and Eqs. CB I 3) must hold if 8 E S,. 
The functions 1.(1', s) contain the unknowns 

B .(I', 8) and b.Cs) and we can write the proposed 
integral equations for the expansion coefficient by 
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substituting Eqs. (Bl) into Eqs. (BI4) and (B13). 
However, tbe final form of the equations is greatly 
simplified by the following identities. Similar results 
were used by Mitsis' in the solution of the one­
velocity critical problem. 

The first identity is 

X ( ) - l' "(1", 8) d ' z, s - , J.L , z EE (0, 1) , s E S" 
o J1. - z 

= l' "( ~I'" 8) dl" + 1, z EE (0, 1), 8 E S •. (BI6) 
o jJ. - z 

To show this, we note that the function 

R (Z,8) = X(z, s) - l' "()I", 8) dl", 8 E S" 
o J.L - z 

= X(z, s) - 1' "()I", 8) dl" - I, ' 8 E S" (B17) 
o p. - z 

is analytic ill the complex plane of z except perhaps 
for a cut along (0, 1). We then find that 

R'~,~ - R-~,~ = X-~, ~ 

(BI8) 

a nd 
lim R(z , 8) = 0, (BI9) 

so that R(z) s 0 and Eq. (B I6) is proved. 
The second identity is 

Q(z, 8) 
X(z, 8) X ( -z . 8) = (v: _ z')(s _ c) , 

z EE (0. I), s E S" 

_ Q(z. s) d: ) E S 
- (s _ c)' z q:: (0, 1, s .. (B20) 

where Q(z, 8) is defined hy Eq. (2.8) . To show this, 
consider the function 

Q(z , s) 
8 E S" J (Z . 8) = X (z, s)X( -z, 8)(V: - Z')(8 0) , 

Q(z , s) E S (B21) 
X (z . s) X( -z, s)(s c) ' 8 .. 

--,---,.--, 
• G. J . Mi tsi" ANL-6459 (1961 ) (unpubli shed). 

which is analytic in the complex plane of z except 
perhaps for a cut along ( - I, I). We find then that 

r (l', 8)IT(I' , 8) = 1 (B22) 

and 

lim J (z, s) = 1, (B23) 

so that J(z) '" 1, and the identity is proved. 
Let us define 

We then find from the second identity that 

X( -I', 8)PX(I' , 8) = (' ')( )' 8 E S" Jio -p. s-c 

= X(I', 8) _ X(-) S 
(s _ 0) 1', 8 , 8 E .. (B25) 

and 

(v: - I" )(s - c)X (- I', s)p(l', 8), 8 E S" 

(s - c)X( -I', s)p(l', s) , 8 E S •. (B26) 

When we suhstitute Eqs. (B1) into Eqs. (BI3) and 
(Bl4) we find integrals of the following forms which 
are evaluated hy decomposing by partial fractions 
and applying Eqs. (BI6) and (B24): 

P J q,'(",,sh(I", 8) d,,' = q,.(", 8) [PX~, 8) 
I' -" 

- X (±vo, s)J. s E S" (B27) 

P l' "(~"', 8) l' Q(v)q,(" , -v,8) dv dl" 
o J.L - J.L 0 

= J.' Q(v)q,(" , -v, s)[PX(", s) - X C- v, 8» ) dv. (B2S) 

Equations (5.21) and (5.22) now follow by using 
the corollaries (B25) and (B26) and canceling 
common terms. 

Finally, we note that Eqs. (3.19) are just Eqs. 
(5.1S) with ~ .(", 8) = 0 and s E S" and their 
reductions to Eqs. (3.10) and (3.11) follow directly 
from the above results . 
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On Scattering of Waves by Objects Imbedded in Random Media: 
Stochastic Linear Partial Differential Equations and Scattering 

of Waves by Conducting Sphere Imbedded in Random Media 

YONG MING CHEN 
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A new inhomogeneous linear partial differential equation satisfied by the mean value of the solution 
of the corresponding inhomogeneous stochastic linear partial differential equation is derived. This 
new equation has the interesting phenomenon that the differential operators couple with the inhomo­
geneous terms to form new inhomogeneous terms of the equation. Physically, this means that the 
randomness of medium and source are coupled together to form new sources. The above approach is 
then used to derive the equation characterizing wave motions in random media due to random sources. 
FinaUy, the problem of scattering of a plane wave by a perfectly conducting sphere of radius a im­
bedded in 8. random medium is considered. By utilizing a Ifpseudopotential" to incorporate the effect 
of the boundary condition into the reduced wave equation and by the above result, for both ka large 
and amall it is found that up to and including terms of order fl (f ,.,. perturbation parameter) the 
mean value of the scattered field can be calculated from the same deterministic scattering problem 
with k replaced by an effective propagation constant kn. The specialization of the new formulation 
to the problem of scattering of 8. plane wave by a perfectly conducting semi-infinite space checks 
with a previous result of Cben. 

I. INTRODUCTION 

THE subject of wave propagation in random 
media plays an important role in many branches 

of modern science and engineering concerning wave 
motions. It may be used to study the following 
problems in wave propagation. First, if one may 
wish to consider the ca.se in which the known 
medium is very complex and the determination of 
the associated wave motion is impractical, one can 
choose a random medium in which certain statistical 
properties of wave motion may be closely related 
to the actual properties of the wave motion. Secondly, 
if one may wish to consider the case in which the 
medium is not known precisely, but in which the 
probability that the medium is anyone of the family 
of media is known, then one can determine the 
probability that the wave motion is anyone of the 
associated family of wave motions. One can also 
determine the mean wave motion and its other 
statistics. These statistical informations can be then 
utilized for estimAting what is likely to be the wave 
motion. 

Up to now, wave propagation in radom media 
has been studied quite extensively by many math­
ematicians and physicists. Some of the interesting 
results on continuous approach have been obtained 
hy Keller,'·' Chen,'·' Karal and Keller,' etc. Only 

1 J. B. Keller, in Proceedings of the Thirteenth Symposium 
on Applied Mathematics, (American Mathematica.l Society, 
New York, 1960). 

I J. B. Keller, Proceedings of the Sevenleenth Symposium on 
Aypplied Mathematics (American Ma.thematical SocIety, New 

ark, 1964). 

the most recent works on continuous approach are 
referred here and the complete bibliographies can 
be found in the above references. Very little, how­
ever, has been done on the subject of scattering 
phenomenon in random media by the Hhonest" 
methods.' 

In this paper, scattering of waves by an object 
im bedded in a random medium is investigated by 
the" honest" method. A result on the mean value of 
the solution of stochastic partial differential equa­
tions more general than that of Ref. 2, is obtained. 
Then by utilizing the method of "pseudopotential" 
which incorporates the boundary condition into tbe 
stochastic partial differential equation, the above 
result is applied to the case of scattering of plane 
waves by a perfectly conducting sphere (the total 
field vanishes on the surface of the sphere) imbedded 
in a random medium. 

2. STOCHASTIC LINEAR PARTIAL 
DIFFERENTIAL EQUATION 

The stochastic linear partial differential equation 
L(q) u = g(q) is a family of linear partial differential 
equations depending upon a parameter q which 
ranges over a space 12 in which a probability density 
P(q) is defined . The probability density peg) de­
termines the probability of a given value of q and, 
therefore, that of the corresponding linear partial 

• Y. M. Chen, J. Math. & Phys. (to be published). 
'Y. M. Cben, J . Res. Natl. Bur. Std. CU. S.) uD_Radio 

PropagationH (to be published). 
'F. C. Kara1 and J. B. Keller, J . Math. Pbys. (to be pub· 

lished). 
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differential equation of the family. If the unique 
solution u (q ) of the linear partial dilIerential equa­
tion is a single-valued function of q, then u(q) is a 
random variable and its probability density is P'(q). 
The mean value or the expectation value of u(q) 
is then given as (u) = f 0 u(q)P'(q) dq. 

Now if L(q) and g(q) can be expanded into power 
series i~ E where E is a small parameter measuring 
the rando:UUess in L(q) and g(q), then we have 

[Lo + .L,(q) + I L,(q)Ju 

= go + .g,(q) + .'g,(q) + 0(."). (1) 

Our main purpose of this section is to derive the 
linear partial differential equation satisfied by (u) 
up to and including terms of order .'. In the follow­
ing, we will achieve this by using Keller's approach.' 

Upon letting 

Louo = go (2) 

and assuming that L~' is defined, we solve formally 
for u from (1) and (2) as 

u = Uo + .L~ '(g, - L,u) 

+ .'L~'(g, - L,u) + 0 (."). (3) 

It is also reasonable to suppose that u can be 
represented as a power series in f, 

u = Uo + EU, + .'u, + 0 (.'). (4) 

Upon inserting (4) into the right-hand side of (3), 

we obtain 

u = Uo + .L~'(g, - L,uo) 

+ .'L~'(9' - L,u" - L,u, ) + 0 (."). (5) 

In order to find the expression of u, in terms of Uo, 
we substitute (4) into both sides of (3) and equate 
to zero the coefficient of each power of " then 

(6) 

By combining (5) and (6) we arrive at the following 
result, 

u = u, + o£~'(g, - L ,uo) + .'£;;'(g, - £ ,u, 

_ L,£;' 9, + L,L~ 'L,uo) + 0 (."). (7) 

Now the expection value of u is 

(u) = Uo + o£~'«g, ) - (L, )uo) + .' L~ ' «g,) - (L,)uo 

_ (L,L~'9' ) + (L,L~ 'L,)u,) + 0 (."). (8) 

From (8), it is found that 

Uo = (u) + .(L;'(L,)(u) - L~'(g , » + 0 (.'). (9) 

Upon inserting (9) into the terms of 0(.) and 0(.') 
of (8) only, we obtain 

(u) = Uo + o£;'« g, ) - (L, )(u» 

+ "L~'«L,)L~'(g,) + (g,) 

- (L,L~'g, ) - (L,)L;;'(L,)(u) 

- (L,)(u) + (L,L;; 'L,)(u» + 0 (.'). (!O) 

Finally, by applying Lo to both sides of (!O) and 
collecting terms, we obtain the "key" equation of 
this section as 

[Lo + .(L, ) + .'« L ,) + (L,)L;;'(L,) 

- (L,L~'L,»J(u) 

= go + .(g,) + .'« g,) + (L, )L~'(g,) 

- (L,£; 'g ,» + 0 (.') . (11) 

The above result contains that of Keller's,' which 
can be obtained by simply setting g, and g, to zero. 
However, an interesting phenomenon arises here 
because of the presence of g, and g,. It is well 
known that if the solution of a partial differential 
equation describes a certain physical phenomenon, 
the inhomogeneous term in general corresponds to 
the source of the particular physical problem under 
consideration. By examining Eq. (11) one finds that 
the source term is not just go + . (g, ) + .'(g,) as 
one might have guessed but there are additional 
terms of 0(.') , (L, )L~' (g, ), and (L,L~'g, ). This shows 
the coupling between the differential operators and 
the source terms. If L, and g, are statistieally 
dependent, it can be decoupled if and only if one 
or both of L, and g, equal to zero. If L, and g, 
are statistically independent, it can be decoupled 
if and only if one or both of (L,) and (g,) equal 
to zero. 

3. EQUATIONS CHARACTERIZING WAVE MOTION 
IN RANDOM MEDIA DUE TO RANDOM SOURCES 

Let us now consider a simple application of (11) 
which describes the wave motion due to a random 
source in a random medium. Consider the following 
inhomogeneous wave equation, 

'\l'u - c-'[l + .f(r, I)J ' [l + .w(r, I, q)J'u" 

= g,(r, I) + 'g, (r, I, q) + .'g,(r, I, q) + 0 (.') . (12) 

Then upon comparing (12) with (11), L" L" and L. 
are given by 

L, = -2c-'(f + w)a:, 

(13) 

(14) 
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and 

L , = - c-'(t' + 4fw + w')a:. 
The inverse operator of L , is given as 

L ; 'F(r, I) = -(4"r' I r - 'F(r, I') dr', 

(15) 

(16) 

where Ir - r ' l = r and I - r(c)-' = t - s = I'. 
With some manipulation we obtain 

(L ,)(u) = -20-'/(u)", (17) 

(L ,)(u) = -0-'<1' + (w'»(u)" , (J8) 

(L, )L ; '(L, )(u) = -(" o' )-'f(r, I) 

X I [f ,,(r, I')(u(r' , t'» " + 2f ,(r, I' )(u(r', I'»" , 

+ f er ', I')(u(r ' , 1'»"" Jr-' dr', (19) 

and 

(L,L; 'L, )(u ) = - ("o'r ' [(fCr , I) I [(j(r', I' ) 

+ w(r', I'»(u(r' , t'»"" + 2(j, (r' , I' ) 

+ w,(r', I'»(u(r ', 1'»" , + (j,,(r', I') 

+ w,, (r ' , I'»(u(r' , 1'» "Jr-' dr') 

+ I [e(r , s»(u(r ' , I'» "" 

+ 2C,(r, s)(u(r', I'»", 
+ C .. (r, s)(u(r', 1'» "Jr-' dr' 

+ (w(r, I) I [f(r' , I' )(u(r', I'»"" 

+ 2f, (r', I')(u(r', I'» ", 

+ f,, (r', I')(u(r', I'» "jr- ' dr') 1. 

where 

C(r, II - I'D = (w(r, I)w(r' , I'» 

(20) 

(21) 

is the correlation function for the medium heing 
statistically homogenecus and isctropic in space and 

X (u(r', 1'» "" + 2(f(r, I)w, (r', I') 

+ f,(r', I' )w(r, I»(u(r', 1'» .. , 

+ (j(r, I )w,, (r', I') + f .. (r', t' )w(r, t» 

X (u(r' , I')"r- ' dr' = g, + .(g, ) 

+ .'[(g,) - (2,,"')- ' (w(r, t) 

X I g, .. (r', t' )r- ' dr' )j + 0 (.') . (24) 

The above result gives Eq. (8) of Keller' if 
f, g" g" and g, are set to zero. Also, if one lets 
f er, I, q) = fer), w(r, t, q) = w(r, q), (u(r, I, q» = 
(v(r, q»e- i

. " g, = -ol(r), and g, = g, = 0, then (24) 
gives the same result as Eq. (24) of Chen.' It is also 
interesting to notice that the coupling between the 
randomness of medium and the randomness of source 
constitutes a new kind of source. 

4. SCATTERING OF A PLANE WAVE BY A PER­
FECTLY CONDUCTING SPHERE IMBEDDED 

IN A RANDOM MEDIUM 

The problem of scattering of a plane wave by a 
perfectly conducting sphere of radius a imbedded 
in a random medium is considered here. Let the 
center of the sphere be the origin of a spherical 
coordinate system (r, 9, .p) and the incident field 
be independent of .p. This physical problem can be 
formulated mathematically as the following bound­
ary value problem. 

The total field satisfics the reduced wave equation 

'\7'u + k' [1 + .w(r, q)l'u = 0, for r < a. 

u(r) = 0, for r ::; a, 

and 

I.~ {:~' - i ke ! + 'W)uJ = 0, 

(25) 

(26) 

(27) 

stationary in time, and also where 

(L, )L ; '(g, ) = (2"c') -'f(r, I) I (g,(r' , I') " r-' dr', (22) 

(L,L; 'g, ) = (2"0' )- ' [f(r, I) I (g, (r', I'» "r-' dr' 

+ (w(r, I) I g,,, (r', I' )r-' dr' ) j. (23) 

Upon collecting above results and substituting them 
in (11) we finally obtain 

[V' - (c')-'[1 + .2f + .'(f' + (w'» ja:j(u) 

+ .'("0')-' II [C(r, s)(u(r' , I'» "" 

+ 2C,(r,s)(u(r', I'»", 

+ C .. (r, 8)(u(r' , I'» "j'r-' dr' 

+ I [(f(r. I)w(r' , t' ) + f (r' , I')w(r, I» 

r = (r , O,.p) and Ir l = r. 

For simplicity (w ) = 0 is assumed. In order to use 
the result of (11) of Sec. 2 we must incorporate 
the effect of boundary condition (26) into the partial 
differential equation (25) such that the new partial 
differential equation with no boundary condition 
gives the same solution as that of (25) and (26) in 
the exterior region of the sphere. For this purpose 
we shall employ the flpseudopotentin.l" as an equiv­
alent for the boundary condition (26). 

Pseudopotential was first introduced by Fermi' 
in scattering problem, but he limited its use to the 

• E. Fermi, Ric. Sci. 7, 13 (1936). 
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Born approximation. Huang and Yang' generalized 
it to include all the partial waves, but the form 
of tbeir pseudopotential is rather complicated. Later, 
Liu and Wong' have derived a simpler form of the 
generalized pseudopotential. From above results it 
is obvious that the representation of the pseudo­
potential is not unique in general and one can always 
make the choice which suits him best . 

Now, let LOB be the pseudopotential which in­
corporates the effect of the boundary condition (26) 
into (25), and then we obtain 

([V' + LOB + k'] + ,2k'w(r, q) 

+ ,'k'w'(r, q) }u(r, q) = 0, for T;:: a (28) 

and 

f '> = max (T, r' ), T< = min (T, r' ) , 

EO = 1, EI = E2 = E3 = ... = 2 , 

is the part of Green's function due to the scattered 
field. Then 

where 

L~:.F(r) = - J G;.(r, r')F(r') dr' (40) 

and 

L~:F(r) = - J G.(r, r')F(r') dr'. (41) 

lim T[~U - ik(J + 'W)u] = o. 
~_.. uT 

(If w (r, q) = W(T, q) , 

then 

(29) Upon using above results, we have 

(L,L~ ' L, )(u) 

Lo. = - a- 'o(T - a)[(%T)T] ... . 
where 

a. = lim (a + 0) and 0 > O.' } 
'-0 

By comparing Eqs. (1) and (28) we obtain 

Lo = V' + k' + LOB 

L , = 2k' w(r, q) , 

and 

L , = k'w'(r, q), 

therefore, 

and 

Then (u ) satisfi es 

(L, ) = 0 

(L, ) = k'(w' ) . 

[Lo + ?«L,) - (L,L~ 'L, » J(u) = 0 (,') 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

and its appropriate radiation condition . The Green's 
function of differential oerator Lo is well known as 

= - 4k' J G,.(r , r')C(lr - r 'l)(u(r', q» de' 

- 4k' J G.(r, r ')C(lr - r ' I)(u(r', q» dr', (42) 

where 

C(lr - r' D = (w(r)w(r'» (43) 

is the correlation function for the medium being 
statistically homogeneous and isotropic in space. 
By employing the mean-value theorem for any solu­
tion of the reduced wave equation, ,-3 we find 

4k' J G;.(r, r')C(lr - r' D(u(r'» dr' 

-i2k{f (e '''' - I )C(a ) da J<u ) 

with 
a = Ir - r'l · 

Then (35) becomes 

[V ' + k'n' + LOB](U) 

(44) 

G(r, r') = G,.(r, r ') + G.(r , r') , 

where 
G,. (r, r') = e"' ·-·· '/471" Ir - r' l 

(36) 
+,'4k' J G.(r,r' )C(lr - r' l)(u(r' , q» dr' = 0 (,') , (45) 

(37) where 

is the part of the Green's function due to incident 
field and 

G ') ik .;;., ~ (n - m ) ! 
. (r , r = - 4- L..- L..- , .(2n + I ) ( + )' 

1r ,, - 0 ... -0 n tn . 

_...,-X_c~s [m(¢ - ¢') jP:( cos e)p:( cos e' ) 
7 K. Huang and C. N . Yang, Pbys. Rev. 105,767 (1957) . 
• L. Liu and K. W. Wong, Phya. Rev . 132,3, 1349 ( 963 ). 

n' = 1 + ,'( w') - i2k f (e"" - I)C(<» da) . (46) 

The integral operator of (45) represents the effect 
of interaction between the boundary of the scatterer 
and the random mediwn . Obviously, it is a function 
of (T, e, ¢ ), and because of h~" (kT) it behaves like 
l / T for kT » I . 
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For kr > 1 and ka « 1, we can asymptotically 
expand i"(ka) / h;" (ka) into power series of ka, and 
then (38) yields 

G,(r, r') = (47r)-'k'ahi"(kr» hi"(kr<) + O(k'a'). (47) 

Upon inserting (47) into (45) we obtain 

['\7' + kW + L,.](u) 

+ .' .... -'k'a J hi"(kr» hi" (kr<) 

x C(lr - r 'll(u(r'» dr' = 0 (.') . (48) 

From Eq. (48) it is obvious that if ka -> 0, the 
integral operator can be neglected. Or better , if the 

G,(r , r') 

correlat ion distance is short in comparison with the 
wavelength and ka = 0(.), it can be again neglected. 

For r > a and ka » 1, we can utilize the well­
known 'Vatson transformation or Poisson sum­
mation formula to change G,(r, r') into a new series 
representation such that the leading term of the 
asymptotic expansion of the new series is enough to 
give an excellent asymptotic representation of (38). 
Without loss of generality we shall assume that 
G,(r , r ') is independent of <p and r' = (r', 0), because 
we are only interested in the functional behavior of 
G,(r, r' ) with respect to ka. Now, upon applying 
Watson transformation to (38) and evaluating it 
asymptotically9- 1l we obtain 

~ 1 { a' sin 2"" }I 
= ka [( r''l r' ) !(r ' )1 ( ,.2 r )1(1'" )IJ 1+ a,-2;;- cos "', ;?-sin' "', - J+ a,-2;;: cos "', a,-sin' "', 2rr' sin ("',+"',) 

X exp lik[(r' + a' - 2ar cos ",,)1 + (1'" + a' - 2ar' cos ",, )11l 

+ 12 [A '~P .)1' (~~)T2rr' s in OCr'/a' ~ l)V'/a' - 1)1 J 
exp [iv_CO + 2 .... ) - ti .... ] + exp [ivm(2 .... - 0) + ti .... J 

X 1 + c"·'· 

X exp [ik[(r' - a')1 + (r" - a')!J) - ivm[cos-' (a/r) + cos-' (a/r' )J (49) 

for (r, 8) in the lit region, and 

1 (36)1[ JI( " )-' 
G,(r , r' ) ~ I2[A~Pm» )' ~a 2rr'sin o(?/a' _ 1)1 ra, - 1 • 

exp [+i,,_( - 0 + 2 .... ) - ti .... J + e"p [ivmO + ti .... J 
X 1 + ei2 .-.", 

X exp {ik[ Cr' - n')1 + (r" - a')I J) - iVm[ cos-' (~) + cos-' (t~) J (50) 

for (r, 0) in the shadow region, where Vm = ka + 
e" " Pm(ka/ 6)1 , Pm is the smallest root of thc Airy 
function, A (Pm). The physical meaning of "'" "'" and 
"', are given in Fig. 1. By carefully examining Eqs. 
(49) and (50), we find 

G,(r, r') = O(ka)- '. (51) 

Then upon inserting (51) into (45) wc obtain 

['\7' + kW + LOB](U) + .'O(ka)- ' = 0 (.'). (52) 

It is obvious from (52) that if ka -> 00, the term 
involving integral operator can be neglected or even 
better, if the correlation distance is short in com­
parison with the wave length and ka = 0 (. - ' ), it 
can be also neglccted. The case of scattering of a 

plane wave by a perfectly conducting semi-infinite 
space is equivalent to (52) with ka --. 00 . Then the 
solution of (52) is 

(u) = exp [ikiix sin 0 - ilcfiy cos OJ 
+ R exp [ikiix s in 0 + ikfiy cos OJ + 0 (.') 

with 
R = - l. 

(53) 

(54) 

This is exactly the same result gIven 111 the last 
section of Chen' (Fig. 2). 

it B. R. Levy a.nd J. B. I{eUer, CommuD. Pure App!. 
Math. 12, 159 ( 1959). 

10 W. Franz, Z. Naturforsch. 9a, 705 ( 1954). 
11 H. Bremmer, Terrestrial Radio Waves (Elsevier Pub­

lishing Company, Inc" New York, 194-9). 
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FIG. 1. Tbe ge· 
ometry of the Bca!r 
tcriog problem IS 
shown. In addition, 
the physical menD­
ing of T, Ti, a, ,yl, 'h, 
and "" arc gi veo, 

In summing up our results above, we have at­
tained for both small ka and large ka that up to and 
including terms of order ?, the expectation value 
of u can be calculated from an equivalent deter­
ministic scattering problem with the propagation 
constant k replaced by the effective propagation 
constant kfi. 

For the case that the term in (45) involving 
integral operator is small but not negligible, we can 

y 

u, 
k 
w(qJ 
~~~~~~~~~~~x 

FJG. 2. The di.rec­
tions of propaga.­
tion or incident and 
reflected waves arc 
shown. 

again employ the method of iterations to obtain 
the solution . We shall assume that 

4k' J G.(r , r ')e(lr - r' !l(u(r' , q» dr' = M(fJ)(u) (55) 

depends upon a small nondimensional parameter fJ . 
Upon expanding M(fJ) in powers of fJ and omitting 
the 0(.') term we may write (45) as 

[\7' + k'fi' + LOB)(u) 

+ ?(Mo + fJM, + fJ'M, + O(fj'»(u) = O. (56) 

It seems also reasonable to suppose that (u) can 
be represented as a power series in {i, 

(u) = (u)o + fj(u), + fj'(u), + O(fj') . (57) 

Upon inserting (57) into (56) and equating to zero 
the coefficient of each power of fj, we obtain 

[\7' + k'fi' + .'M, + LoB](u )o = 0, (58) 

[\7' + k'n' + .'M, + LoB](u), = -.'M,(u)o, (59) 

and 

[\7 ' + k'fi' + .'Mo + Lon](u), 

= -.'M,(u), - .'M, (u),. (60) 

Now, the differential- integral equation (45) is trans­
formed into a system of many differential equations, 
therefore in principle we know how to solve (45) 
systematically. In our case the parameter fj can be 
ka if ka < 1 or can be (ka)-' if ka > 1. 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 5, NUMBER II NOVE~IBER 1964 

Some Remarks Concerning a Pathological Matrix of 
Interest in the Inverse-Scattering Problem * 
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A Hermitian matrix which occurs in the theory of the quantum-mechanical inverse-scatteriog 
problem has apparently contradictory properties. It bas a well-behaved inverse in spite of having 
zero as one of its eigenvalues. The properties of the matrix are investigated and the relevance of the 
results to the theory are discussed. 

INTRODUCTION 

I N an elegant paper, Newton' has developed a 
theory for determining a potential from a knowl­

edge of all phase shifts at a given energy. Newton 
showed that the solution of this problem is not 
unique and that there is at least one nontrivial 
central potential which leads to zero phase shifts 
at all energies. The lack of uniqueness follows from 
the properties of the matrix 

N .. ,. (I" - I'r' I' -

o I' -

odd 

even 
(1) 

(N38) 

introduced by Newton.' Newton exhibited a matrix 
N-' which was both a right and left inverse of N . 
The components of N-' are' 

16 I" I' odd, 
.,...2 l2 _ Z/ 2 

even, 

16 I' 
I odd, I' 

11"2 e - I" 
even, 

(N-'),.,. 8 
1=0, I' odd -, 

" 
+ 8, I' = 0, I odd 

" 
0 otherwise. 

Newton also showed that a column vector 

1 = 0 

I = even 

I = odd 

I r" 0 

I' r" 0 

(2) 
(N39) 

(3) 

(N51) 

• This work was supported by the U. S. Army Research 
Office (Durham). 

'R. G. Newton, J. Math. Phy,. 3, 75 (1962). 
I Equations and definitions which are taken from Newton's 

paper are also identified by the equation number wh.ich 
appears in that paper, e.g., (N38). 

'The inverse as given by Newton is incorrect. Newton's 
:Eq. (39) should have an over-all minus sign and th.is has 
been corrected above. It is easy to verify that Newton's 
expression is incorrect by considering a diagonal element 
of (N- l N). With Newton's expression for N-l this is a 
negative definite form. 

exists which is annihilated by N . That is, . 
2: N .. ,.6,. ~ O. 
, '-0 

(4) 
(N50) 

These properties impressed the author as being 
rather extraordinary. The matrix -iN is Hermitian. 
Normally one expects an Hermitian matrix to 
have a set of eigenvectors associated with the 
matrix which are orthogonal and which can be 
used to resolve the unit matrix and the original 
matrix. If none of the eigenvalues of the matrix 
are zero then this complete set of eigenvectors 
can be used to resolve the inverse of the matrix 
whereas, if zero is one of the eigenvalues the in­
verse of the matrix will not exist. The Hermitian 
matrix -iN, however, has a well-behaved inverse 
and a state which it anniliilates. 

It was felt that these paradoxical properties 
were worthy of further investigation. The results 
of such an investigation are the subject of this 
paper and can be summarized as follows: 

(1) The secular equation, f(X ') = 0, for the 
eigenvalues iX of the matrix N is found. The func­
tion f(X') has an infinite set of simple zeros and 
associated with each such zero there are two 
normalizable column vectors A, (X) and A, ( - X). 
The point X' = 0 is not in this set. The function 
f(X') has an essential singularity at X' = O. Al­
though f(O) is not defined, f (X') -+ 0 as X' -+ 0 
along any straight line except the positive real 
axis. As X' -+ 0 the ratios o(the components A,(X) 
approach the vector 0, and it can he verified di­
rectly' that No = O. 

(2) The set of vectors A (±X) is complete and 
any normalizable vector can be expanded in this 
set. The unit matrix, the matrix N, and the matrix 
N-' are resolvable in terms of this set and we can 
calculate the elements of N - ' in terms of such a 
resolution. 

(3) The vector 0 is orthogonal to every member 
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of the complete set of vectors A . It therefore cannot 
be expanded in terms of this set. This does not 
contradict the remarks under 2 since 0 is not 
normalizable,· 

(4) The vector 0 satisfying No = 0 is unique. 
(5) It is shown that the existence of the unique 

vector 0 gives rise to a one dimensional infinity 
of potentials corresponding to any set of phase 
shifts specified at one energy. 

THE SECULAR EQUATION 

The equation N A = +£XA when written in 
detail becomes 

-iAA,.(A) L 1(2k + 1)' - (2n)'f' A".,(A), (5) 
'-0 

and 

-."A'M.,(A) L 1(2;)' - (2m + I)'f'A,,(A). (6) 
,-0 

The A , with odd I can be eliminated and we obtain' 

A'A,.(A) = L F •.• A,.(A). (7) 
.-0 

The symmetric, real matrix P has components 
given by 

F •.• = L 1(2k + 1)' - (2n)'r' 
'-0 

into Eq. (AI) of thc Appendix with the result 
that u. = 0 if n r' 0 and Uo = (,,'/ 8). When n = m 
the expressions in tbe Appendix can be used di­
rectly with z = n" and the result of the calcula­
tion is 

-(,,'/32m') n = 0, m r' 0 

-(,..'/32n') n r' 0, m = 0 

F ..... ('r'/64n') n = mr'O (9) 

(,,'/96) 11. = m = 0 

0 otherwise. 

'ille matrix F has a very simple form and the 
associated eigenvalue problem is easily solved. 
Explicitly we have 

" r' 0 : A'A,.(A) = ( .. '/64n')A,.(A) - (,..V32n')Ao(A) 
(10) 

and 

L ( .. ' / 32n')A,.(A). (Il) .-, 
By eliminating A,. (n r' 0) from these equations 
we find a necessary condition for the existence of 
nontrivial solutions is that the secular equation 

f(A') = 0 (l2) 

is satisfied with 

X 1(2k + I)' - (2m)'f'. (8) fez) = z - ( .. '/96) 

The sumJnations over k can be evaluated using 
the formulas in the Appendix.' In ;,:rticular, when 

n r' m, F •.• = Hn' - m')- (U. - U.), 

where 

-U. = L 1(2k + 1)' - (2n)'f'. 
• - 0 

and this can be evaluated by SUbstituting z = n" 

f, As we see, the source of the pa.rndox is the existence of 
an eigenfunction IJ which has many of the expected properties 
of an eigenfunction (e.g., it is orthogonal to all other eigen­
functions) but which is not Dormalizable and which lies 
outside of a complete set of eigenfunctions. From this point 
of view the fact that the c igcDvaJue is zero is Dot essential, 
(consider the matrix N + 1 for example). However, since 
the eigenfullctions of a. matrix are unchanged by adding a 
multiple of the unit matrix, the paradox can always be 
expressed as we have in the text. 

, In order that tho eigenvalue equations (5) and (6) be 
mea.ningful, it is necessa.ry to define the infinite sums in a way 
that forbids unrestricted rearrangements of the terms. When 
this is done it is possible to prove that the change in the 
order of summation involved 10 going from 5 and 6 to 7 is 
always allowed. A proof of this is contained in an Appendi.x . 

• \Ve evaluate such RUms by relnting them to trigonometric 
(unctioDs. Newton had to evaluate similar sums in his in­
vestigation which he summed by purely algebraic methods. 

- (,,'/32)' L n-'Iz - (,,'/64n') f' , (l3a) .-, 
= z - ( .. '/4) L 1(2n)' - (,..'/ l6zW', (l3b) .-, 

(13c) 

where we have used L~ n -, = (,..'/6) and Eq . 
(A3) from the Appendix. 

From Eq. (I3a) it is readily seen that if z is 
complex that 1m fez) and 1m z have the same 
sign and that 1m fez) r' 0 if 1m z r' O. The roots 
of fez) = 0 are therefore all real. From Eq. (13b) 
it is obvious that if z is negative fez) is negative 
so that all the roots A' are positive. Since there are 
an infinite number of poles of fez) in the vicinity 
of z = 0, f(O) is not defined. However, direct sub­
stitution of z = 0 into eitber Eq. (I3a) or Eq. (I3b) 
would give the result f(O) = O. Substituting A = 0 
into Eq. (10) yields the vector 0 and the equation 
No = 0 is readily verified with the help of (A3) . 

Our derivation of Eq. (7) is not valid when 
).. = o. 1'hc result is still true, however, as can 
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be seen by multiplying Eq. (6) (with A = 0) by 
[(2n)' - (2m + l)'r' and summing over m. When 
X = 0 the A, with l odd and l even are decoupled 
so it might be possible that there is another vector 
annihilated by N coutaining only components A , 
with l odd. We now prove that no such vector exists 
and that the vector 0 is therefore the unique solu­
tion of No = O. Since little additional laber is 
involved by doing so, we derive an equation sati&­
fied by A".,(X) for any eigenvalue X. 

By eliminating the A,. we get an equation of 
the form . 

X' A".,(X) = I: G •. ,A" .. (X), (14) ,-, 
where the symmet.ric matrL." G has components 
given by 

. 
G •. , = I: [(21)' - (2k + I)'f' [(2j)' - (2l + J)'f'. 

, .. 0 

As in the even case, the summations can be ex­
pressed in terms of trigonometric functions with 
simple arguments and 

k ... l 

= !(2k + 1)- ' + ( ... ·/16)(2k + 1)-'. 

k = l. (15) 

The matrix G is the direct sum of a diagonal matrix 
and a separable matrix, SO that the eigenfunctions 
are readily found . Explicitly, 

X'A" .. (X) = ( .. '/16)(2k + l)- ' A .... (X) 

+ (2k + l)-'K(X), (16) 
with . 

we substitute X = 0 into Eq. (16), this implies 
that all the A" .. (O) are equal. Direct substitution 
[and Eq. (AI)] shows that this is not annihilated 
by N. Although this is more than enough to prove 
the uniqueness of the vector 0 previously found, 
we also point out that the form G is positive definite 
with . . 
I: I: Btc •. ,B, 
' -0 1- 0 

- !. I i= B. I' + .. ' i= 1 B. I' (20) - 2 . _, 2k + 1 16 ._, 2k + 1 . 

ORTHONORMALITY OF THE A (A) 

It is a straightforward matter to verify that 
the A's form an orthogonal set. It is convenient 
to consider the components A, with l even and 
with l odd separately . 

Thus, 

t. A ,.(X) A .. (X') = A ,(X)A,(X'){ 1 + ( .. '/32)' 

X i= k-' [X' - ( .. ' /64k'W' [X" - ( .. ' /~k'W'} .-, 

= A,(X)A,(X')U(X') - / (X"))/(X' - X"). 

= O. 

When X' = X" we get . 
I: A :.(X) = A:(X)f'(X'). .-, 

where f'(X') = [(d/dz)/(z)], (z = X'). We choose 

A,(X) = [21'(X')rl . (21) 

K(X) = t I: (2l + l)-'A" .. (x). ,-, (J7) For the A,(X) with odd l, one finds that Eqs. (6) 
and (8) imply that 

Comparing these equations we find that the secular 
equation 

g(X') = 0 

must be satisfied with F 
g(2) = 1 - t I: (2l + 1)-' ,-, 

X {2 - [( ... '/16)(2l + I)-'W' 
= 2 - [8(2)1/ .. ') tan [,r'/ 8 (2)1). 

Since 
g(2) = [8/ .. '(2)1) tan [ .. '/8(2)1]/(2). 

(18) 

(19a) 

(19b) 

the roots of g(X') = 0 are the same as those of 
j(X') = 0 except that g(2) ---> 2 as 2 approaches 
zero along a path which avoids the real axis. If 

. 
I: A" .. (X)A~ ... (X') .-, 

= (nT' I: I: A,.(X)F •• A,.(A). 
.. - 0 .. -0 

We may now summarize the orthogonality prop­
erties: 

I: A .. (X)A •• (X') = t . .-, 
= 0, 

(22) . 
I: A , ... (X)M ... (X) = t. A = )", -, 

= -~. 

= 0, 
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A very simple expression for A .. (A) is obtained 
by using Eq. (10). It is then possihle to use Eq. (6) 
to obtain an expression for A,.,,(A). This will 
involve a fairly complicated sum. On the other 
hand, Eq. (16) suggests tbat A",,(A) depends on 
k in a very simple way. We now demonstrate that 
these results are consistent. 

From Eqs. (6), (10), and (21), we obtain 

[2j'(A'» )IA,.+, (A) = (i/A) {(2n + 1)-' + t. (".' /32k') 

X [(2k)' - (2n + 1)'r'[X' - ("" /G4k'W} 

= 2iX L [(2k)' - (2n + 1)' r'[A' - ( .. ' /64k'W', .-, 
= (i/2A)[(".'/4X) cot ( .. '/8A)][(2k + I)' - ( .. '/1 6AW , . 

(23) 

In going from the first line to the second, we have 
used 

L [(2])' - (2k + I)'r ' = !(2k + 0-', 
;-1 

which can be obtained from Eq. (A3). The last 
line is a consequence of the identity given by 
Eq. (A5). Finally, the first quantity in square 
brackets is unity since A must be a root of the 
secular equation. The result is seen to be consistent 
with Eq, (16) . 

In summary we now have the simple equations 
for the A, 

[21'(1.'»)1 Ao(X) = 1, 

[2f'(A'»)IA,.(X) = -(".'/32n')[A' - ( .. '/64n'W', 

n ;<! 0 (24) 

and 

[2f'(A'»)iA,.H(A) = (iA/2)(2n + 1)-' 

X [A ' - ( .. '/I6)(2n + I)-'r'. (25) 

COMPLETENESS 
. ) .. 

In order to verify completeness It IS necessary 
to consider sums over the eigenvalues A. These 
sums may be evaluated by the method of contour 
integration. The necessary summation formula are 
listed in the Appendix. Because A,.(A) = A,.( -A) 
and A,.+,(A) = -A,.H( -A) the swns can be 
changed into sums over A' and several terms are 
zero by parity arguments. 

The completeness relationship we wish to prove is 

6,.,. = L A,(A)M·(A). (26) 
• 

Now 

L A,(A)Ar.(A) 
• 

0, I' - 1 odd 

Co, 1 = I' = 0 

[
I = 0 I' = 2n 

-( .. '/32n')C,(2n) , 
1=2n 1' = 0 

tC.(2j + I, 2k + 1) , 1 = 2j + 1, I' = 2k + 1 

(O" /32n')(O" /32m')C,(2n, 2m), 
1 =2n;<!0 

I' = 2m ;<! 0, 
(27) 

and by referring to the results in the Appendix 
it can be verified that these are equivalent to 
Eq. (26). Hence, the set is complete. 

The set of vectors resolve N if 

N,.,. = i L AA, (A)M·(X). (28) 
• 

We find that 

0, I' - l even 

-(t.)C.(2k+l), 1 = 0, I' = 2k + I 

N .. ,. = , +(t.)C.(2k+ I) , 1 = 2k + l, I' = 0 

(~)( .. '/32n')C.(2k + 1, 2n), 
1 = 2n, I' = 2k + I 

- (~)(".'/32n')C.(2k + 1, 2n), 
1 = 2k + 1, I' = 2n, 

(29) 

and this is equivalent to the definition of N", 
given by Eq. (1). 

Finally, it is expected that 

N~.', . = -i L X-'A,(A)M·(X), (30) 
• 

and by inserting the expressions for A, in the right­
hand side, we obtain 

0, l' - l even 

-(ti)C.(2k + I), 1 = 0, I' = 2k + 1 

N~.'" +(!t)C.(2k + 1), 1 = 2k + I, I' = 0 

+(!t)(".'/32n')C,(2j + I, 2n), 
I = 2n ;<! 0, I' = 2j + 1 

-(It)( .. '/32n')C,(2j + I, 2n), 
1 = 2j + I, I' = 2n ;<! 0, 

(31) 

and this agrees with the known result . 
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The completeness of the set A ,(X) implies that 
" vector b, can be expanded in terms of the A, (X) 
it it is possible to change the order of summation in 

b, = L A,(X) L Ar,(X)b", (32) 
, " 

It is easily seen that 0 does not belong to this 
class. In fact, 0 is orthogonal to the A's since 

L 6,A,(X) = !X-'f(X') = O. (33) , 
It is interesting to note that by adding 0 to the 
hasis, the domain of vectors which can be expanded 
is enlarged . 

DISCUSSION 

The uniqueness of the solution of No = 0 permits 
a determination of the dimensionality of the family 
of potentials consistent with a given set of phase 
shifts at one energy . The general solution of the 
matrix equation N x = y is 

x = N-'y + al; . (34) 

One of the steps in Newton's argument involved 
the inversion of such a matrix equation. The solu­
tion is then used to determine a set of members 
e, which define 

fer, r' ) = L C,r'i,(r)i,(r'). 
'-0 

(35) 
(NI) 

The potential VCr) is then obtained by finding 
the function K(r, r') which is uniquely determined 
once fer, r') is known by solving the integral equation 

K(r,r') = f(r, r' ) - l' dr"r"- ' K(r, r")f(r" , r' ) , (36) 
o (N5) 

and then 

VCr) = -2r-' (dldr)lr-' K (r, r)]. (37) 
(N7) 

If one takes note of the form we have obtained 
for the solution x of Nx = y and traces Newton's 
argument back, it is found that C, has the form 

C, = (X, + aY,)/(Z, + aW,). (38) 

There is therefore a one-<iimensional infinity of 
potentials V(a, r) and it is evident that the po­
tentials depend on the parameter a in a rather 
complicated way, 
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APPENDIX A 

In the course of the analysis it was necessary 
to evaluate several infinite sums. We present below 
a list of formulas sufficient to perform all the sums 
encountered. 

-L [(2i + I)' - (4z'I".'Jr' = (1<'/Sz) tan z, (AI) 
i-O 

-L 1(2i + I)' - (4z'I".'Jr' ,-0 
= (".'/Sz')'(z' sec' z - z tan z). (A2) -L [(2])' - (4z'I1<'Jr' = (.-' ISz')(1 - z cot z), (A3) 

i-I 

-L 1(2])' - (4z'I.-'Jr' 
i-I 

= (.-'/Sz')'(z cot z + z' esc' z - 2). (A5) 

f. (2])'1(2]), - (2k + J)'r'[(2])' - (4z';".'Jr' 
;-1 

= !z cot z[(2k + I)' - (4z'I.-')r'. (A5) 

The proof of the above results is straightforward. 
For example, the last result is derived by consider­
ing the contour integral 

f dwlw' cotw{4w' - (2k + I) ' .. ' r'{w' - z'r')· 

It is easy to show that cot w is bounded on 
a rectangular contour with vertices at the points 
±(2N + 1)( .. /2) ± iV. By letting N -> '" through 
integer values and V -> '" it is easy to see that 
the integral vanishes. An evaluation of the inte­
gral by the method of residues immediately gives 
Eq. (A5), . 

It is also necessary to perform sums over the 
eigenvalues of N in order to demonstrate com­
pleteness, In the following, the summations range 
over all values of X'. 

Co = L {I I /'(X' )] = I, (A6) 

C,(2n) = L If'(X'Jr' {h' - (".' 164n')r' = 0, (A7) 

C,(2n, 2m) 

= L 1f'(h'Jr' IX' - ( .. '/64n') r'IX' - ( .. ' 164m' )r' 

= 0 n"" m 

= (32,,'1.-')', n = m; (AS) 

C3(2n,2m) = L h'If'(X'Jr' IX' - ( .. '/64n')r' 

X Ih' - ( .. '/64m')r', 

= 0, n "" m 

n =m (A9) 
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C.(2k + I) .L [f'(I-')r'[(2k + 1)'1-' - ( .. '/16Jr' 

= (16/ .. ') , (A 10) 

C.(2k + I) = .L 1-' [f'(I-'Jr' [(2k + 1)'1-' 

- ( .. '/16Jr' = 2(2k + 1)-' , (All) 

C,(2; + 1, 2k + I) = .L 1-'[f'(I-'Jr' [(2; + 1)'X' 

- ( .. '/16Jr'[(2k + 1)'X' - ( .. '/I6Jr' 

= 0, ; '" k 

= 4, ; = k, (A 12) 

C,(2j + 1, 2n) = .L [f'(I-'Jr' [(2j + 1)'1-' 

- ( .. '/I6Jr'[I-' - ( .. '/64n'Jr' 

= (2j + 1)'(2n)'[(2n)' - (2; + 1)'r'(16/ .. ')', 
(AI3) 

C,(2j + 1, 2n) = .L 1-'[f'(I-'Jr'[(2j + 1)'1-' 

- ( .. '/16Jr'[I-' - ( .. '/64n'Jr' 

= (2n)'(16/ .. ')[(2n)' - (2j + I)'r' . 
(AI4) 

The above results are easily proven. The proper­
ties of f(z) needed are the following: 

(I) As z -+ 00 f(z) / z -+ 1. 
(2) It is possible to find a sequence of contours 

C H, such tbat Izi -+ 0 on the contours as N goes to 
infinity and cot [ .. ' / 8(z)l] remains bounded on 
each of the contours. An example of such a contour 
CH is one made up of two segments of cardoids 
defined as follows. On the first segment 

Re [ .. '/8(z)l] = (N + t) .. 
11m [ .. '/8(z)11I ::; (N + t) .. , 

and on the other segment 

11m [ .. '/8(z)l] I = (N + t) .. 
and 

Re [ .. '/8(z)l] ::; (N + t) ... 

On such a contour l(z)/(z)1 remains beunded. 
We can now consider an integral over a. contour 

consisting of a large circle of radius RN such that 
limN _ _ RN = 00 which is traversed counterclock­
wise and the contour CN traversed in a clockwise 
sense. By integrating appropriately chosen func­
tions over this contouriand then evaluating the 
integrals by the metilod of residues, the abeve 
results are obtained. 

For example: consideration of 

i dzl/(z)r'[z - ( .. '/16)(2j + I)-'r ' 

X [z - ( .. '/64n'Jr ' = 0 

gives the expression for C,(2j + 1, 2n). The inte­
grand has poles at the roots of I(z) = 0 and at 
z = ( .. '/16) (2; + 1) -' but not at z = .. ' /64n'. 

APPENDIX B 

The eigenvalue equation 

-.L N ... . A,.(I-) = iI-A ,(I-) , (BI) 
"-0 

is not meaningful if an unrestricted rearrangement 
of the terms in the infini te sum is allowed. For one 
could choose any vector A,(I-) such that the sum 
converged but did not converge absolutely. Since 
snch a series can be assigned any value by re­
ordering the terms' one could choose any I- and 
make Eq. (Bl) valid by taking a suitable rearrange­
ment of the terms for each value of I. In order to 
make the eigenvalue meaningful we adopt the 
following definition of the infinite sum 

_ L 

.L a, == lim .L a,. (B2) 
1-0 L_ .. 1-0 

When such a definition is adopted all the manipu· 
lations in the paper can be rigorously justified. In 
particular, with this definition of the infinite sum 
the solution of the equation 

.L N, .,.b,. = 0 (B3) 
1'-0 

is unique and b, = "" 
In order to justify the formal manipulations 

performed in the paper it is necessary to show that 
the change in the order of summation in going 
from Eqs. (5) and (6) to Eqs. (7) and (14) is allowed. 
We show how to rigorously obtain Eq. (7), the 
proof for Eq. (14) is similar. In order to do this it 
suffices to prove the following theorem: 

Theorem. 
Hypothesis: The sum 

s. = .L [(2k + I)' - (2))' r'a, (B4) 
;-0 

converges. 
Conclusions: 

7 T. J. 1'& Bromwich, Theory 01 Infiniu Series (The 
MacMillan Company, New York, 1949), 2nd ed., p. 74. 
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Let us define T,.(n) by 

T,.,(n) = t t [(2k + 1)' - (2n)'r ' 
j-O .1: - 0 

X [(2k + I)' - (2))'r'a,. (B5) 

Then 

(i) lim, __ lim, __ T,,(n) exists; call it T(n); 
(ii) lim". , __ ) T,,(n) exists and is equal to T(n); 

(iii) lim, __ lim, __ T,,(n) exists and is also equal 
to T(n). 

We prove parts (i) and (ii) of the theorem. Part 
(iii) of the theorem follows immediately from part 
(li) according to Pringsheim's theorem.' 

Notice that no restriction is placed on the a;' 
other than the convergence of the sum (B4) . We 
need Abel'. test which provides a powerful tool 
for discussing the convergence of series. 

Abel's Test . A convergent sequence I: a. (which 
need not converge absolutely) remains convergent 
if its terms are multiplied by a factor u., provided 
that the sequence u. is monotonic and that lu.1 
is less than a constant k. 

This result is proven in all standard texts on 
infinite scries'o so we omit the proof. 

We also need a lemma which is a slight general­
ization of Abel's Lemma." 

Lemma. Given a sequence of positive numbers 
v, which is initially monotonically increasing and 
finally monotonically decreasing so that it reaches 
a maximum value when j = J, and given a se­
quence a, such that 

H 2': I: a, 2': h for n ~ p, 
;_1 

then 
, 

HVJ - h(vJ - v,) 2': I: v,a, 2': -H(vJ - v,) + hvJ. 
i-I 

Proof. The proof is straightforward. We consider 
p > J. The modifications necessary when p ~ J 
are trivial. 

. • Pringshcims theorem states tha.t if the double limit 
lim (J..I, ,,-t CD) S, .. exists, and if the single limit lim (" _ co) 
8,.. exista, then the iterated limit lim (J..I --. co) lim (" -+ CD) 
8,.. also exists and it has the Ba.me value as the double limit. 
Reference 7, p. 58. 

t In the foUowing, we take all quantities to be real. The 
fOUowing theorem can be proven Wlth a, complex simply by 
considering real and imagioary parts. 

10 Ref. 7, p. 58. 
11 Ref. 7, p. 57. 

Let 

Then 

L a,v, = SIVt + (S:l - 81)V:l + ... + (8 .. - S .. _I)V .. , 

= [s,(v, - v,) + .. . + sJ_ ,(vJ_ ' - vJ)] 

+ [sAvJ - v",) + ... + s,v.J. 

= A +B. 

In the first square bracket, the coefficients of 
s, are all nonpositive so that a lower (upper) 
limit on A is obtained by replacing the s, by H(h) . 
Thus 

-h(vJ - v,) 2': A 2': - H(vJ - v,). 

Similarly, 
IivJ 2': B 2': hvJ 

and the Lemma follows. 

We now return to the proof of the theorem. 
We proceed as follows . The sum over k in Eq. (B5) 
can be done explicitly and defines a function which 
has the properties of the function v, of the lemma. 
Abel's test can he used to prove the convergence 
of the remaining sum over j and the lemma is 
used to place limits on the difference between the 
two methods of summation to show that the differ­
ence vanishes. 

We now proceed to prove the theorem. Now 

-lim lim 7', .,(n) = I: F •. • a., (B6) ,._CD _w .. - 0 

where F •.• is given by Eq. (8) of the main text. 
The sum over In contains only two terms if n .,c 0 
and therefore converges. When n = 0 

- -I: F •. ,a, = ( .. ' / 96)a. - I: (.".'/32j')a,. (B7) 
i- O i - I 

Comparing this with Eq. (Bi) we see that the 
terms in the sum for (B7) can be obtained by multi­
plying the term of (B4) by the factor 

(.".'/32j')[(2k + I)' - (2])'1. 

Since this factor defines a monotonic and bounded 
sequence, Abel's test implies that the series (B7) 
converges. The first part of the theorem is proven. 

To prove the second part of the theorem we 
first note that 

• 
T •. ,(n) - I: F •. ,a, = a.W.(v) 

i-O 

+ t: a, [(21)' - (2n)' r'[u.(v) - u;(v)]. (B8) 
i .. O 
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where 

u,(v) L [(Zk + I)' - (Zj)'r', 

partial sums have finite upper and lower bounds 
independent of " and the product in (BI3) goes 

(B9) to zero . 
.1; - .+1 

• 
= L [(2j)' - (Zk + 1)' )-' if j r' 0, (B1O) 

k-O 

= (4JT' [(Zj - Zv - 1)-' + (2j - Zv + W' 
+ ... + (Zj + 2v + 1)-') (Bll) 

if i r' 0, and 

W.(v) = L (Zk + 1)-' ~ (4v)- '. (BIZ) 
.1: _ .+ 1 

We obtain (BI0) by noting that the right-hand 
side of (B9) is equal to u, of the main text whell 
the lower limit of the sum is zero, and that u, = 0 
if i r' O. 

The prime on the summation sign in (B8) indi­
cates that the term with n = i is to be omitted. 
It is now necessary to show that the right-hand 
side of (B8) goes to zero as " and v go to infinity 
independently . We have indicated the asymptotic 
behavior of W.(v)." The contribution a.W,(v) is 
independent of " and goes to zero as v -> "'. We 
next show that the contribution 

To complete the proof it is necessary to show that 

• L' a, [(Zj)' - (Zn)' r'u,(v) -> O. (B14) 
i-O 

To do this we show that u,(v) is a function of the 
type considered in the lemma. The lemma provides 
upper and lower bounds on the sum and it is found 
that these go to zero in the limit. 

For i :s; v + 1, Eq. (B9) represents u,(v) as II 

sum of positive terms. When j :<0; v, it is easily 
seen that increasing j increases each of these terms 
so that u,(v) is initially an increasing function of j. 

For j 2: v + 1, Eq. (BIO) represents u,(v) as II 
sum of positive terms. It is easily seen that in­
creasing i decreases each of these terms so that 
u,(v) is ultimately decreasing. The maximum value 
of u,(v) occurs when j = v + I and 

u .. ,(.) = I W' + 3-' + ... (4v + 3)-,], 
4(v + 1) 

where we have used (BIl). 

1 
1""'o...J-)nv 

8. ' 
(BI5) 

u,,(.) t: a, [(Zj)' - (Zn)'r' -> O. (BI3) We have already noted that ,., 
For large v, and n r' 0, u.(v) ~ (lv) since all but 
Zn of the terms in (Bll) cancel and each of these 
terms behaves like (4n)-'(Zv) - '. It is easily seen 
from (B9) that uo(v) ~ HZv + 3) - '. Also the sum 
over j in (BI3) converges since the general term 
is related to the comparison series (B4) by a factor 
[(Zk + I)' - (2j)')/[(Zi)' - (2n)') which is bounded 
(j r' n) and is ultimately monotonic so that Abel's 
test applies. Since the infinite sum converges the 

U We obtain estima.tes of the asymptotic behavior of the 
8ums here). and in the following, by replacing the BUm by all 
integral. buch a procedure is easily justified in the cases 
considered. 

• 
JJ 2: L' a, [(2J)' - (Zn)'r' 2: h, 

i-O 

with JJ and h independent of " . The lemma then 
gives 

JJu,., (.) - h(u ... (.) - u,(.)) 

• 
2: L' a;[(2j)' - (Zn)'r'u,(.) 

j-O 

2: hu ... (.) - JJ(u ... (.) - u,(.» 

and the upper and lower bounds botb go to zero 
as J)., JI ---+ CD. 
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The Effective Resistance of Passive Networks* 

GEORGE L. MONTET 

Argonne National Laboratory, Argonne, IUinois 
(Received 12 June 1964) 

A rccently found solut.ion to t.he problem of a random walk over a laLtice wit.h reflect.ing boundarics 
is used to evaluate t.he resistances of several passive electrical networks. The solutions arc particularly 
simple for rectangular planar networks and various types are considered. The extension of the solut.ion 
to the corresponding three-dimensional array, t.he simple cubic lat.t.ice, is given. 

INTRODUCTION 

ARECENTLY found solution' to the problem 
of a random walk executed on a lattice with 

reflecting boundaries makes possible the calcula­
tion of the effective resistances of several interest­
ing passivc networks. It is the purpose of this 
article to exhibit the method of solution. 

The method is applicable to a large class of 
networks, but here attention will be conccntrated 
on the physicaUy meaningful example of a finite 
planar network made up of squares bounded by 
resistors; the two cases where the horizontal and 
vertical resistors have equal and unequal values 
will be considered. 

A brief diseussion of the extension of the method 
to three dimensional networks is presented. In 
particular, the three-dimensional analogy to the 
square planar network, that is, the simple cubic 
lattice, is discussed in some detail. 

1. RANDOM WALK WITH INTERNAL TRAP 

Consider the movement of a walker over an 
array of n rows of m lattice points surrounded by 
a border of points from which there is no return; 
let the border consist of the points (p, 0), (p, n + I), 
(0, g), and (m + 1, q). If F(p, g) is the expectation 
that tbe walker wiU visit the point (p, g) after 
release from the source point (a, b) before capture 
at a boundary point, it is clear that the partial 
difference equation 

F(p, g) = 0,.0 •• + HF(P - I , g) + F(P + I, q) 

+ F(p, q - 1) + F(p, 9 + I)J (J.J) 

is satisfied. Since the expectation that the walker 
will leave the boundary is, by hypothesis, zero, 
the accessory conditions 

F(m + I, q) = 0 (0 ~ q ~ n + J) (1.2) 

must be satisfied. Solutions to Eqs. (1.1) and (1.2) 
have been given by McCrea and Whipple.' 

Now let it be supposed that there is an internal 
trap at the point (k, I) in addition to the traps at 
the boundaries; Eqs. (1.1) and (1.2) apply with 
the additional condition 

F(k, 0 = 0 •• 0" . (1.3) 

It may be shown' that the probability of capture 
of the walker at (k, l) is given by 

P (k I' b) = Ji'.(k, I; a, 0) - 0,"0" (1.4) 
, ,a , F(k I' k I) , , , , 

where it is now necessary to indicate explicitly 
the position of the source. The expectation of 
visit to (p, q) in the presence of a trap at (k, I) 
is given by 

F(p, g; k, I; a, b) = F(p, q; a, b) 

- P(k, I; a, b)F(P, q; k, 0. (1.5) 

As relations (1.4) and (1.5) show, these solutions are 
expressible in terms of previously known solutions.2

•
4 

In situations where the solutions F(p, q; a, b) tend 
to infinity, as when the boundaries are reflecting 
or the lattice is of infinite extent, it is necessary 
to analyze the manner in which P(k, I; a, b) ap­
proaches unity and Eq. (1.5) must be modified to 
read 

F(p , g; k, I ; a, b) = F(p , q; a, b) - F(k, I; a, b) 

+ F(k, I; k, 0 - F(p, q; k, 0· (1.6) 

2. AN ELECTRICAL NETWORK ANALOG 

The solutions discussed in Sec. 1 are closely 
related to the effective resistance of a passive net­
work, as will be demonstrated forthwith. Let an 
electrical network be constructed by connecting 

F(O, q) 

F(P,O) F(p,n + 1) = 0 (0 ~ p ~ m + 1), 

U
· • Based on work performed under the auspices or 
. S. Atomic Energy Com.nllSSi'on. 

2 W. H. McCrea and F. J. W. Whipple, Proc. Roy. Soc. 
(Edinburgh) 60, 281 (1940). 

• E. W. Montroll, in Proueding! 0/ the Sixteenth Symposia 
in A 'Pplied M a.thematiC8 of the American Mathematical Society 

tbe (to be published) . 
4 E . M. Keberle and G. L. Montet, J . Mat.h. Anal. and 

App!. 6, 1 (1963). I The pertinent solut.ions are given in the Appendix. 
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all the lattice points through resistances R and let 
current I be introduced at the source (a, b) and 
removed at the sink (k, I). [Note that this require­
ment limits the discussion to cases of an infinite 
network or a finite network with all boundaries 
reflecting; otherwise, not all the current is removed 
at the sink. It is evident, therefore, that (1.6) is 
the pertinent relation.J The passage of the current 
results in a potential distribution in the network. 
If Yep, q) denotes the voltage at point (p, q), the 
current flowing from (p , q) to (p + 1, q) is given by 
W'[V(p, q) - V(p + 1, q)J; since the current 
flowing from any point, otber than (a, b), must 
be zero, the difference equation 

R-'[V(p , q) - V(P + I, q) + Yep, q) 

- V(P - 1, q) + V(p, q) - V(p, q + 1) 

+ V(p, q) - Yep, q - I)J ... = H,"o.. (2 .1) 

results. Comparison of (2.1) with (1.1) shows that 

F(p, q; k, I; a , b) = 4(Rlr' Yep, q). (2.2) 

Now Yea, b) - V(k, I) is the potential drop from 
(a, b) to (k, I) and, since the current I flows tbrough 
an effective resistance R.1f in going from (a, b) 
to (k, I), it is evident that 

Yea, b) - V(k, l) = JR,., = tRI[F(a, b; k, I; a, b) 

- F(k, I; k, I; ab)J; 
or 

R • .,IR = tF(a, b; k, I; a, b). (2.3) 

In obtaining (2.3) use has been made of the fact that, 
according to (1.6), F(k, l; k, I; a, b) = O. 

3. THE INFINITE SQUARE NETWORK 

The simpler case of (2.3) occurs in considering 
the passage of current from one point to another 
in an infinite network; Eqs. (2.3) and (/.6) then 
yield 

R • .,I R = ~[F(a, b; a, b) - F(k, l ; a, b)] 

== !G(lk - ai, II - bl), (3. 1) 

a result first found by Van der Pol.' Similar results 
have been given by Davies/ who also discusses 
the corresponding formula for a simple cubic grid. 
Values of the difference function, G, are known for 
the square net' and for the triequiangular net.' 
For both these arrays the resistance diverges loga­
rithmically as the distance between the source 
and the sink tends to infinity. 

Ii B. Van Der Pol in Probability and Relaud Topics in 
Physical Sciences, edited by M. Kac (Interscience Publishers, 
Inc., New York, 1959). -./"\ 

'H. Davies, Quart. J. Appl. Math. 6, 232 ( L955). 

4. THE FINITE SQUARE NETWORK 

The more interesting case, and the one which 
corresponds more closely to reality, is that of a 
finite electrical network; this is analogous to an 
array with four rectilinear reflecting boundaries. 
In applying (1.6) to this situation, care must be 
exercised in regards to the relative magnitudes of 
I and b; choosing b :::; I, it is found that 

R • .,IR = t[F(a, b; a, b) - F,(k, I; a, b) 

+ F(k , I; k, l) - F, (a, b; k, I)J. (4. 1) 

The functions F(k, I;a, b) are given in the Appendix; 
F,(k, I; a, b) is tbe solution when I :::; b, F,(k, I; a, b) 
is the solution when 1 2: b. Eq. (4. 1) holds for all 
values of the variables: 1 :::; a :::; m, 1 :::; k :::; m, 
1 :::; b :::; I, 1 :::; 1 :::; n; however, the discussion will 
be limited to the important case where the current 
enters and leaves at diagonally opposite corners 
of the rectangle and the values a = b = 1, k = m, 
I = n will be chosen. For this configuration it is 
evident that the resistance may be written as 

R • ., = n - 1 + ~ I: 1 + cos (""1m) 
R m m ._, 1 - cos (",,1m) 

sinh (n - I)!l. + (-I)" s inh !l.] (4.2) 
s inh n~. ' 

where 

cosh!l. = 2 - cos (",,1m), "= 1,2, ...• m - 1. 
(4.3) 

For small values of m and n the resistances may 
be evaluated explicitly; values so found are given 
as fractions in Table I. For somewhat larger values 
tables of trignometric functions may be used; values 
found in this manner are listed in decimal form in 
Table I. It is obvious, however, that an asymptotic 
formula is desirable. For large n the quantity in 
brackets in (4.2) becomes 1 - cosh !l. + sinh !l., 
so that 

R,., n - 1 1 ~ (1 + "") - ----7 -- - - L.. cos -
R "Iarle m m ... , 1n 

+ ~ I: J+cos(""./m) [(I-COS~)(3-COS",,)]i 
m ._, I-cos (",,1m) m m 

1 .-, ( )[3 =~-I+-L I+cos~ l :::: 
m m .-1 m 

cos (",,/m) ]i 
cos (""1m) . 

(4.4) 

Values found usmg (4.4) are given Ul Table II. 
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TABLE I. V.lue. of R,ut R (from Eq •. (4.2) and (4.3)J. 

6 ¥H 2 .488 2 .628 2 .778 2 .935 3.096 3.259 
5 H tffi 2.457 2.642 2 .833 3 .028 3 .226 3.425 
4 ¥ tm tmt 2 .504 2 .747 2.994 3 .242 3 .492 3 .741 
3 ! ~21 m Wt! HU Hffi 3.733 3.707 4.040 4 .3737 
2 1 , 

J.,r~ tt H W ill '-IW -w;- 5 .366 5 .866 .,. 
1 0 1 2 3 4 5 6 7 8 9 10 11 

i 
m/n-l 2 3 4 5 6 7 8 9 10 11 12 

TA_81.E IT. Asymptotic values of R.rr/R [from Eq. (4.4 )]. 

6 2 .248 2.415 2 .582 2 .748 2 .915 3 .182 3 .248 3 .415 3.582 
5 2 .017 2 .217 2.417 2 .617 2 .817 3.017 3.217 3 .4 17 3.617 3.817 
4 1. 735 1.985 2 .235 2.485 2.735 2 .985 3.235 3 .485 3.735 3 .985 4.235 
3 1.373 1. 706 2 .039 2 .373 2 .706 3 .039 3.372 3 .706 4 .039 4 .372 4 .706 5 .039 
2 0 .866 1.366 1.866 2 .366 2 .866 3 .366 3 .866 4 .366 4 .866 5 .366 5.866 6 .366 6 .866 
1 0 1 2 3 4 5 

i 
m/n_l 2 3 4 5 6 

5. A GENERALIZATION 

A slight generalization of this result may be 
obtained by considering a square mesh made up of 
two different resistances, R, for the resistances in 
the horizontal rows and R y for those in the vertical 
columns. Reasoning similar to that in Sec. 2 shows 
that the voltage distrihution is governed hy the 
equation 

R;'[V(P, q) - ViP - 1, q) + ViP, q) 

ViP + 1, q)] + R; '[V(P, q) - ViP, q - \) 

+ ViP, q) - ViP, q + 1)] = 18 •• 6.. . (5.1) 

The random walk analog to this equation is found 
by considering a random walk over a rectangular 
lattice in which the walker has a probability 'Y. of 
moving in the p direction and a probability 
"Y. = t - 'Y. of moving in the q direction. The 
expectation of visit F(p, q) is then given by the 
difference equation 

F(p, q) = 6 .. 6 •• + "Y.[F(P - I, q) + F(P + 1, q)] 

6 

7 

7 8 9 10 11 12 13 

8 9 10 11 12 13 14 

+ 'Y.[F(P, q - 1) + F(p, q + 1)] . (5.2) 

Equations (5.1) and (5.2) are equivalent if 

V(p, q) = 2/~ p) F(p, q; k, I; a, b), 
(5.3) 

p 1 
"Y. = 2(1 + p)' "y. = 2(1 + p)' 

where the notation has been simplified by intro­
ducing the ratio p == Ry/ R, and setting R, == R. 
The effective resistance between the point (a, b) 
where the current is introduced and the point (k, I), 
where it is removed is given by 

Rii' = 2(1 ~ p) F(a, b; k, I; a, b). (5 .4) 

The function F(a, b; k, I; a, b) is obtained by carry­
ing out calculations similar to those given in the 
Appendix for the case 'Y. = "Y. = i . After some not 
quite trivial computations [see also Ref. 3] it is 
found that 

1 --I { 2 - 6" 
F(a, b; k, I; a, b) = 4"y.", ~ sinh Il,(cosh Il. - I) sinh nil. 

xi[ (I + cos (2a - I) ~;;:)<sinh bll. - sinh (b - 1)IlJ(sinh (n + 1 - b)ll. - sinh (n - b)Il.) 

- 2( cos (k - a) : + cos (k + a - I) :)(Sinh bll. - sinh (b - I}/lJ(sinh (n + 1 - lJll. - sinh (n - lJll. 

+ ( I + cos (2k - I) ~;;)cSinh Ill, - sinh (I - 1)IlJ(sinh (n + 1 - lJll. - sinh (n - lJllJ ] }, (5 .5) 
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TABLE III. Values of R . .. / R [from Eqs. (5.8 ) and (5.9)1. 

4 3 
6 + 8p+pl 9+40p+50pl+20pl+2p· 3+25p+63p'+63p'+25 pf+ 3 p' 

4( I + p) 9+30p+26p' +4p' 4 +24p+42 pl+24p'+4p· 

3 2 
2+4p+p' 2+10p+ lOpJ+2p' 2 +20p+50p' +40p'+9p· 2 +32p+ 130pl+ 172p'+82 p4+ 12p' 

2+3p 3+lOp+3p' 4+26p+ 30pl +9p' S+50p+91 pl +54p' +9p· 

2 1 Y, (l+p ) 
1 +4p+2p 

3+2p 
1 0 p 2p 
T 

mi n - ] 2 3 

where 

cosh fl. 1 'Y A7r - _.!..1!.cos- , X=O,l," ' ,m-l, 
21'0 1', m 

'Y. + 'Y. = ! . (5.6) 

In using Eqs. (5.4) and (5.5) only the specialized 
case, a = b = I, k = m, l = n, will be considered . 
It is readily shown that 

R . .. = L I: { 2 - 0" ... R 2m ,., (cosh fl. - I ) sinh nfl. 
X 1(1 + cos A7rl m)(sinh n{3. - sinh (n - I)fl. 

- (- I)' sinh flJJ}. (5.7) 

where 

cosh {3. = 1 + p - p cos A7rl m. p = 'Y,h. . (5.8) 

It is instructive to consider the two extreme cases 
of (5.7) ; that is, p = 0 and p = ~. In the former 
case, there are n resistors, each of resistance (m -I)R 
in parallel so that R.II = [em - 1)l nJR; in the 
latter case, there are m resistors each of resistance 
(n - l)pR, in parallel so that R.II = [en - 1) l mJpR. 
It is easily seen that (5.7) reduces to the proper 
results in these two limiting cases. 

For the purpose of computation it is convenient 
to evaluate the term A = 0; the result 2(n - I)p 
is obtained so that 

R.II = (n - l)p+ .!.. I: [I + cos A7rl m 
R m m >' _ 1 I - cos A1r/ m 

X (I _ sinh (n - I )fl. + (- ). sinh fl.) ] 
smh nfl. ' (5 .9) 

TABLE IV. Values of R. ff / R [from Eqa. (6.1) and (6.2) with 
1 - m - 2] [asymptotic values from Eq. (6.3 )1. 

n 2 3 4 5 6 

1+8p+6p' 1 +14p+22p' +8p' 
4(I+p ) 5+lOp+4p' 

3p 4p 

4 5 

where (5.8) continues to apply. Some values of 
the resistance obtained where m and n are small 
are given in Table III. An asymptotic formula 
analogous to (4 .4) may be derived; it is 

R. " ---7 (n - m)p + (pi) I: (1 + cos A7r) 
R .. l ulte m m ), .- 1 m 

X [2 + p - p cos A7r/ m ] l . 
1 - cos A..-I m 

6. THREE·DIMENSIONAL LATTICES 

(5. 10) 

The method is readily extended to the three· 
dimensional counterpart of the plane square net; 
that is, the simple cubic lattice of points (p, q, r) 
with 1 ::; P ::; I, I ::; q ::; m, 1 ::; r ::; n. The needed 
functions F(p, q, r) are given in Ref. 3. Work along 
the lines used in Secs. 2 and 4 leads to 

R." = _1_ £ I: {(2 - . ,,) (2 - .I,,) 
R 4lm )' .. 0 ... -0 

X (I + cos A;)( I + cos ";') 

X sinh n'Y., - sinh (n - Ih., - ( - I )'" sinh 'Y"} 
sinll n'Y.,(cosh 'Y., - I) • 

(6 .1) 
where 

cosh 'Y. , = 3 - cos h / l - cos " .. 1m. (6.2) 

This expression is easily evaluated for small values 
of the parameters l, m, and n; results for l = m = 2, 
n = 2 to 6 are given in Table IV. An asymptotic 
formula is easily derived for this simple case; the 
result is 

R. " I R ---7 ten - I) + t[2( v'3 - 1) + v'2 - IJ 
n l a , p . 

= ten + 0.87824) . 1 = m = 2 . (G.3) 

Resistances found by use of (6.3) are also listed 
5 / 6 1 167/ 134 811 / 551 3407/ 1980 in Table IV. 

R.,,/ R 0.470 0.720 0.970 1.220 1.470 1.720 It is a sin1ple matter to extend these considera­
tions to determine the effective resistance of a 
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simple cubic lattice of iufinite extent. Wben this is done the value 

R,,,IR (simple cubic) = 0.252731 

1559 

is found in agreement with the results of Vineyard' who has also evaluated the resistances of the body­
centered-cubic and face-centered-cubic lattices of infinite extent. 

APPENDIX 

To evaluate the effective resistance of a finite electrical network, the solutions to the problem of a raudom 
walk on a rectangular array with four rectilinear reBecting boundaries are needed. Using the expectation 
of visit as defined in Sect. I and the lattice described therein, an extension of the methods developed by 
Kerberle and Montet (Ref. 4) leads to 

I m-' { [ k k ] F,(p, q) = - L [2 - 8 .. ] cos (p - a) -.!!. + cos (p + a - I)-.!!. m._o m m 

x ... [sinh qf3. - sinh (9 - 1)f3.][sinh (n + I - b)f3. - sinh (n - b)f3.]} (A I) 
sinh f3.(cosh f3. - I) sinh nf3. ' 

with 

cosh {3. = 2 - cos k7r/m, k = 0, 1, 2, ... I m - 1. (A2) 

This solution is equivalent to the solution' found for a random walk on a rectangular (m X n) net with 
periodic boundary conditions 

F(p, q) = F (p + m, q) = F(p, q + n), 

if m and n are odd integers. If m or n is even, the solutions have somewhat different fonns; however, these 
differences become negligible for reasonably large values of m or n.' Now, when k = 0, Eq. (A2) sbows 
that f3 = 0, and it is evident that the first term in Eq. (AI) varies as f3- ' for f3 small; hence, the expecta­
tion [Eq. (AI) ] diverges when all four boundaries are reflecting. This divergence is similar to that found when 
absorbing boundaries are allowed to recede to infinity. 

Using (AI) in (1.6) shows that, for the case q ~ I ~ b, 

1 ... -1 2 - 5.0 { 
F,(p, q; k , I; a, b) = - L ·nh f3 ( h f3 _ I) ·nh f3 [sinh (n + I - b)f3. - sinh (n - b)f3.] m ._081 • cos. 51 n. 

x [ (cos (p - a) :;: + cos (p + a - I) :;:) . .. (sinh qf3. - sinh (q - 1)f3.) 

- ( cos (k - a) :;: + cos (k + a - I) :;:)(Sinh lf3. - sinh (l - 1)f3.)] 

+ [sinh (n + I - fJf3. - sinh (n - fJf3.{ (I + cos (2k - 1) :;: ... (sinh lf3. - sinh (l - 1)f3.) 

- ( cos (p - k) :;: + cos (p + k - I) :;:)(Sinh q(3. - sinh (q - 1)f3.)]}, 

with (A2) applying. 

(A3) 

Equation (A3) reduces to (4.2) of the text when the designated values of the variables are inserted and 
SOme simple trigonometric identities are applied. 

, G. H. Vineyard, J. Math. Phys. 4, 1191 (1963) . 
• G. L. Montet (unpublished). 
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Characters of Irreducible Representations of the Simple Groups. II. 
Application to Classical Groups 

J.-P. A NTOINE A ND D. S I'EI SE R 

Un£lJersiU de LoulJ{Lin, Centre de Physique Nucleaire. HbJeru', Belgium 
(Received 6 July 1964) 

The general formulas found in a preceding paper for the characters of irreducible representations 
of simple Lie groups are deve loped in the case of the classical groups : the four series A" n" e" D" 
plus the exceptional case Gt . Groups of rank J and 2, plus A . ~ D~ are stud.ied in detail. 

INTRODUCTION 

I N a previous paper/ hereafter referred to as I, 
we have given a geometrical construction of the 

characters of irreducible representations of all simple 
compact Lie groups. I n the following pa per, we apply 
this procedu re to the classical groups; in particula r, 
we specialize onr genera l formnlas for the characters 
[formulas (19), (20), and (21) of I], to the fo ur 
series A" B" G

" 
D' I and to G2. Fw·thermorc, we 

examine in detail all groups of rank 1 and 2 and 
one gl'Oup of rank 3 : A, ~ D,. Indeed, these groups 
seem the most important ones for present day 
physics. 

A. GROUPS OF TYPE A, (~SU,. , ) 

If referred to an orthonormal hasis (ed in the 
space E I +I , the roots of A I are the vectors2

- . 

e .. = e, - e. , thus m = tl(l + 1). 

They all belong to the I-dimensional hyperplane: 

.+. 
LX, = O. (1) 
i -I 

This space E. contains the diagram r. 
We now construct the affine coordinate system 

p, ... P. adapted to g< by the method indicated 
in I (Sec. 3A), 

Ro = t La, 
HI, I - 2, I - 4, ... , -I + 2, - l); (2) 

thus, 

(Ro) , = i l - i + ), J = 1, 2 , ... , 1+ 1. 

Singular hyperplanes 

i"" k. fJ ,It = x, - x'" = 0, 
---:-:-:::---: 

1 J. P. Antoine and D . Speiser, J. Math. Pbys., 5, 1226 
(1964). 

t E. Cartan, thesis, Paris ( 1834); Bull . Soc. Mat.h. 41 , 
53 (1913); Ann. M ath. 4, 209 (1929) ; [in Oeuvre3 complcus 
(1), Gaumthicr-ViUars, Paris, 1952.] 

J L. S. PontrjagiD, Topologi.sche Gruppen (Teubner, 
Leipzig, 1957), 2nd ed. 

4 G. Racab, "Group Theory and Spectroscopy," P rincet.on 
Lecture Notc.~, CERN (unpublished). 

Distance from the extremity of R o to " " 

1/ V2lk - ii , 
and thus 

i = 1, 2, ... . l . 

Hence, the surfaces of Do are the hyperplanes 
Xi - X , +1 = 0 and oue finds 

where Ai 1 because of (2) . Thus, finally, 

Po = Xi - X .. l· (3a) 

This means that the I roots e,., •• are the outermost 
or elementary roots. 

Inverting the system (3a) one obtains 

1 I - 1 
x . = 1 + 1 P. + I + 1 p, + 1 + ,+ 1 p., 

1 1 - 1 
x, = - I + 1 P. + I + 1 p, + 

1 
+ 1+ I P., 

I 
- 1+ 1 P.· 

(3b) 

The group S is generated by reflections in the 
hyperplanes tJil:, i.e., by permutations x .. ~ Xl . 

Therefore, it is the symmetrical group S'H (group 
of all permutations of I + 1 elements) which acts 
here on the coordinates x,. The order of S ••• is 
(I + 1) 1 

A vector V = L, x,e, is called dominant if V E Do, 
i.e., if X i ~ Xi + 1 (of course, only vectors which 
fulfil the supplementary condition L , x , = 0 are 
considered). 

The dimension of the irreducible representation 
D (Ko) is given by Weyl's formula' 

dim D (K o) = IT (a" Ko). 
., (a" Ro) 

(4) 

• H. Weyl, M ath. Zs. 23, 271 ( 1925); 24, 328 377 789 
(1926); See IV, Article 3 in Selecla (B irkh iiuscf, B~l, 1'956). 
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For A" (4) yields 
1 

dim D(Ko) = -c1'""'!2°c"'.1 '--~l! n (x, - x.), 

or 
1- 1 1 I-i 

dim D (Ko) = 11 (j + I)! g (P. + ... + PH;)' (5) 

The irreducible representations of A, fall into 
l + 1 classes, which form a group, isomorphic to 
the cyclic group Z,.,. Indeed, consider the rep­
resentation SU'H (set of all unitary unimodular 
matrices of dimension l + 1), by which A, is usually 
defined. From Schur's lemma and the unimodularity 
property, it follows that the center of SU,., consists 
of all elements a·I, a'H = 1. Thus it is isomorphic 
to Z,., . The lattice gO, therefore, may be decomposed 
into (l + 1) sublattices similar to gO (see Fig. 3). 
That is, the crystal class of every sublattice is the 
group S (of course, a different origin has to be 
assigned to each of them). The points of the different 
sublattices represent, respectively, the elements 1, " 
.', . .. , " of the toroid (see I, Sec. 2). We call these 
sublattices the classes 0, I , 2, 3, .. . , l. We now 
define the association 

o -> 1 : class 0 (sublattice gO), 

pj~Ei:cla5siJ ;=1,··· , 1. 

(This association is not unique, we could have 
defined as well: p; -> ,'-; : class j.) 

Thereby, the class of every lattice point is de­
termined. Indeed, to the sum p. + p. corresponds 
in the toroid the product ,.... = , ... , thus, to the 
vector P = p'p" the element 

which belongs to class j if and only if .L:: kp. == 
j mod (l + I). Thus clearly the l + 1 classes form 
a group, isomorphic to the cyclic group Z'+l = 
P, " .', ... , ,'I· It follows that also the classes 
of irreducible representations form a group with the 
direct product as group operation, since to every 
lattice point inside Do one and only one representa­
tion is associated. 

Let the representation D be characterized through 
the vector (== lattice point) Ko = (p, ... p,). 
Its highest weight then is the vector Lo = (p, - 1 
' " p, - I). We say: D belongs to class j if its 
highest weight does so, i.e., if 

± k(p. - I) = t kp. - l(l + 1) j mod (l + I). 
, , 2 

Formula (1.6) then shows that all its weights belong 
to the same sublattice, because the same property 

c .. j '21-~.--'" 

(bJ 

FIG. 1 The case A, """ B, =C1 : (a) root dia.gram; (b) 6; (e) 1/0. 

holds for the points of to and of X(Ko), by (I.7) 
and (1.9). 

Thus, the unit representation belongs to class 0, 
the jth fundamental representation (P. = I, k ;& j, 
p; = 2, i.e., Lo = P,) to class j; the adjoint rep­
resentation (I , 0, ... 0, 1) again to class 0, and 
so on. 

1. A, = B, = C, 

Positive root: e" [sce Fig. 1 (a)), 

Ro = !e" = P. 

Coordinates: Xl = !p, 

to = [1] - [ - 1] [see Fig.l(b)). 

~: .L: [-I] = t [-2k - 1]. [seeFig.l(c)). 
c.. ,t ... o 

Construction of a character: 

X(P) = [P] - [-p], 

.L: (X(P)[ -1]) ... 

.L: ([p - I] - [-p - 1]), ... 
[p - 1] + [p - 3] + ... + [-p + I] . 

ell 

o 

'J1 e 
I 

I 
I , 

\ , 
\ 

G>'U:RO 

e" e 

'8n 

FIG. 2 . Root diagra.m and 6 of AI. 
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;0 ---- - -.-----_ . <Un 0 
6 2l _____ e___ _ ____ ._ --. .. , 

.. 2 

c-t.&ss 0 

----l-----~----- .. , 
____ ~-----2;--- .. 2 

ewes 0 

FIG. 3. A 2, the repa.rtition of the three classes of representa­
tions into Do; next. to every lattice point K, of gC stands the 
dimension of the representation associated with it (d denotes 
the complex conjuga.te representation of d). 

In more traditional notation, putting p 
and <P = if, this becomes 

x= [ml+ ·· ·+[-m], 

2m+ 1 

0" .; e . 

Dimension of D : dim D(p) = p = 2m + 1 
As is well known, there are two classes of representa­
tions : p - 1 '" 0 or 1 mod 2: 

class 0 : p odd, m integer, 

class 1 : p even, m half integer. 

2. A, 

Positive roots : e12, etl, e231 where e l l en + eu) 
thus Ro = e13. 

Coordinates : 
x, = t(2p, + p,), 

x, = t(-p, + p,), 

x, = t( -p, - 2p,). 

t. is a regular hexagon (Fig. 2). 
D imension': dim D (p,p,) = ! p,p,(p, + p,) . 
There are three classes of representations. [This 

classification is basic for the Sakata modcl' : class 1 
describes haryons; class 2, antibaryons; and class 0, 
the mesons in accordance with B ® B "'" M, etc. 
The eightfold way' uses only representations of 

a One often writes: Pi = 1 + Xi in the dimension formula 
(e. g., when the representations are presented as tensorial 
representations); ]I., are the components of the highest 
weight 1"'0. 

7 S. Saka.ta, Progr. Theoret. Phys. (Kyoto) 16,686 (1956). 
M. Ikeda, S. Oga.wa. and Y. Ohnuki, Progr. Theoret. Phys. 
(Kyoto) 22, 715 (1959); 23, 1073 (1960). 

I M. Cell-Mann, (unpublished); Phys. Rev. 125 ]067 
(1962 ). y, Nc' eman, Nuc!. Phy •. 26, 222 ( 196 1). D. Speiser 
and J. Tarski, Possible global symmetries (unpublished)j 
J. Math. Phy,. 4, 588 (1963 ). 

class O.J: 

p, + 2p, '" j mod 3, 

or 

p, - p, '" j mod 3, j = 0, 1, 2 . 

Figure 3 shows the repartition of the 3 classes into Do. 
Note: t. and 1/ t. belong to class O. 
The diagram 1/ t. is constructed in the standard 

way in Fig. 4. However, it may also be considered 
as the IIsum" (superposition) of an infinite number 
of similar diagrams "'. (Fig. 5). All weights on the 
w. are simple. WI has the same position as 1/ 6, 
"" is shifted by tbe length -R, in the direction 
eaIJ Wa by -2Ro, and so on. This interpretation 
permits to write down at once every character 
explici tly, ' 

Indeed, let X(p" p,) be a characteristic. Comput­
ing then the product X (p" p,) ,1 / t. one sees that 
the character X may be considered as the super­
position of a finite series of hexagonal figures 
(precisely: figures invariant under S), all points of 
it having multiplicity 1. Symbolically: 

x(p" p,) = F(p, - 1, p, - 1) + F(p, 

+ ... + F(p, - p" 0) 

2, p, - 2) 

(p, ~ p,). 

Here F(i, k) represents a diagram which contains 
the point (i , k) , its five equivalents by S and all 
points of the same sublattice located inside or on 
this hexagon, a ll of them with multiplicity 1. The 
sum on the rhs then means the superposition of 
the different diagrams F (i, k ), A better under­
standing of this procedure may be provided through 
an example; Fig. 6 shows the construction of x(6, 3). 

FIG. 4. The I ll!. of At. 

• J. P. Antoine, Ann. Soc. Sci. Bruxell es 77 III, 150 
(1963). 
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2 2 

2 3 
2 

~ 2/ / 

2 2~ / 3 
~ 

;-
, / 

2~ ~ 3 / 

;- / 
~ / 2 

~ 2 / 
;- ;-

2 3 

2 2 

2 3 

W , • W 2 
W1 + W 2 • Wl 

FIG. 5. Decomposition of 1 / 6. of A2 into the diagrams W i. 

On this example, one also sees the following property 
of the WD's : The boundary of a WD consists of 
2 types of edges: one finds-starting from the highest 
weight- two edges, one of type P, (perpendicular 
to P,) carrying p, weights and one of type p, 
(perpendicular to P ,) carrying P, weights. This 
property is in fact valid for a ll A I (see below) . 

3. A, = D , 

The root diagram is tbe set of vectors pointing 
to tbe centers of the 12 edges of a cube (oriented 
tbis way, the diagram sbows the characteristic 
properties of the group D, rather than of A,) (Fig. 7). 
Positive roots: 

where 

i < i < k; 

Ro = (-!, -!, i , 1)· 

I , , , 
j----I- ----\' , ' , 

/ + \ 
, ' 

....... I \ .-'" 

.......... " \~~ .... 
... ~ /~ , ' , 

/ , , \ 

/ \ X ( &,J} 

_ < ~H 
\ . X(6.3) - .... ,:" 
,,'(, I ..... 

, .... ' \ t / ................. 

}-------~--- - - ---~ 
I 
I 
I 

FIG. 6. Construction of the WD of D(6, 3) of AI (dim"" 8 1) 
x(6,3 ) = F(5, 2) + F(4, 1) + F(3, 0) (see the text). 

Coordinates : 

X, H3pI + 2p, + Ps), 

x, tc - P, + 2p, + p,), 

x, tc -P, - 2p, + p,), 

x. H - P, - 2p, - 3p,). 

01 is a convex polyhedron with 24 corners, 36 edges 

FIG. 7. Root diagram of A ,_ 

and 14 surfaces. 8 of these are regular hexagons and 
6 a re squares (Fig. 8). 

Dimension: 

dim D(P,P,p,) 

T'.P,P,P,(P, + p,)(P, + P,)(P, + p, + p,). 

There are 4 classes of representations according to: 

P, + 2p, + 3p, - 6 == i mod 4, i = 0, 1,2,3 . 

Their distribution into D , is shown in Fig. 9. 

FIo . 8. A of A I as viewed 
along P t (projection on a 
plane ""'1)' 
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, 
o 

5(' ____ -4- __ _ 

" ___ __ ..0- _ ____ _ 

Z()' '40 _ ____ 0- ____ _ -0- __ 

___ _ .&.. ____ - Ai _____ _ 
:0' 140 -- - - -0- - _______ _ 

" ------0-- - ----,,' _ _____ 4-__ 

-----~-- o _____ 2!~ ____ _ 
____ ~ __ __ f~ __ 

:;; ji 
, 

-----0---- ---- __ _ 
P::.I -- ---l-----~ ____ .¥..__ 0 

____ L ____ ~ ___ _ 
10 7() 

-----...... ------
20' _ __ _ .4- ___ _ 

" __ _ -00-'-__ 
o 

FIo. 9. All the repartition of the 4 classes of representa.­
tiODS into Do; one proceeds as for AI, taking one by one the 
intersections with the plnnes P2 :Ell constant. 

1/ Il. is an infinite pyramid with 3 edges and 3 
surfaces. The edges al'e parallel to the elementary 
roots e21J e321 e .. 3 -

surface 11'"1 

surface 1T"2 

surface 11"'3 

(e", e,,) .l P, 
the angle between e .. and e" = 120' . 

(e,,, e .. ) .l P, 
the angle between e43 and e~lI = 90°. 

(e", e,,) .l p. 
the angle between e" and e" = 120', 

2 

I, 

(e 21 ) 

(en) 
1 2 

I, 

(I) 

2 J 

J 

2 J 

, J 

,I 
(e,,)) 

11 • 

11 • 

11 • 

IT • 

10 , 

10 1 4 

7 4 

" 

(e2t) 

,11 

FIG. 10. The l / ll of A 3. General view. 

All weights on the edges are simple, The multiplic­
ities of the weights depend only upon the angles 
between the different roots, as was shown explicitly 
through the construction of 1/ Il. in I; whence follows 
that all weights on surface .. , have multiplicity 1 
whereas surfaces 11"1 and 11"3 are identical to 1/ 4 of 
A,. (Fig. 10) . 

Here one may also decompose 1/ Il in successive 
'lshells" or trihedra, all simi1ar but with increasing 
multiplicity. The summits of the trihedra lie on a 
ray pointing along the root e" . On each "shell" the 
multiplicities are ordered similarly to the outermost 
"shell." Figure 11 shows the projections of the 3 
first "shells" on planes parallel to "" When 1/ Il. is 
presented in this geometric way, the characters may 
be easily obtained also as geometric figures, e.g., 
by proceeding through successive layers parallel to 
"" One finds a result analogous to the one found 
ahove for A, : x(p,p,p,) is a polyhedron invariant 
under S, with 3 types of surfaces ( .. ; .l P;): 

surface .. , = figure x (p,p,) of A" its edges having 
respectively, p, and p, weights. 

surface .. , = rectangle, its edges have respec­
tively, p, and p, weights, and all 
weights on it are simple, 

surface '" figure x (p,p,) of A" its edges having 
respectively, p, and p, weights. 

S 9 11 

S 8 11 

S 8 Il 

S 8 11 

7 '0 

" 
'21 

, 
III 

FlO. 11. The 1/ ll. of A II projection of the first 3 Ifabella" on the plane '1f t. 
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2 

2 2 

4 6 , 
4 4 , 0 <>---<> 

4 6 4 

o 2 

'" , 2 

12J 
I II 

2 

4 

D 2 

I 2 
4 ·0· 2 

4 4 

2 16 , 

IS , 
(4, 

(d) 

2 
o 

"" 1 2 / 
'i;--- - ~ , , , 

, , 
k--- .i>. 

4 

4 

4 4 

4 4 

FIG. 12. Construction of the WD of D(3 , 2, 2) of AI (d im .... 
, 140) (a) x(3, 2, 2) cut in layers parallel to ".,; (b) x(3, 2, 2) 

decomposed into successive <fshells. 1I (Only multiplicities> I 
are noted on the figure.) 

-,' a ", 
( b) inner" shell " 

outf!r "shell 

Thus from every corner start 3 edges, the edge 
("'" .-,) having P. weights (i, j, k = 1,2,3 + cycl.). 

The weights inside this boundary are distributed 
on "shells" in much the same way, but the mUlt iplic­
ities are higher. All weights of course are on lattice 
points of the same class. As an example, Fig. 12 
shows x(3, 2, 2) cut in layers parallel to ", and 
then decomposed in successive "shells". For more 
examples of WD from A" see t he work of Wigner. lO 

4. Au The General Case 

It is clearly impossible to use a graphical method 
for treating groups of rank > 3. Therefore, the 
general formula must be expressed in the coordinate 
system (XI. X21 ... , X, + 1) best suited for groups A" 
but geometrical analogies will provide valuable 
guidance. In order to do so the m summations ill 

10 E. P. Wigncr, Phys. Rev. 51, 106 ( 1937). 

(I. 18) may conveniently be carried out in two 
stages of, respectively, / and (m - l) summations. 

In the first stage, we sum along / independent 
roots : this yields a pyramid w, which has I edges, 
/ surfaces [(l - I )-dimensional hyperplanes] and 
multiplicity 1 at all its points. These roots will be 
selected in such a way that the I surfaces of w obey 
equations as simple as possible. 

We choose to sum tirstalong el+1 .( , j = 1,2, ... ,l. 
This yields for the surfaces of w the / hyperplanes: 

XI = (- RoJ. = - 1/2 + j - I , j = 1,2, ... , /, 

which all pass through the point - Ro (summit of w). 
Indeed, by definition: (m;, is the parameter in­

dicating the summation a long elk): 

w '" w(-Ro) L: ... L: [- R.]. 

. [ , 
...... I.?-; -O - Ro + ~ m/+ I .e, .. . J 
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For every j = J, 2, .. . J l, one has 

(-Ro + t. m l +l..eIH . • ); 

= (-Ro)1 - m"',1 :$ (-Ro)" 

where, as in all formulas below, the inequality sign 
means that botb sides of tbe inequality differ by 
an integer. Thus, w( -Ro) is the set of a ll lattice 
points Q whose coordinates x • . ,. x, satisfy the I 
inequalit ies (with the convention on inequality signs) 

j = 1,2, . . . J l , (6) 

i.e., the pyramid described above. 

Note: For A" we did not follow this prescription 
in order to get w, we summed along e:lI and en 
rather than along e"l and en; in this particular 
case, the geometric construction was somewhat 
simplified in tbis way, 

Performing the m - I = !l(l + I) remaining 
summations, one gets: 

l l A = L: .. . L: w(-RG)' 

- -L: ". L: w( - RG + m"e" + 
..... - 0 "" ,1_ . _0 

+ m"I_le"I_I)' 

We wri te this relation in the following form: 

l l A = L: ... L w(m2t'" m"I_I)' (7) 
..... - 0 .',1_ ._0 

In this summation ('" superposition, as usual), the 
term w(m" . . , m ... _.) clearly represents a pyramid 
identical to w, with its summit shifted up to the 
point: 

- Ro + ~le2 1 + ... + ml,l_te' , I_I ' 

For every j = 1,2, . . . , l, we have 

(-Ro + m2le21 + ... + m"I_lel./_ I) ; 
1- ;-1 i-I 

= (-RG), - L: m,- u + L: m/./_ •. 
1 - 0 k-I 

Thus, as above, we may write 

w(m" '" m',H) = L: [Q(m" .. . m , .• _,)], (8a) 
o 

where the right-hand side means the set of all 
lattice-points Q satisfying the I conditions (j = 
1, 2, ". , I) 

Q,(m" ". m .. ,_,) '" x , :$ (-RG), 

1-;-1 ; - 1 

- L: m, - u + L: m",_" (8b) 
l-O k-I 

Obviously ", (0 . ... , 0) = w( - R G)' Summing up 

conditions (Sb) for j = 1, 2, , . , , I, one gets 

, > 1 
l. e . , X I+ 1 - 2" ' 

since every index m., appears in exactly two lin es: 
in the line ex with sign + and in the line f3 with 
sign - (ex > f3 > 0), 

Remembering now that 8 = 8",(x • . . , x, .. ) 
(permutation group), a characteristic X(KG) will be 
written as 

X(KG) = L: 6,[sKG] = L: 6p [PKG] , 
S " • • UI 

where 

[1 2,.,'. '. '. 1 +'" .1.]' (9) (PKG), = (KG)" with P '" , 

" 
This gives for the corresponding characters: 

x = L: ... L: (L: 6p [PKG] , 
..... -0 "' 1. ._._0 p . ,m 

x L: [Q(m" .. , m, ,.- .)] I, 
O E (8b) 

-L: L: (L: 6, 
... . . - 0 ... , ._."0 ".rm 

x L: [Q + PKG]I . (10) 
OE (8bl 

XG is of the same form, with the additional condition 

Q + PKG E DG, 

J.e., 

z. ~ z ... , where z. = (Q + PKG). 

= x. + (KG),,' (11) 

Conditions (Sb) and (11) restrict the range of 
the m,., such that-to obtain the character-it 
suffices to enumerate their possible values, To show 
how the method works, we shall construct the 1 
fundam ental representations of A,: 

K~)' l = (1, 1 .. . . , 1.2. 1, . .. , 1) 

(one 2 at the Xth place, all others I ), 

According to the place which 2 occupies, i.e,. 
according to whether X = 1, 2, . ,. , I, one obtains 
the Xth fundamental representation, 

The (I + l) Cartesian coordinates of K:" are 
by (3b) 

(KG"')" = £ + 1 - X + 1 _ ' + 1 
2 1+1 ' , 

_£+l-X+l_, 
- 2 I + 1 " 

if i = 1, ... , ~, 

if i = A + I , " . , I + 1. 
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Condition (11) together with L::" z, 
that z, ~ 0 and z, .. ~ O. Let in (9) 

= 0 implies 

_£ +I-X + l_ 
(Ki"l;, - 2 1 + I q (q ~ 0) , 

whence 
1 I-X+I 

z, = x, + 2 + 1+ 1 - q. 

With the help of (8b) and z, ~ 0 one finds 

I l-A+l 
-2 - 1 + I + q ~ x, ~ 2 

This equation yields 

q = 0, 

m,_A:,1 = 0, for k = 0, 1, . . . J l - 2. 

Thus, x, = - t l and z, = (I - X + 1)/(1 + I) . 
On the other hand, let 

(K''') _ £ + 1 - A + I _ I + 
o ; ,., = 2 I + 1 P (p ~ 0) 

and thus: 

1 I - X+I 
2,., = X,., - 2 + 1 + 1 - 1 + p. 

Therefore, again with the help of (8b) and z,., ~ 0 
one obtains 

1 I I - X+I 
2 ~ x,., ~ 2" - 1 + 1 + I - P 

from which follows that p = 0, whence 

Thus one has 

1 - X + I 
and z, .. = 1 + I 

Since z. - Z.t+t is a positive integer one finds 

ZI = Z2 = .. . = z" = I-X+I 
1 + I 

1. 

1 - X + I 
ZO+1 = Z .... 2 = ... = ZlH = l + 1 - L. 

The condition L: 2; = 0 shows that a = A. 
Then proceeding step by step one gets, first, 

(Ki"J.. 

whence 

1 - X + I 
1 + I 

(Ki")" and x, = - tl + I, 

k = 0, 1, . . . , I - 3. 

Indeed, let 

(Ki" l; , = ~ + 1 ~ ~ -; 1 _ q with q ~ I, 

whence 

1 I - X+I I - A+I 
z, = x, + 2 + I + I - q = 1 + 1 

With the help of (8b) then follows 

1 1 - 2 + q = x, ~ - 2 + I 

and, therefore, since q ~ 1, 

q = 1, I. e ., (Ki" );, = (Ki")" 

k = 0, 1, . . . , 1 - 3. 

Then in the same way one finds 

Z3 = 
1 - >'+1 

1 + I 

(Ki")" = (Ki" ), and x, = - il + 2, 

whence 

k = 0 , 1, ... ,1 - 4, 

and so on for z .. ... ZI+-I' 

Finally, one finds a unique choice : m" = 0 for all 
admissible i and k, and therefore exactly one weight 
vector in D o: 

_ (I - A + 1 
2- 1+1 ' 

1 ->'+1 ) 
, 1+1 - 1, 

= (0,0, .. . ,0, 1, 0, .. . , 0) in coordinates q,. 

The WD thus contains the vector 2 and all ita 
equivalents by S, so that the dimension of the Xth 
fundamental representation is ('~'). 

This special example, of course, is somewhat 
trivial. For hy comparing the dimension of the rep­
resentation (which is known already before this 
computation) with the number of weights equivalent 
to the highest one, one sees that there are no other 
weights. In particular, there are no multiple weights. 
Nevertheless, the example illustrates the principle 
as well as the main details of this method. 

B. GROUPS OF TYPE B, (--0". ,) 

Referred to an orthonormal basis {e,1 in E, the 
roots are the vectors 

(c!. Refs. 2-4). 
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o o 
R, 

------ --'-~'---o.o P, 
o o 

G : 0 , 
'0, 

Flo. 13, Root diagram and !l of B2• 

Thus, 

Ro = t L: (X; = H21 - I , 21 - 3, ... , 1), 

i.e., 
(Ro); = (21 + 1 - 2i). (12) 

Affine coordinates. A computation similar to the 
one effected for case A, yields 

p,. = Xi - X t + 11 

PI = 2XII 

whence by inversion 

x, = p, + p, + p, + 
x, p, + p, + 

i = 1, 2, ... , l - 1, 

+ p,-, + W" 

+ p, - , + W" 
p,-, + !P" 

!p,. 

(13) 

The group S is generated by reBections in the 
singular hyperplanesd;!(x; ± x. = 0) and d,(x; = 0), 
i.e., by transformations 

Xo' ~ ±x", and Xi +--+ -Xi ' 

Thus S is the group of aU permutations of the 
coordinates X;, plus permutations of the coordinates 
supplemented by an arbitrary change of their· signs: 
its order is therefore s = 2'1! 

A vector V = L ; x,.e; is dominant if XI ~ Xl ~ 
... 2: X, 2: O. 

The dimension of an irreducible representation is 
given by Weyl's formula (4), which here gives 

dim D(Ko) 
2' n (x , - x.)(x ; + x. ) n x, 

= ,.--:.---,"", -""<>'---"ccc, - ------'---
(2l - I ) l! n (2l - 2j)! 

( 14) 

, -, 
where K o = (X l' .1;2 ... Xt) . 

Classes of representations. The representation 021 + 1 

(set of aU orthonormal matrices of dimension 2l + 1; 
by this representation B, is usually defined) bas 
only the unit element in its center, but its underlying 
space is doubly connected. Whence the universal 
covering group has two elements in the center, and 
the vectors of g', therefore, belong to either of two 
classes. These classes form the group Z,. The same 
holds for the representations which the lattice points 
determine. 

0 ,,+, and the adjoint representation belong to the 
same class which is spanned by the roots (class 0). 

Thus, one sees immediately the distribution of 
the lattice points into the two classes (sublattices): 

class 0: X i integer, 
class 1 : X " half-integer, 

q, == 0 mod 2, 
q, '" I mod 2. 

A representation D(Ko(p, . .. p,)) belongs to class 
o (1) if its highest weight Lo(p, - 1, ... ,p, - 1) 
belongs to class 0(1). Thus one sees, that the (l - I) 
first fundamental representations belong to class 0, 
but the lth, the "spinOI''' representation, to class l. 
Expressed in Cartesian and affine coordinates, its 
h;ghest weight is the vector: 

, t) = (0,0, ... ,0, 1) . 

1. E, = C, 

Positive roots: 
Coordinates: 

e l ± Cz / e" ez­

XI = Pl + ~P2 
: tetragonal lattice. 

Root diagram and 6: Sec Fig. 13. 
Dimension: dim D(P,p,) = ip,p,(p , + p,)(2p, + p,). 
Classes: class 0 : p, odd, 

class 1 : P2 even. 
The 1/ 6 is given in Fig. 14. 

FIG. 14. The l / A of B2_ Note tha.t except in the sector be­
tween the rays (-el) and (-el - e2) the multiplicities a.re 
consta.nt on the lines para.llel to the roots (-ez) and (-el +e,), 
respectively. 
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In order to construct a character X one may 

(a) either construct Xo applying 1/ t. on every 
point of the characteristic with the appropriate 
sign, and then superpose the different con­
tributions to Do, 

(b) or eveo simpler, use formula (1.20): in this 
case only four summations occur, 

(c) or use the following rule (found empiJ'ically 
but rigorously based 00 the structure of 1/ t.) 
which is analogous to the one given for A,. 
Let F(j, k) be defined as for A,. F(j, k) is 
here an octagonal figure. Ooe finds for the 
character x(p" P.) [all F(j, k) must be 
superposed] : 

I. p, odd (class 0): 

x(P" p,) = F(p, - 1, p, - 1) + F(p, - 2, p, - 1) 

+ ... + F(O, p, - 1) 

+ F(p, - 1, p, - 3) + F(p, - 2, p, - 3) 

+ ... + F(O, p, - 3) 

+ F(p, I , 0) + F(p, - 3, 0) 

+ ... + F(~, 0). 

~ = 0 for odd p" 

2. p, even (class I) : 

TJ = 1 for even PI' 

x(P" p,) = F(p, - 1, p, - 1) + F(p, - 2, p, - 1) 

+ ... + F(O, p, - 1) 

+ F(p, 

+ P(p, 

I, p, - 3) + F(p, - 2, p, - 3) 

+ ... + P(O, p, - 3) 

I , 1) + F(p, - 2, 1) 

I)) 

(00'11'----'_'---
la) (b' 

: . , -
",----- ..... -----...,. 

/ , 
/ , ' .. / '" .'. 

'v,' ~,,' 
" .. , " ," ' . ., , .' " , , 

- (' '\ .. , 
2 , , , , I 

1. ,XIJ,4J 
J 1 ().~, I , , 

~ ___ J ____ _ ------:----, , , , 
: 2 )' . ~ -
, " 

" 2 1 .. ' " ... " /" , >, 
" , 1 ," " , , ' , /' 

;------r----~ , 
(e) 

FIG. 15. Construction of WD oC 8 2 : (a) Tbe general rule in 
the eM. of D(3{ 5); (b) id. for D(3, 4); (e) tho WD of D(3, 4); 
like the WD 0 A21 X(PIo Ps) hllB two Borts of edges: an edge 
PI ...L PI carrying Pt - 4 weights and an edge P2..l P! ca.rry ing 
PI = 3 weights. 

k :$ l), we get 

-1/t. = L ... (15) 

with w(O ... 0) = w, 

w(mt, ... m7_ .. ,) = L [Q(mt, ... m7_ ... )), (16a) 
o 

where the right-hand side means the set of all 
lattice points Q whose coordinates satisfy the I 
conditions: 

+ ... + F(O, 1). Q;(m~, ·· · ",7_, .,) == X; :5 (-Ro); 

This procedurc may be better pursued on the lattice 
(p" p,) [see F ig. 15(a, b) for two examples]. 

2. B,: The General Case 

General formulas must he used if 1 > 3, as was 
done for the groups A ,. First we sum over the roots 
-ell -e2, ... , -e,. This yields a doma.in w bounded 
by the hyperplanes 

x, = (-RoJ; = - t(2l + 1 - 2]), j = 1, 2, .. . , l. 

If mi~ now denotes a parameter corresponding to 
the summation along the root -e, ± e. ( I :5 j < 

-- L (m7. + mi.) + L (m:, (16b) 
i < k,S1 l Sk<i 

e.g., for 1 = 3 these conditions read 

The condition that x. belongs to Do yields, like III 

case A I, lower hounds for the values of the x,'s. 

C. GROUPS OF TYPE CI (~SP(1) -
SYMPLECTIC GROUPS) . 

Referred to an orthonormal basis in EI the roots 
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are ±2e" ±e, ± e. (Refs. 2-4), thus 

Ro = t L <x, = (I, I - 1, . .. , 1), 

i.e., (Ro) , = I - , + 1. (17) 

Affine coordinates. The same method, used for the 
groups A, and B

" 
yields 

i = 1,2, , .. I l - 1. 

Whence by inversion 

x, = p, + p, + 
p, + 

+p" 
+PI, (18) 

The group S of C, is the same as the group S of B ,. 
The dimension of an irreducible representation is 

given by 

II (xo - x,)(x, + x.) II x, 
dim D(Ko) I e . i 

I (19) 
II (21 - 2i + I)! ,-, 

Ko = (x,x, ... x,). 

Classes of representations. The center of the rep­
resentation Sp(l) (whose underlying space is simply 
connected) is Z,. The same reasoning made for 
case B, shows also here that the points of g' belong 
to either of two sublattices: 

class 0: 
, 
L Xi: :!!! 0 mod 2, I.e. , , " q '" 0 mod 2,' L...J :h+1 

cIn.ss 1 : 
, 
L Xi == 1 mod 2, l. e ., L qfb+l ii& 1 mod 2. 

A representation D(Ko(p, ... p,» belongs to class 
o (1) if its hlghest weight Lo(P, - 1, ... , P, - 1) 
belongs to class 0(1). These two classes f.orm a 
group (~Z,), class 0 being its unit clement. The 
I fundamental representations (Lo ;= (0 ... 0, 1, 
o ... 0» belong alternatingly to class 1 and O. 

1. C, = B, 

The diagrams are the same up to a rotation of 45'. 

2. C" The General Case 

1/ to is constructed in exactly the same way as 
for B, [cf., (15), (16)J. The only diJTerenee is that 

the equations of the surfaces of OJ are now 

x , = (-Ro), = -(I - j + 1). 

D. GROUPS OF TYPE D, (--0, ,) 

Referred to an orthonormal basis (e,! in E, the 
roots are the vectors: ±e, ± e. (cf., Refs. 2-4) . Thus, 

R. = ! L <x, = (I - 1, I - 2, ... ,0), 

Affine coordinates. 

P, = %'-1 + XI, 

whence by inversion 

i .e., (Ro), = I - ;. 

i = 1, 2, .. . , l - 1, 

+ p, . , + t(P,·, + p,), 

(20) 

x, = p , + p, + 
%2 = P2 + + p,., + t(P,·, + p,), (21) 

x, 

t(P, ·, + p, ), 

H-p,· , + PI). 

The group S is generated by reflections in the 
hyperplanes ",~(x, ± x, = 0), i.e., by transpositions 
x, .... ±x.: it is the group of all permutations of 
coordinates supplemented by an arbitrary but even 
number of changes of signs, whence its order is 
2'·'l!, 

The dimension of an irreducible representation is 
given by tbe formula 

II (x, - x.)(x, + x.) ,<0 
dim D(Ko) (22) I , 

(I - I) I II (21 - Zi - I)! 
, .. I 

where 

Ko ~ (x,x, ... x,). 

Cwsses of representations. Here a distinction muet 
be made between odd and even I. 

1. I odd: The center of the representation 0" 
whose underlying space is doubly connected, is Z,. 
The center of the universal covering group therefore 
is of order 4. Since the direct product of a spin 
representation with itself does not contain the 
identity, the group of the classes contains an element 
of order 4. Thus this group is Z •. Class 0 is spanned 
by the roots (L x, '" 0 mod 2). This yields for 
the 4 cIn.sses: 

, 
class j: 2 Lx, "" j mod 4, i = 0, 1, Z, 3 . , 
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Distribution of the fundamental representations: 

X: 1 2 3 ... 1 - 2 1 - 1 I, 

1 = 4k + 1 : class: 2 0 2 . . . 2 3 1, 

1 = 4k + 3 : clruss: 2 0 2 .. . 2 1 3. 

The last ones are the two (complex conjugate) 
spinor representations (half spinors). 

S. 1 .ven: Also in this case the center of the uni­
versal covering group is of order 4. But since the 
direct product of either spinor representation with it­
self contains the identity, the group has only elementa 
of order 2 (besides the identity). Thus it is the 
Klein 4-group. This group admits no faithful irre­
ducible representations. Therefore also the universal 
covering group of D I (I even) whose center the 
4-group is, does not have faithful irreducible rep­
resentations. 

The remaining 4 classes of irreducible representa­
tions are conveniently labelled e, a, b, c. Class. (0) 
is spanned by the roots. 

The classes are : 

class e: Xi integer, LXi: ;::::::: 0 mod 2, 

class a: x, integer, Lx. !:::! 1 mod 2, 

class b: x, half-integer, LX, '" 0 mod 2, 

class c: x, half-integer, LX, '" 1 mod 2. 

One verifies the multiplication table of the 4-group: 

a' = b2 = c' = e ab = ba = c + cyc!. 

Distribution of the fundamental representations into 
the classes: 

X: 1 2 3 . .. 1 - 2 I - 1 I; 

1= 4k : class: a ea' .. • c b· , 
I = 4k + 2 : clruss: a ea· . . • b c. 

The two last ones are the two spinorial representa­
tions (half-spinors). 

1. D, = A, 

If (q,q,q,) and (y,y,Y.Y.) are affine and Cartesian 
coordinates, respectively, related by (3), one may 
pass from A, to D. with help of the transformation 

p, q" Y, = !(X, + X, + x,), 

p, q., y, = t(XI - X, - x,), 

Pa = q" y, = !(-X, + x, - x. ), 

y. = H-x, - x, + x,) . 

, , , 
\ , , 

\ 

I 
I , 

o ' e 

\ , , , 
I 

, 

, , 
I , 

I , , 

---- -- - ---- -~""-o 

'" , --/ 

, -, , 

, 
e , , 

, , 
I 

I 

.. , , , , 

.. 

, 
\ 

\ 
\ 

\ 

\ 

" \ , 

FIG. 16. Root diagram and .a of G,. 

e 

This shows that the group S is the set of permuta­
tions of the y,(A.), as well as the permutations 
of the x, together with change of an even number 
of signs (D,) . 

2, DII The General Case 

Here it is less straightforward to calculate 1/ C. 
in the same simple way as was done for All B" C1 ; 

for one cannot construct in the system x, a pyramid 
'" with faces parallel to the coordinate hyperplanes. 
The method can still work but calculations will be 
more intricate. 

E. EXCEPTIONAL GROUPS OF TYPE G, 

Referred to the orthogonal basis led in the 
space E3 the roots are the vectors: eo - e'f) e. -
2./ + e. which all belong to the hyperplane L x, = 0 
(cf., Ref. 2-4) .Thus, R, = t L IX, = (3, -1, - 2). 

Affine courdinates. 

X, = +p + 2q, 

Xl = -q, (23) 

q = -X21 X, = - p - q. 

The group S is d. ( = dihedral group of order 12, 
symmetry group of a hexagon) . . 

The roo/ diagram and c. are shown in Fig. 16. 
Dimension: 

dim D(pg) 

= rhpq(P + q)(P + 2q)(P + 3q)(2p + 3q). (24) 

Classes of representations. The center of the uni­
versal covering group consists of the unit element 
alone. Therefore, all representations belong to the 
same class. 
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FlO. 17. Tbe 1/ 6. or G,. 

The 1/ t:. is shown in Fig. 17. It has the same 
structure as the two diagrams obtained for A, and 
B, = C" since they are a ll constructed in the same 
way. Here also as for the other groups of rank 2, the 
simplest way to construct a character is to use 
formula (1 . 20). 

JOURNAL OF MAT HEMATI CA L PHY S IC S 

Note added in proof: After this work was completed, 
we discovered a paper by B. Kostant," where this 
author solves the multiplicity problem stated in I, 
but by purely abstract algebraic methods and with­
out consideration to concrete examples. For this 
reason his paper is complementary to the present 
one and does not interfere with it. 
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Assuming non interacting particles, which are scattered by randomly arranged static potentia ls, 
8uch 8B free electrons in a low-temperature semiconductor containing impurity atoms, the exprcr.sions 
of thermal transport coefficients are derived by meanB of the kinetic approach established by Prigogme 
et al. In this part, classical law o( mechanics is assumed, and the case of zero magnetic field is discussed. 
It is shown that the thermal transport. coefficients thus obtained can be expressed in the terms or the 
correlation (unctions of suitable currcnts in the same way as the Kubo formula (or the electric con­
ductivity. 

1. INTRODUCTION 

FOR the last few decades, the expression for 
transport coefficients in terms of correlation func­

tions has been proposed or suggested by many 
authors.' The present situation is different in the 
thermal transport coefficients from the mechan ical 
transport coefficients. For the transport phenomena 
induced hy mechanical disturbances, the formulas 

• The research reported in this document bas been partly 
sponsored by the Office of Scientific Research O. S. R. through 
the European Office, Aerospace Research, U. S. Air Force . 

. t Pennanent A?drcss: Department of Physics, Faculty o( 
SClcnce, Ochanorruzu Uruversity, Tokyo. 

1 For example : J . C. Kirkwood, J . Chern. Phys. 14, 180 
(1946); M. S. Green: J . Cbem. Phys. 20, 1281 (1952). 

for the corresponding transport coefficients have 
been well established by Kubo' and others. How­
ever, in the derivation of expressions for transport 
coefficients in the case of thermal disturbances or 
internal disturbances, an additional assumption was 
necessary. For instance, Kubo et al.' made use of 
Onsager's assumption concerning the average re­
gression of spontaneous fluctuations, and Nakajima' 

• R. Kuho, J . Pbys. Soc. J a pan 12, 570 (1957) . 
• R. Kubo, M. Yokota, and S. Nakajima, J . Phys. Soc. 

Japa n 12 1203 (1957). 
4 S. Nakajima, Progr. Theoret. Phys. (Kyoto) 20, 948 

(1958). See, also, R. Kuba, "Some Aspects or the Stntistical· 
Mechanical Theory of Irreversible Processes," in Lectures in 
Theoretical Physics (Intcrscience Publishers, Inc., New York 
1959), Vol. l. 
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solved the stationary Liouville equation hy making 
use of the local equilibrium distribution function 
determined by the entropy-maximum principle as 
the zeroth approximation. By this reason, the 
formulas for the thermal coefficients expressed in 
terms of correlation functions were regarded as 
questionable. Whether such formulas exist or not 
is one of the fundamental questions in statistical 
mechanics. Montroll' has made attempts to re­
place thermal or internal disturbances by some 
mechanical interference. 

Recent development of the kinetic approach has 
led us to a point, from which we can shed some light 
on this question. Indeed the nonequilibrium sta­
tistical mechanics due to Prigogine and his co­
workers' has been extended by Severne' to include 
the case of nonuniform systems. In thls way we 
have now general kinetic equations for the one­
body phase-space distribution function and we may 
discuss the transport processes hy a method similar 
to the Enskog-Ghapman method used in con­
junetion with the Boltzmann equation. Using these 
results Prigogi.l1e, Severne, and Resibois' have dis­
cussed the validity of the correlation function 
formalism in the case of classical mechanics. In 
particular, R~ibois' has given a general proof for 
the equivalence between the formal expressions de­
rived from the kinetic approach and those given by 
the correlation function method. According to the 
idea of the Enskog- Chapman method, the local 
equilibrium distribution function is determined by 
the kinetic equation itself. We need neither the 
introduction of generalized entropy, the functional 
form of whlch is not precisely known, nor the 
assumption of the entropy-maximum principle. We 
do not make use of the local distribution function 
as an initial form, starting from whlch we trace the 
temporal change of the distribution function for a 
short time interval as was done in the work by 
Mori." The local equilibrium function is the zeroth 

• E. W. Montroli, Rend. Scuola Intern. Fis. "Enrico 
Fermi" 10, 217 (1959). 

e 1. Prigogine, Non Equt:libriutn StaJ.islical M echanic8, (John 
Wiley & Sons, Inc.- Interscience Publishers, Inc" New York, 
1962); R. Ba,lescu, Statistical Mechanic3 of Charged Particles, 
(John Wiley &; Sonst Inc.-Interscience Publishers, Inc., New 
York, 1964 ); P. RkSlbois, "Irreversible Processcs In Claasical 
Gnses/' in Many-Particle Physica, ed.ited by E. Mecron 
(Gordon & Breaah, New York, to appear in 1964). 

1 G. Scveme, thesis, Brussels, 1963; G. Scvernc, Physics 
(to be publisbed). 

I I. Prigogine and G. Scvcme, Physics Letters 8, 173 (1963). 
1. Prigogine, P. Rilsibois, and G. Seveme Physics Letters, 9, 
(to be published in 1964 ); I. Prigogine, P. rusibois, and G. 
Severne, Proceedings of the I nternalional Seminar on Trans­
port Processes (Brown University, Providence, Rhode Island, 
1964 ). 

• P. Res.ibois (unpublished ). 
10 H . M ori, PhYI!. Rev. 112, 1829 (1958 ). 

approximation for the solution of the kinetic equa­
tion in the hydrodynamical stage. We do not dis­
cuss the val.idity of the Enskog- Chapman method 
in this paper. 

We assume for the sake of mathematical simplicity 
the following model: a system of noninteracting 
particles contained ill a sufficiently large volume, 
whlch are scattered by randomly arranged obstacles 
represented by static potentials. The density of 
obstaclcs is assumed to be not very high, so that we 
may neglect the correlation of positions of any two 
obstacles. This type of model is often used in the 
simple theory of conductors: for example, free elec­
tron gas scattered by impurity atoms. In Part I 
(this paper), we assume that our system is governed 
by the classical mechanics, and that there is no 
magnetic field, for the sake of simpl.icity. Kasuya 
and Nakajima' already pointed out that the Ein­
stein relation does not hold between the antisym­
metric parts of electric condnctivity and of diffusion 
coefficient for a quantum system in a magnetic field. 
It is important to generalize our theory to the case 
of a quantized system under a magnetic field. We 
shall do this in Part II (to be pUbl.ished). 

In Sec. 2 we formulate our problem, and in Sec. 3 
derive the kinetic equation for the one-particle dis­
tribution function averaged over all possible ar­
rangements of scatterers. This averaging would be, 
in principle, not necessary, but we postpone a form­
ulation without the averaging procedure to a future 
occasion, because the inclusion of averaging pro­
cedure is considered as to make our theory have a 
simpler appearance. In Sec. 4 we solve the kinetic 
equation by a method based on the idea of Enskog 
and Chapman. We limit ourselves to the linear­
response theory thereafter. We find in Sec. 5 that 
the linear relations between currents and gradients 
hold, and that the transport coefficients appearing 
in those relations are expressed in terms of corre­
lation functions of currents in the same way as 
in the Kubo formula for the eleetric conductivity . 

2. AVERAGED DISTRIBUTION FUNCTIONS 

As was stated in the introduction, we consider a 
system of non interacting particles with one-particle 
Hamiltonian of the form 

X(r, p) = p'/2m + >'U(r). (2 .1) 

111, denotes the mass of a particle, p the momentum, 
and r the position. The scattering potential A U(r) 
is composed of those due to scattering centers located 
at R",. a == 1, 2 . .. . , N.: 
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N . 

U(r) = L: u(r - R.). (2.2) .-, 
A is a parameter, wllich measures the intensity of 
scattering potential, and is assumed to be suffi­
ciently small to allow the use of perturbation theo­
retical expansion. Our system is contained in a 
volume 0, and the positions of scattering centers 
are arranged in tills volume 0 randomly and uni­
formly. We assume that the density of scatterers 
n . = N ./O is not very high, so that we may neglect 
correlations between any two R. '5. The temporal 
behavior of our system will be nearly the same for 
almost all arrangements of scattering centers, if 
our volume contains a very large number of scat­
terers, i.e., in the limit 

N, -+ a>, 0-+ a> with n, = N./O fixed. (2 .3) 

We may trace in place of individual behavior for a 
specified arrangement of scatterers the averaged 
behavior, assuming that R1, R 21 ... J R H o are a 
set of independent stochastic variables with uni­
form probability distribution over the volume n. 
We calculate the average of an observable dynamical 
variable g(r, p, t; Ro, ... , RN.l by the formula 

(g(r , p , t» = f. ~' f. ~' ... 
x f. dR;. o(r, p, t; R" .. . ,RN.l . (2.4) 

Since we neglect the particle- particle interaction , 
a state of our system at a time t is described by 
the one-particle phase-space distribution function 
fer, P, t), whjch contains R'I R21 ... I RHo as param­
eters. The temporal behavior is governed by the 
one-particle Liouville equation 

ia./ = £f, (2 .5) 

where £ denotes the Liouville operator defined by 

£ = £, + A~£, (2.6) 

£, = -iv·V, ~£ = i( V U(r)}·a. (2.7) 

v = p/ m is the velocity of a particle. We have 
introduced usual notations 

a, = a/at, v = alar, a = a/ap. (2.8) 

For the use of perturbational expansion it is con­
venient to make the Fourier transformation 

f(r, p, t) = L: e"·'f.(p, t), (2.9) 
• 

(2.10) 

assuming the periodic boundary condition as usual. 
Then the Liouville operator can be expressed by 
the matrix 

[£n . = L: (k 1£1 k')/ • . , (2. 11) .. 
whel'e I·· .}. stands for the k component. In fact, 
corresponding to Eqs. (2.7), we obtain 

(k 1£,1 k' ) = k·vo • .• . , (2. 12) 
(k lo.cl k ') 

N. 

= n - ' L: e-Hk-" ) 'R' u(k - k ')(k - k')· a, (2. 13) . -, 
where 

(2 .14) 

We may assume without loss of generality that 

il(O) = O. (2 .15) 

The observable quantities which we want to 
d iscuss are the diffusion current and the energy 
flow. Both occur because of the nligration of particles 
tbrough the scattering centers. The corresponding 
microscopic variables are the particle velocity and 
the energy flow vector 

w = v (p'/2m + XU(r ) J. (2 .16) 

Ilnd hence the diffusion current is given by 

j(r , t) = f dpv(f(r , p, t» (2.17) 

and the energy flow by 

q(r , t) = f dp(w/(r, P. t» . (2. 18) 

We see that for the calcnlation of diffusion current 
we necd only tbe averaged distribntion function 
(f(r, p, t». By making the Fourier transform 

qk(t) = t fa dre-" "q(r, t) 

= f dPv{~ (f. (P, t» + f= A~l) g ... (P , tl} , 
(2. 19) 

we find that a kind of averaged 'two-body" dis­
tribution function 

is sufficient for the calculation of energy flow. 

3. KINETIC EQUATIONS 

(2.20) 

Let us first construct an equation satisfied by 
the averaged "one-body" distribution function 
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If(r, p, I» . The formal solution of Eq . (2.5) is 
given by 

I.(P, I) = [e-"'I(O»). 

= ;:; f r du- ;" ~ (k 1£ ~ zl k')fk'(P, 0), (3 .1) 

where the contour r should encircle the whole real 
axis in the complex z plane counterclockwise. We 
have to allow in general an in.itial distribution func­
tion I(r, p, 0) depending on the stochastic variables 
R" R" ... , RH •• From Eq. (3.1) we obtain the 
equation 

(a, + ik,v)I.(P, I) = ;:1 f r aze-;"i 

where we have made use of the well-known formula 
for the perturbation theoretical expansion of the 
resolvent operator (£ - z) - '. 

To see the structure of the sum on the right-hand 
side of Eq. (3.2), it is convenient to make use of 
the diagram technique. We write a solid-line seg­
ment horizontally corresponding to the unperturbed 
resolvent operator (£. - z)-', and a vertex corre­
sponding to - M£, from which a dotted line starts 
and ends at a dot representing the location of a 
scattering center. As was illustrated by Edwards," 
the average over our stochastic variables R" 
R" ... , RH • means to connect at least two dotted 
lines at one dot; the contributions from dotted 
lines ending singly van.ish because of our assumption 
(2.15). By this procedure we can write a diagram 
uniquely corresponding to a summand in the sum 
of Eq. (3.2). When the initial distribution function 
I(r, p, 0) depends on R" R" ... , R H • through the 
potentials, we write a vertical solid-line segment 
upward at the right end of the horizontal-line seg­
ment at the extreme right, and a set of dotted lines 
starting from some points on the vertical solid line. 
We have to connect the free ends of these dotted 
lines with each other or with those starting from 
horizontal solid line. A typical diagram is given in 
Fig. 1. Since the matrix of £., Eq. (2.12), is diagonal 
in the k representation, the propagator (£. - z) - ' 
transfers the particle from a "state" k to the same 
"state" k, and we can attach this k value to a 
horizontal solid-line segment in the diagram. The 
vertex - l\6£ transfers the particle from a "state" 
~' = k + 1 to a different "state" k, 1 "" O. Since the 

US. F. Edwards, Phil. Mag. 3, 1020 (1958). 

R 

-l..!-. .:\. ,/'. .. 
k P" :" a 

k.t\/k v 

Flo. 1. A typical diagram. 

matrix element o(-M£, Eq. (2.13), depends only 
on the difference k - k' = -1, we can attach -1 
to the dotted line starting from that vertex. The 
sum of such wave vectors attached to the dotted 
lines ending at the same dot should vanish." 

We can distinguish two classes of diagrams ac­
cording to whether we can separate a subdiagram 
by cutting a single horizontal solid-line segment or 
not. In Fig. 1, we can separate a subdiagram by 
cutting tbe segment on the right side of the vertex Q. 
This separated subdiagram is "connected", i.e ., con­
nected through the dotted lines; we cannot further 
separate the subdiagram by cutting horizontal solid­
line segments. The matrix corresponding to such a 
connected subdiagram should be diagonal in the k 
representation. It is conven.ient to make the partial 
sum of such separated connected subdiagrams and 
to introduce the operator 

i'¥(k, z) 

= t. ~(k I( -~6£ £. ~ J( - M£)lk)···· (3.3) 

The sum of the remaining parts of the diagrams has 
the same structure appearing in the perturbational 
expansion of Eq. (3.1) . The partial sum over di&­
grams of the second class contributes to the "de­
struction" part 

!I).[z, 1(0)] 

= ~ (f; (k I( -~6£ £. ~ JI k')/k'(P, 0»""= 

(3.4) 

Since all the diagrams corresponding to the sum­
mands of the sum in Eq. (3.2) belong either to the 
first class or to the second class, we obtain 

(a, + ik·v)(f.(P, I» 

-l' dl'G(k, 1')(f.(P, t - 1'» + Dk[t, 1(0)) (3.5) 

or 

(a, + v' '1)(/(r, p, t) = - l' <iI' f dr' K(r', I' ) 

X If(r - r', I - 1'» + D[r, 1,1(0)], (3 .6) 

where we have introduced 
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D[r, t, 1(0)] = L .;k" Dk[t, 1(0)], (3.7) 
k 

D k[t,I(O)] = ~ f r dze-;"i!l)k[Z, 1(0)], (3.8) 

and 
K(r, t) = L .;k·'G(k, t), (3.9) 

k 

G(k, t) = ;-..: f r dze-;"i-v(k, z). (3.10) 

The kinetic equation is the equation, which is 
valid in the kinetic stage, i.e., after the initial 
mixing is finished. If the scattering potential u(r) 
is of short-ranged nature, the integral kernel 
K(r, t) vanishes for a distance of the order of force 
range a and for a time of the order of duration of a 
collision t. ~ a/v. This can he inferred from the 
diagram in the r representation, in which the un­
perturbed propagator corresponds to the free path 
and the vertex to the position, where the particle 
feels the scattering force from a center expressed 
by a dot in the diagram. Then the length of a dotted 
line should be at most of the order of force range a, 
and a connected part of the diagram corresponds 
to a process, which has spatial extension of the 
order of a multiple of the force range a. If we 
neglect bound states of the particle around a scat­
terer, such a process terminates within a time of a 
multiple of the order of collision time t •. Since we 
are interested in the distribution function, which 
does not differ much from the equilibrium distri­
bution function, particles with small speeds v do 
not contribute appreciably to the diffusion current 
and to the energy flow. We may thus assume that 
t. is finite. Bya similar but a little more complicated 
argument we can see that the "destruction" term 
D in Eqs. (3.5) and (3.6) vanishes after a time 
of the order of t., provided that the initial distri­
bution function 1(0) is suitably chosen. Thanks to 
these properties of K and D, we may drop D, and 
replace the upper linlit of the time integral in Eqs. 
(3.5) and (3.6) by + '" for a time such that 

I» I •. (3.11) 

We thus arrive at the equation 

(ii, + ik·v)(fk(P, t» 
- lim -v(k, iii, + i.)(fk(P, I», (3.12) 

0-+0 

or 

(ii, + v· V)(/(r, p, t» 
= - lim -v(-iV, iii, + i.)(f(r, p, I». (3.13) 

These are the required kinetic equations. 

As was mentioned in the preceding section, we 
need the function 9,.k(P, t) defined in Eq. (2 .20) 
in the calculation of energy flow. Inserting the 
formal solution (3.1) into Eq. (2.20), we have the 
expression 

(P) -1 J dz -;" 
Ol,k t t = 2'1ri j r e 

x L (L e;l'R'(k + II~ 
k' '" ..co z 

X t (-u.c ~)'I k')/k ' (P, 0»)' 
..... 0 .co z 

(3.14) 

Comparing this with the right-hand side of Eq. 
(3.2), we see that only the first -illO.c in Eq. (3.2) 
is replaced by L. e;l 'R •. The structure of diagrams 
corresponding to the summands in Eq. (3.14) is 
the same as that for Eq. (3.2) , except the first vertex, 
i.e., the dotted line at extreme left (PR in Fig. 1). 
Thus we introduce in place of -v(k, z) defined by 
Eq. (3.3) another operator 

e(l, k, z) = t (L e;l ·R. 
.. -I a 

(3.15) 

Then by the same argument used to derive Eq. 
(3.12) we arrive at the relation 

gl,k(P, t) = lim e(l, k, iii, + iE)(fk(P, t» (3.16) 
...... +0 

for t » t • . 

4. LINEAR-RESPONSE SOLUTION 

In the hydrodynamic stage the phase-space dis­
tribution function (f(r, p, t» becomes a functional 
of hydrodynamical variables, such as temperature 
and chemical potential or particle density, and its 
temporal change is governed by the hydrodynamical 
equations determined consistently with the kinetic 
equation. This is the basic idea of the method of 
Enskog and Chapman." For the present model those 
equations are the laws of conservation of mass and 
of energy 

ii,n(r, t) = -V·j(r, t), 

ii,E(r, t) = - '17 ·q(r, t), 

(4.1) 

(4 .2) 

It S. Chapman a.nd T. Cowling: The Jl{athematical Theory 
oj Non-Uniform Cases, (Cambridge University Press, Cam­
bridge, 1939). 

N . N. Bogolubov, "Problems or a Dynamical Theorr in 
Statistical Physics." (1946). The English translation is gIven 
in Studies in Statistical M echanic8, edited by J. de Boer 
and C. E. Uhlenbeck (North-Holland Publishmg Company, 
Amsterdam, 1962), Vol. 1. 
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where n(r, 
particles 

t) stands for the number density of 

nCr , I) = J dp(j(r , p, I» (4.3) 

and E(r, I) for the energy density 

E(r , t) = J dP({t,; + W(r)}/(r , p , t» (4.4) 

Equations (4.1) and (4.2) can be derived from the 
Liouville equation (2.5). Equation (4. 1) can also 
be derived from the kinetic equation for (j(r, p, t», 
Eq. (3.13). Tbe derivation of Eq. (4.2) from Eqs. 
(3.13) and (3.16) is more complicated, and is not 
given here. 

Hereafter, we limit oUl"SClves to the linear re­
sponse theory, and keep only sucb terms as are 
linear with respect to tbe gradients of hydrody­
uarnical variables. When we solve tbe kinetic equa­
tion (3.13) or (3.12), we may put 

(j) = f + t', (4 .5) 

where the zeroth approximation f is the local equi­
librium distribution function and the first-order cor­
rection f' is a linear homogeneous function of the 
gradients. f is determined so as to satisfy the 
equation 

lim '1>(0, i,)f(r, p, t) = 0 (4 .6) 
. _+0 

and the condition that the currents (2.17) and (2.18) 
should vanish, if we calculate them by making use 
of f. We construct such an f as follows. First, let 
us notice that the averaged equilibrium distribution 
function (j"(r. p» is a stationary solution of 
Eq. (~ I ~) : 

ik·v(t':'(P» = -lim '1>(k, i,)(j";:(p», (4.7) 
<_+0 

so that (j;'(P» is a solution of Eq. (4.6). We can 
take any functional of our one-particle Hamiltonian 
(2.1) as r'(r, p), but we select the Maxwell- Boltz­
mann function 

r(r, p) = exp [(r - X(r, p)} / kT], (4 .8) 

by taking into account tbe fact that in the real 
conductor the particle system interacts, for instance, 
with the crystal lattice vibrations. Since the com­
ponent witb k = 0 is nothing else than the spatial 
average, t:'(P) is essentially the Maxwellian distri­
bution function. The averaged function (j"( r, p» 
is obviously independent of r, so that 

(j;'(P» = (j'"(r, p». (4.9) 

On the other hand , the operator "'(0, i,) contains 
neither r nor V. Thus the general form of the local 
equilibrium function f is given by 

fer , p) = (exp [(r(r , t) - X(r, p) }/ kT(r , t)l), (4.10) 

where r (r, t) and T (r, t) denote the local chemical 
potential and the local temperature, respectively . 
Keeping ouly terms linear in the deviations from the 
true equilibrium value 

t.r(r, t) = r(r, t) - r, t.T(r, t) = T(r , t) - T, (4.11) 

we may use the expression 

f er, p, t) = (/"(r, p»{ 1 + t.r~~ t)} 
+ (x(r, ) - r 1."( » t.T(r, t) 

kT r , P T I 

or 

I~(P , t) = (f;' (P»{ 0..0 + [t.~~:].} 

+ ( [x(r , - '/'"( ) 1 > [t.7'(t»). 
kT r , PT· 

_0 

(4.1 2) 

(4.13) 

We see that the k dependence of I: appears only 
through tbe k dependence of [t.,}. and [t.T]., so 
that t: has its appreciable value only for small k, 
provided that t.,(r, t) and t.T(r, t) are assumed to 
be slowly varying with respect to r. Since the p 
dependence of f is Maxwellian, f is actually an 
even function of p. 

Now let us determine the first-order correction 
f' from Eq. (3.12). According to our assumption 
that the time dependence of (f) is ouly through the 
hydrodynamical variables T and r, which is assumed 
to have tbe same functional dependence on nand T 
as tbe equilibrium one, a,(I) can be expressed in 
tenns of o,n and a/po iJ,n and olT are in turn ex­
pressed by the divergence of the currents j and q 
by means of the hydrodynamical equations (4.1 ) 
and (4.2). Keeping terms linear in the gradient 
operator V, we may us<: the zeroth approximation 
for the currents, which vanish . Thus we may put 

a,(J) = 0 (4.14) 

in our kinetic equation (3 .12) . This means that our 
method of solution is a quasistatic formalism at 
least for our model, and that the non-Markoffian 
effect completely drops, because it Comes out from 
the z dependence of 'I>(k, z). Remembering Eqs. 
(4.5) and (4 .6) , we obtain at once 
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f.'(P,t) I · 1 { I' . a'l'(k' , i.)} lm . v - 1m 1. , .-_0 'l' (O, tE) "-0 ak 

. (-ik)t. (P , t) 

I · 1 { I' . a'l'(k', i.)} 
1m "' (0 .) v - 1m, ak' ._+o 'r I 'I.E 11: '--0() 

. { (f:"(P» [ - ~~( t)J. 

+ ([3C(r' f0 - r f~(r , P)J.) 
X [-'\1 In T(t)].}. (4.15) 

The k dependence appears again only through the 
gradients. 

In the same way from Eq. (3. 16), by keeping 
only linear terms with respect to the gradients, we 
obtain 

g ... (P, t) = !~'!'o {e(l, 0, i')f~(P, t) 

+ lim i ae(I~:'" i.). (-ik)t.(P, t)}. 
11:· ..... 0 

(4.16) 

5. THERMAL TRANSPORT COEFFICIENTS 

For the actual evaluation of the thermal trans­
port coefficients from the viewpoint of kinetic ap­
proach, the expressions (4.15) and (4.16) could be 
more convenient. However J for our purpose of ex­
pressing transport coefficients in terms of correIa­
tion functions it is convenient to rewrite them in 
the following way. 

First, let us rewrite the k' derivative in the first 
curly brackets of Eq. (4.15). Since the matrix ele­
ments of -M.c, Eq. (2.13), depend only on the 
difference of wave vectors, they become inde­
pendent of k', if we measure the wave vector ap­
pearing in a "intermediate state" of the expression 
(3.3) from k' . We have only to differentiate the 
matrix elements of intermediate propagators 

We see that the differentiation with respect to k' 
is equivalent to the replacement 

I I I 
.co - ....... .co _. (- v) .co _. ' (5.2) 

and we obtain 

a'l'(k' .) - . (( I ( I )-- lim i ak: tE = L: L: 0 -M.c -_- V 
11: '-0 ,,_ I ",_I .co z 

{
I }'''--I )) .... X -- (-M.c) O· .co - z 

(5 .3) 

In Eq. (4.15), this operator acts on either the Max­
wellian (f;'(p)) or the same function multiplied by a 
linear combination of the unperturbed energy p'/2m 
and a constant, ([(3C - rW'(r, p)]o)lkT. Let us 
write these operands simply <p(p' / 2m), and intro­
duce 

This quantity is a solution of the equation 

F.(P, z) 

_ (L) _" (k IA6.c1 k') 
- <p 2m 6 •. 0 f.- k.v _. F •. (p , .), (5 .5) 

and hence lim._.o F.(p, i.) is a solution of the 
stationary Liouville equation 

L: (k l.cl k') lim F • . (p, i.) = 0 (5 .6) 
k ' . - +0 

such that it reduces to <p(p' / 2m) as A --+ 0 and 
satisfies the normalization condition 

f dp lim Fo(P, i.) = f dP'l'(L2 ·)· (5.7) 
._+ 0 m 

We know that such a solution is the equilibriUlll 
function 

The right-hand side of Eq. (5.7) is the average of 
the left-hand side, and to take the Fourier zero­
component is eqwvalent to taking the spatial 
average. Thus the left-hand side of Eq. (5 .7) is 
either the total number of particles divided by !l 
or the total energy (minus the total Gibbs free 
energy) divided by !l (and kT) . These quantities 
should be independent of the arrangement of scatter­
ing centers and equal to their averaged value. Thus 
Eq. (5.7) is satisfied. If our system is assumed to 
be ergodic, our solution (5.8) is unique. 

Inserting the resnlts (5.8) and (5.3) into Eq. (4.15), 
we obtain 
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f~(P, I) = ~~% W(O~ if) f; t. {«(O I( -~~£ £. ~ JI k}f~(P»·-.l-~!l. 
+ «(0 I( -X6£ £ . ~ JI k'H X(r , f~ - l" I'"(r, p) 1.),,". [- V' In T].} 
limL 1 . t«(ol( _ xo£ _ I_ )" l k')[{v .c- V'l"]. + W - lV . [_ V',nTJ, }I''' ] ) .... 
• _ •••. w(O, tE) "_. £. - z kT kT k ' 

lim L (-i)«(O 1_1_1 k')[{V.c- V'l"J. + w - lV'[ _ V' In TJ.}f'''J ) 
. - +0 k ' .c - z kT kT 11. ' 

= lim r" dl'e - '" L «0 le-""I k')[{v.l-V'l"J. + w - lV'[ _ V' In TJ.}r"J ). ._+010 k ' kT kT k ' 
(5 .9) 

Here we have made use of the theorem that, if the 
limit of a product of two functions exists and if 
the limit of one factor exists, we may take the limit 
for both factors separately. 

In the same way, we can carry out the k' dif­
ferentiation in Eq. (4.19) , and arrive at 

g, .• (P, t) 

~ lim r" dl'. - " · L L (''''RO(1 le- O£o'1 k') 
'_+0 10 k ' '" 

X [{v.l-Vl). + w - lV ,[_ V lnTl.}f~ ] ). 
kT kT • . 

(5 .10) 

By making use of Eqs. (5.9) and (5.10), we can 
easily write down the expression (2.19) for the 
Fourier component of energy Bow vector in the form 

q.(/) = lim r" dt'e-'" I dp III f dr(f~e-"" 
. -+0 10 0 

X {vJ-0,l"J. + w ~TlV.[_V' In TJ.}) (5.11) 

and for the Fourier component of diffusion current 

).(/) = ~ Ia dre-ik"j(r, I) 

= lim r- dl'e-'" I dP!..1l f dr(f'"ve- ... · 
._+0 10 11 

X {vJ-Vl"]' + w - lV'[_V' In T].})' (5. 12) 
kT kT 

In these expressions (5.11) and (5.12), tbe k de­
pendence on the right-hand sides comes only from 
the gradients. Therefore, tbe linear relations 

j(r , I) = -Loo ,Vl"(r, I) - Loo 'V In T(r, I) , 

q(r , I) - l"j(r , I) = - Loo'V'l"(r , t) 

- Lo o' V' In T (r, I), 

hold with constant transport coefficients 

L .. = lim r" dte-" kTlll 
._+0 10 

. II dp drcr J.e-'"' J.) , 

where I" and II are either D or Q, and 

J. = {v' 
w - tv, 

if I' = D, 

if I' = Q. 

(.5.13) 

(5.14) 

(5.15) 

Our result (5.14) has just the classical form similar 
to the Kubo formula for the electric conductivity, 
and hence satisfies the Onsager relation. 
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For molecules with degenerate internal states, the single-pnrticle distribution fundion must be 
r~pln;ccd .by a dcn~ity mat:ix, or be.tter, if the t~anslatjonal motion is treated classically, by a Wigncr 
dIBtrl~u tlOn-function d~oslty ma~lX. The modified Boltzmann integra-differential equation for this 
quantity ~a8 been prcvlOusly dcrl.ved . but so far ~nly limited solutions of the resulting equation have 
been obtamed. Methods arc hcrem discussed which enable the standard methods for the solution of 
the ?lassical Boltz~ann equa~ion to be applied to the solution of this equation. Complications io­
volvmg commutation properties are resolved. 

I. INTRODUCTION 

WHEN degenerate internal states are present, 
it is no longer sufficient to describe a free 

particle in a gas by a probability density. One 
must rather use a singlet density matrix. This 
has the advantage that it correctly accounts for the 
phase relations between the degenerate states. For 
a dilute gas the equation of change for the singlet 
density matrix, or better for the Wigner distribu­
tion function-density matri..x is a generalization of 
the classical Boltzmann integro-difJerential equa­
tion.' This equation has been derived by Wald­
mann' and independently using a different method 
by the present author.' 

Only for the ease of spin-; particles has a solu­
tion of the full matrix equation been considered.' 
In this case, Waldmann' found it convenient to 
express the distribution function-density matrix as 
a linear combination of the Pauli spin matrices 
and the identity matrix. For higher spin values this 
expansion will likely he cumhersome. Moreover, 
this form of expansion may be contrasted to the 
usual classical perturbation method that considers 
firstly a deviation from local equilibrium and 
secondly an expansion in the independent vectors 
or tensors of the system. In Sec. III methods are 
discussed which allow this latter order to be utilized. 
It is the purpose of Secs. IV and V to adapt the 
formulation of the linearized Boltzmann equation 
so that the recently reviewed variational methods 

1 J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molec­
ular 'l'heory of G<UJe3 and Liquids (John Wiley & Sons, Inc., 
New York, 1954), Chap. 7. 

S L. Wa.ldmann, Z. Na.tu.rfors~h. 12a, 661 (1957); 13a, 609 
(1958); Handbuch der PhY81k, edJtcd by S. Flugge (Springer­
Verlng, Berlin, 1958), Vol. 12. 

• R. F. Snider, J. Chern. Phy •. 32, 1051 (1960). Some 
minor errors of this paper are corrected in Appendix A . 

• L. Waldmann, Nuovo Cimento 14, 898 (1959); Z. 
Naturrorsch. 15a, 19 (1960); 18a, 86 (19G3); H. D. J{upatt, 
ibid. 190,301 (1964). 

for solving the classical Boltzmann equation' may 
be applied to the quantum ease. 

The mathematical problems involved are due to 
the noncommutation of the local equilibriwn dis­
tribution function-density matrix and the pertur­
bation. For this purpose the first and second deriva­
tives of the exponential function in a lloncommuta­
tive algebra are discussed in Appendix B. The 
thermal conductivity of a gas with internal ro­
tational states' has recently been considered and 
is hased on the above method. 

II. THE MODIFIED BOLTZMANN EQUATION 
AND ENTROPY PRODUCTION 

Quantum mechanically, the probability of a 
state of one molecule in a gas is given hy a one­
particle density matrix. However, for the purposes 
of the kinetic theory of gases it is more appropriate 
to utilize a position-momentum distribution func­
tion for the translational motion much like the 
classical ease and this is most easily accomplished 
by using a Wigner distribution function-density 
matrix. This is a distribution function of position 
r and linear momentum p for the translational 
states of the molecule while retaining its behavior 
as a density matrix for the internal states of the 
molecule. Since the intermolecular interactions in 
a gas are usually short range (the only case treated 
here) the collisions may he considered (for a dilute 
gas) to be localized and thus to occur at one point. 
In this manner the Boltzmann equation that de­
scribes the change of the singlet Wigner distribu­
tion function-density matrix involves only one 
position. Thus an alternate interpretation of the 
Wigner distribution function-density matrix is 
that it is a density matrix in internal states and a 

• R. F. Snider, J . Chern. Phy • . 41, 591 (1964). 
Eq. (47) of this article should read X T / ... - X. 

• F. R. McCourt and R. F. Snider (to be published). 
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diagonal density matrix in mon1lmtum space while 
being parameterized by a position r. It is this latter 
interpretation which will be used exclusively in 
the succeeding arguments. This will enable one tn 
make use of operatnr formalism and tn designate 
the trace over internal states and integration' over 
momentum by the one symbol, trace (tr). In 
particular the singlet Wigner distribution function­
density matrix 1 will be normalized as 

tr l (r, I) ~ nCr, I), (I) 

where nCr, t) is the local number density at posi­
tion r and time t. An immediate generalization of 
Eq. (1) when the system under consideration is a 
v-component mixture may be treated by thinking 
of 1 and n as .-component vectnrs in a chemical 
species space besides 1 having all the properties 
already mentioned in this paragraph. In this last 
case, wherever the mass m or relative mass p­

appears, these must be considered as diagonal 
operatnrs in the chemical species space. 

On assuming that 1 is always diagonal in the 
energy, the Boltzmann equation for 1 when there 
are degenerate internal states may be written ll

•
1 

gj.P.,gj £L . at + m' ar + F· ap + ,(H, • ./ - IH, .. ) 

~ (2 ... ) ' tr, [tf/,~(P - P)~(E - K)t' 

I , ] + 2n (ttl, - 11,1) . (2) 

where Planck's constant h is set equal tn 1 and 
Boltzmann statistics have been assumed. Tr, refers 
tn a trace over the states of the 2nd molecnle, 
which is labelled by sUbseript 1 with 1, also referr­
ing to this molecule. The external force F changes 
the linear momentum of the molecules while H , •• 
is the one particle hamiltnnian for internal states 
which may include external forces acting on the 
internal states (e.g., a magnetic field when mag­
netic dipoles are present). The I operatnr is the 
relative coordinate t operatnr which may be defined by 

t ~ V + lim VeE - K + i.)- 'I. (3) 
. -0 

where V is the intermolecular potential and K is 
the kinetic energy (including internal energy) all 
in relative coordinates. The reason for stressing 

1 More correctly, this should be the a.ppropriately nor­
malized Bummation over momentum states or rather over 
the wave numbers for a box of unit volume, see the norm!lljza.­
tiOD of Eq. (1). As is usual in the kinetic tbeory of dilute 
gascs, this unit volume must be of macroscopic size. 

relative coordinates is so that no ~ function for 
conservation of momentum will appear in t or its 
quantum mechanical adjoint tt. Another way of 
expressing this would be tn say that t, V, and K 
are equal to the corresponding quantum mechani­
cal operatnrs in pair-space divided by a ~ function 
for momentum conservation. Lastly, E is the eigen­
value of K on which t (or tt) operates while the 
tntal linear momentum operatnr for a pair of mole­
cnles is P with eigenvalue P on which t+ operates. 
The two ~ functions in Eq. (2) thus signify the con­
servation of linear momentum and energy. On 
the energy-momentum shell, that is, for matrix 
elements between states with the same relative 
energy and tntal linear momentum, the following 
operator equations are valid: 

It - I ~ 2"';1' ~(E - K)~(P - P)I 

~ 2"';/~(E - K)~(P - P)/'. (4) 

The standard expression for the entropy density 
ps in a one-particle picture is 

(
It' ) pS ~ - ktrlln .1, (5) 

in which p is the mass density and 8 is the entropy 
per unit mass. From the Boltzmann equation, it is 
then easily shown that the equation of entropy 
change is 

apS a at ~ - or' (pSvo + J.) + u, (6) 

where Vo is the local mass stream velocity, J. is 
the entropy flux, and u is the entropy production 
given by 

u ~ - (2 .. )'k tr In l III, ~(P - P) ~ (E - IGI' 
~ 

+ 2~ (tIl, - 11,1') J. (7) 

A mathematical property of a density matrix 
is that it is an Hermitian (self-adjoint), positive 
definite operatnr on the Hilbert space !O of quantnm 
mechanical state vectnrs. Furthermore it has a 
finite trace which tngether with its positive definite­
ness and self-adjointness implies that it is in the 
trace-class'" of operatnrs on a Hilbert space !O 
which in turn requires that it belong to the Schmidt­
class' (ue) of operatnrs with finite Schmidt norm 

(A I A)I == (tr A 'A )I < "'. (8) 

• R. Schatten, Norm Ideals of Completely Contiltuous 
QperatOTs, VoL 27 of Ergebnisse der Mathemati k und Ihrer 
Grenzgebiete (Springer-Verlag, Berlin, 1960), Chaps. 2 and 3. 

• J. von Neumann, Mathematical Foundations of Quantum 
l.fechanics (Princeton University Press, Princeton, 1955 ). 
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(A , (<Te». In particular, the Schmidt norm of f will be 
less than nCr, t) and thus an element of the Hilbert 
space (ue). Again, this has the consequence that 
f is a completely continuous operator on ,I) and 
thus has a discrete (real and positive) spectrum 
with spectral representation' ·' 

f = L,p,p,"= L,p, li)(tl , (9) 

in which p, is an eigenvalue and P, = li)(il is the 
corresponding projection operator onto the eigen­
function Ii) (element of ,I) of f. (It is hoped that 
no confusion will arise between the linear mo­
mentum variables p and eigenvalues p, nor be­
tween the total linear momentum P and the pro­
jection operator P, since two of these are vectors 
written in bold face while the others are in itaJjcs 
and no magnitudes of the vectors will appear.) 
The eigenvalues p, must satisfy the equations 

L, p, = nand L, p: :5 n' . (10) 

Boltzmann's H theorem is to show that tbe 
entropy production is always greater than or equal 
to zero. This was proven by Waldmann' byes­
sentially the following method. Define the super­
operator'O 3 which is a linear operator on the 
Hilbert space" (<Te) X (ue) , as 

M '" tAo(E - K)o(P - P)I'. (11) 

Then on symmetrizing the In f term in Eq. (7) 
and making use of Eq. (4) and the scalar product 
analogous to the metric defined in Eq. (8), the 
entropy production u can be written as 

u = -t(2,..)'k[(ln [I 30 - (1 I J([ In f))], (12) 

where 1 is the identity operator, [ is the pair density 
matrix ff, (both in pair space) and although not 
explicitly expressed, the scalar product is again 
in pair space. With the help of the second identity 
of Eq. (4) it also follows that 

([ I J(I» = (1 I J(f) . (13) 

The spectral representation of f will be denoted by 

(14) 

The matrix elements of 3 with respect to the pro-

10 A auperoperator is an operator which transforms an 
operator on ~ to a. new opera.tor on ~. This terminology was 
introduced by J. A. Crawford, Nuovo Ciroento 10, 698 
(1958). For a Burvey of Borne of the properties of 8uper­
operators and bibliogra.phy aee H. Primas, Mol. Pbys. 6, 
225 (1963); Rev. Mod. Phy •. 35, 710 (1963). See a1.0 Ap­
pendix B. 

11 :I operates on operators in pair-space (pairs of molecules) 
rather tha.n on (lTe) so is an operator on the Ca.rtesian product 
of (ere) with (ere)I, (ere) X (ere)l . 

jection operators 'll, are then 

J" = ('ll, I J('ll,» 
= o(E, - E,)o(P, - P ,) I(il 1 Ij)I' ~ 0, (15) 

which follows from the definition of J, Eq. (11) and 
the fact that f is diagonal in the one-particle energy 
so that f and $, are diagonal in the K representa­
tion. In fact, the collision cross section UI~ ' for 
the scattering of a pair of molecules from state 
j (pair-state) to state i is given by 

o(E, - E,)~(P, - P,)U,~, 

(2..)'J.I,J.lI(k, / k,) I(il t Ij)I' o(E, - E,)ocP, - P,), 

(2"')'J.I,J.lI(k, / k;) J" , (16) 

where k., ki are the corresponding wave numbers 
in relative coordinates. It then follows from Eqs. 
(12)-(15) that 

u = -H~)'k L, 3,,(p, In P, - P, In P, + P, - p,), 
" (17) 

which is greater than or equal to zero because the 
quantity in parentheses is negative for all real and 
positive P, and P,. The above proof is much simpler 
if detailed balance holds (J" = 3;; or ,t = t), in 
which case the positiveness of u arises by symmetri­
zation between i and j in the first two terms of 
Eq. (17) and no use is required of Eq. (13). 

A state of local equilibrium is said to exist when 
the entropy production u is zero. It is easily seen, 
Eq. (17), that this occurs only if" p!O' = p:o, for 
values of i and j such that J" r! O. From the 
product property of ['''(rO' = !,o'W' ) it follows 
that g = - In f lo, must be a summational invariant,' 
in other words a linear combination of mass, linear 
momentum, angular momentum, and energy opera­
tors. 

In. LINEARIZATION OF THE BOLTZMANN EQUATION 

The local equilibrium Wigner distribution func­
tion-density matrix f lo, satisfies the Boltzmann 
equation (2) with no left hand side. In the next 
approximation,13 the Boltzmann equation becomes 

!'''X ·= -(2 ... )' tr, [ J(f ,o'f:" + f''' f:o ,) 

+ 2~ (t(f'" I:" + f"'f:o ,) - (f 'o, f:" + !''' 1:°')1' I ] ' 
(18) 

Il Superscript (0) stands for local equilibrium value or 
function. 

uS. Chapman and T. G. Cowling, The Mathematical 
Theory of Non-Uniform Gases (Cambridge University Press, 
London, 1952), Chap. 7. 
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where X is obtained from I '" by 

_ _ 1_ [ill' '' ~.~ 
X = , 10 ' ill + m ilr 

ill''' + F· ilp + i (H, • .{''' - I'" fl c.,, ) ] (19) 

with the time derivative ill''' lilt eliminated by 
means of the hydrodynamic equations evaluated in 
an approximation consistant with I''' . In this 
way, I = I'" + leo is a steady-state solution of the 
Boltzmann equation to terms linear in the macro­
scopic gradients. It is customary I , 13 to write 
I'" = I 'o,</>, but in this case both 1''' and </> are 
operators on .\i and hence, in general, will not 
commute. Is this then the best way of writing the 
perturbation? The following considerations are 
aimed at answering this question. 

There are three obvious forms in which one can 
write 1 or I ''', namely: 

(a) I'D = rO ltjJ , (20) 

(b) t IJ = !(</>t/ ,,, + t '''</», (21) 
or 

(c) to ) = f - to) = e- fl +. - e-'. (22) 

Form (a) looks much the simpler but since I, I''', 
and t'" must be Hermitian, then </> must be such 
that its adjoint </>t is given by 

</> t = 1'''</>t(O)-> = ,-'</>e' = ,-o</>. (23) 

In this expression use has been made of the in­
verse 1''' -' of 1'0' which trivially exists from its 
definition and the superoperator 6 is the commuta­
tion superoperator which takes thc commutator 
of Q with the operator upon which it acts, i.e., 

6</> = o</> - </>0. (24) 

On the other hand, the Hermitian property of 1''' 
and t'" are built into the form (b) and (c); in 
form (b) by the </>t term while in form (c), by a 
Hermitian </>. 

It is easily shown that </> in form (b) may be 
restricted to being Hermitian by first assuming </> 
to be Hermitian and then showing that it is de­
termined uniquely by t'l). By simple algebra, </> 
is shown to be given hy 

</> = ~t'" 
1 + ,0 ' (25) 

which always has a solution for any t'I) as long as 
the superoperator 1 + eO has an inverse. This is 
true since 0 is Hermitian and thus the spectrum 
of 6 is real. 

Since physical observables are Hermitian it 
might be felt that forms (b) and (c) may have a 
more physical interpretation because of their 
hermiticity of </>. This should be contrasted with 
the apparent simplicity of Eq. (20). 

The linearized Boltzmann equation (18) may 
be written as 

X = m</> (26) 

with the superoperator m given as follows for 
form (a): 

m</> = m"'</> = - (2,..)' tr, t!" [ J(</> + </>,) 

+ 2~ II(</> + </> ,) - (</> + </> ,) I
t

} J. (27) 

in which use has been made of the fact that 
!(O' = t(o'ti" commutes with the collision operator 
t. For the choice (b), Eq. (21), it follows that 

(J\</> = m"'</> = ,m"'(</> + e°</>'). (28) 

while for the choice (c), linearization of f 'I) with 
respect to </> requires an expansion of the exponential 
which is accomplished in Appendix B. Thus to 
first order in </>, 

I = ,-'" = t'O' + t'O' ,0 ~ 1 </> + (29) 

and, consequently, 

° 1 m</> = m"'</> = m'" ~</>. (30) 
6 

In order to find expressions for the entropy 
density p8 and entropy production CT, it is neces­
sary to have expressions for both the first and 
second order terms in the expansion of exp and In 
for a noncommutative algebra; these expressions 
are derived in Appendix B. As usual in perturbing 
the Boltzmann equation, the expectation value of 
all of the summational invariants are required to 
be determined entirely by 1'''. Thus t(O' must be 
orthogonal to all the summational invariants in 
the scalar product of Eq. (8). These auxiliary COD­

ditions on t(O' are useful .here in that they simplify 
the expressions for ps and CT. Fonn (c) will be 
considered first: 

ps'" = - k tr t In [~. t] 
[ 

h' }_, •• 
=k tr O-In e -</> 

[ In h'] -. k tr -.+. =ktr g- ee - </>e , (31) 
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in which use has been made of the orthogonality 
of g (a summational invariant) to to>. With the 
help of expansion (29) and keeping only terms 
quadratic in </>, 

A 

pS'" = pS'o, _ k tr </>t'" e ~ 1 </> , (32) 

where ps 'o, is the local equilibrium value of the 
entropy density. The corresponding entropy pro­
duction is 

(33) 

By a similar though more complicated argument 
(see Appendix B), form (a) yields an expression 

pS'" = pS'o, _ tk tr t'o,</> e
A 
~ 1 </>, (34) 

for the entropy density and for the entropy pro­
duction 

u '" = k tr t"'</> ~ m'· '</>. (35) 
e - 1 

Finally, since form (b) with</> Hermitian can be 
written in form (a) with </> ,. , = HI + eA )</> Cb' , 

substitution of this into Eqs. (34- 51 gives 

6 feA + e-A + 2) pS'" = pS'o, _ tk tr </>t'o) '1 -A </> (36) 
-0 

and 

'bJ U !k tr </>t 'O' 6(1 + e-
A

) m" '</> 
1 - e- t. 

(37) 

for the corresponding entropy density and entropy 
production in this case. 

The above formulas are quite complicated and the 
relations between the respective entropy densities 
and entropy productions will be considered in the 
next section on variational methods. Blount" has 
also worried about the commutation problems in 
expressing the entropy production in general quan­
tum mechanical systems but has not given any 
explicit formulas for this quantity. 

It may be noticed that in the classical limit 
(no commutation problems), the following re­
ductions hold: firstly, m'" = mCb

' = m'o' together 
with all the entropy production terms being of 
the form (33); secondly, the entropy density for 
forms (a) and (b) reduce to 

ps = pS'o) - !k tr t'o,</>" (38) 

The difference between these last two equations 
is due to the different orthogonality properties of 
</> . In the classical case the perturbation is usually 
written in form (a) so that Eq. (38) results. 

IV. VARIATIONAL METHODS 

The variational methods for solving the Boltz­
mann equation in the classical case have been 
recently reviewed.' Consequently, the development 
presented herein will be restricted to introducing 
a suitable notation so that the classical results can 
be applied to the quantum case. 

The essential feature of the classical case is that 
there is an operator m in a (real) Hilbert space 
which is positive definite but not necessarily self­
adjoint (symmetric), the variational metbods being 
tben designed to solve Eq. (26) for sucb an opera­
tor. In this section appropriate Hilbert spaces are 
considered for each form of the perturbation, the 
positive-definiteness of m demonstrated in each 
case and appropriate definitions made so that Sec. 
II of Ref. 5 may be taken over as far as possible 
to the quantum case. 

That the Hilbert space is over the real field in 
the quantum mechanical case follows immediately 
from the fact that to' must be Hermitian. How­
ever the appropriate scalar product is different for 
each of the forms of the perturbation. Classically, 
the norm of the Hilbert space is related to the 
expression for the entropy density, so that classically 
</> must satisfy 

tr t'o ,</>, < 00, (40) 

which by Eqs. (38)-(39)yieldsa finite entropy density. 
On the basis of the entropy density, for form (a), 
the appropriate scalar product is 

6 
(</> I "') = tr t'o,</> - A--l "', e - (41) 

= tr (ut'O' -11'0) </>/ 'O)- I)(ut'o) -11'0' "'t"H), 

which is real since t'o,</>, t'O'", and [6/ (OA - 1)1'" 
are Hermitian by Eqs. (20, 23) and positive definite 
by the last form of Eq. (41) . Here u is the super­
operator which is the positive root of the super­
operator equation 

• 6 u = . 
2 s inh t6 

(42) 

whereas Eq. (32) 

pS(d = pS (O) _ k tr t 01 cp'J . 
Thus uA is Hermitian if A is and also u has the 

(39) property that 

l( E.!. Blount, Phys. Rev. 131,2354 (1963 ), Appendix. tr AuB = tr (uA )B = tr BuA, (43) 
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which has been used in the last form of Eq. (41) . 
In order to apply the variational methods of 

Ref. 5 to the present case, it is necessary to show 
that <R'o ' is a positive definite superoperator rela­
tive to the above scalar product and that the 
entropy production is given ~ 

u = k(</> I (}l 1</». (44) 

The last statement follows directly from the defini­
tion Eq. (35) while the former can be proven by an 
adaptation of an argument of Waldmann's,u namely 
that with the definition, 

(45) 

one has 

(</>1 <R'o , 1</» = tr (Uf 'OlI</»f'OlI(}l 'O'(wp), 

-~(2.-)' tr tr, 'l'[ 3'l' + 2~ (t'l' - 'l'1'),] 

-!(2.-)' tr tr, 1'l'N< - Wljo(E - K)o(p - P)l
t
, 

= t(2.-)' tr tr, Ao(E - K )o(P - PlAt ~ 0, (46) 

where 

(47) 

Lastly, it is easily shown that the superoperator 
(}l'o,* which is adjoint to (}l '0' relative to the scalar 
product (41) is given by 

R'o,*</> = -(2,.-)'tr, /! Ol [l t(</> + </>,J6(E - K )o(P - P)I 

+ L I(</> + </>,)1 - It(</> + </>,») J (48) 

The above equations are quite complicated to 
apply because of the superoperator u which appears 
in the scalar product. A simpler variational method 
can be obtained from the above by setting u = 1, 
in which case the appropriate scalar product is 

(49) 

and all the previous statements are correct except 
for the identification of the quadratic form (44) 
with the entropy production. 

Form (b), Eq. (21), for the perturbation is 
very similar to form (a), in fact, one can be ob­
tained from the other as has been noted previously 
since </>'0' = Hl + e4 )</>"'. Making this substitution 
in Eqs. (41--48), the same results are obtained as in 
form (a) above with the proper interpretations of 
entropy density and production as given in Eqs. 
(36)-(37). A simpler variational method can be based 

Ii L. Waldmann, Z. Naturforsch. 15a, 19 (1960), sec. 2. 

on the scalar product (49) provided slight modifi­
cations are made in the linearized Boltzmann 
equation (26), namely by defining X 'd) and (}l td, 
by the following 

X '" '" f (O'IX!,"-' = <R"'</> '" f'Ol !«(}l''' </»f(O>-! 

= cosh (!.<l)<R'o,</>. (50) 

With tbese definitions, it is easily shown by an 
argument similar to Eq. (46) that (}ltd, is positive 
definite with respect to the scalar product (49) 
and that its adjoint is given by 

'4 + -14 
<R"'*</> = e 2 e (}l 'o'*</> = cosh (! .<l)<R'o'*</>. (51) 

Form (c), Eq. (22), is somewhat different because 
of its normalization . Thus using as a scalar product 

(</> I y,) = tr </>f (O' e
4 

- 1 y, 
.<l 

= tr (U-' f (O'I</>f 'Oll)(U- 't'Ol Iy,f(O") , (52) 

and modifying the linearized Boltzmann equation 
to be 

X '" '" _ .<l_ X = <R'o,</> (53) 
e'" - 1 ' 

it follows that (}l'o' is positive definite relative to 
the scalar product (52), has the same adjoint as 
before, Eq. (48), and gives the correct entropy 
production by Eq. (44), namely reduces to Eq. (33) . 
Again, for simplicity, u can be set equal to 1 in 
Eq. (52) but then there is no correspondence with 
the entropy density or entropy production. 

With the respective scalar products and super­
operators, the variational methods discussed in 
Sec. III of Ref. 5 may be taken over to solve the 
linearized Boltzmann equation. 

V. TIME-REVERSAL AND SPACE-INVERSION 
SYMMETRY 

The variational methods referred to in the previous 
section make use of the relation between the Boltz­
mann superoperator <R and its adjoint <R*. In the 
classical case' the relation between these two (super) 
operators is physically related to time reversal 
and space inversion. That this is also true in the 
quantum mechanical case will be shown in this 
section. 

Quantum mechanically, the time-reversal opera­
tor 8 on state vectors in the Hilbert space .p is 
antiunitary." Consequently, the time-reversal 

It E. P. Wigner, Group Theory (Academic Press, Inc., 
New York, 1959). 
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superoperator G defined by 

eA = OAO-' (54) 

is also antiunitary. In the absence of a magnetic 
field H the Hamiltonians K and V are time-re­
versal invariant, that is 

eK = K, @V = V , 

so that the t operator Eq. (3) satisfies 

@I = It. 

(55) 

(56) 

Thus for e.'{ample, the collision cross section, Eq. 
(16) , satisfies 

(57) 

in which -i is the state obtained by time-reversing 
state i . 

In analogy with the classical case 1(0) is not time­
reversal invariant if there is a local stream velocity 
or a local angular momentum density but this 
difficulty can be overcome by defllling the operator 
@' which acts on the parameters in I{O' to reverse 
the stream velocity and angular momentum density 
pararneters. It is convenient to require e' to also 
change the sign of t and H. The combined operator 
aT = ee' then will leave 1(0) invariant, i.e., 
lih/{O' = 1(0) . It then follows from Eqs. (48) and 
(56) that 

which is exactly Eq. (40) of Ref. 5. 
Space-inversion symmetry is also the same quan­

twn mechanically as classically. The space-inver­
sion operator II on state vectors in .\) is unitary as 
is the corresponding superoperator 0 given by 

OA = IIAIl. (59) 

Thus if the Hamiltonians K and V are space-in­
version invariant, then so is t, i.e., 

uK = K, oV = V, ot = t, (60) 

so that the cross section, Eq . (16) satisfies 

u,_.(p, -> p,) = u,_,(-p,-> -pJ. (61) 

The inversion of the relative linear momenta 
of the initial and final states has heen explicitly 
indicated. However, if the states have a spatial 
configuration as is the case for optical isomers, 
then the spatial configuration must also be re­
versed. 

Since j'fJJ is not invariant to space inversion, 
one again defines an operator 0' which inverts 
the stream velocity Vo so that 1(0) is now space-

inversion invariant. It must be remembered that 
1'0) is parameterized by the position r but that the 
origin of the space inversion is to be considered the 
position r SO that r is unchanged by the above 
inversion process. The combined space-inversion 
operator HI = n 'n will leave to) invariant SO that 

(62) 

Thus for form (a) and the scalar product (41), all 
the statements of Secs. III and IV of Ref. 5 may 
be applied to the quantum case. This also holds 
for the other two forms and their respective scalar 
products. For the simpler scalar products, every­
thing will again be applicable except for the identi­
fication of entropy density and entropy production 
as is discussed in Sec. IV. 
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APPENDIX A 

Some errors in Ref. 3 are corrected: 

Eq. (33): replace 1" by 1'.1"; 

Eq. (37): replace 1': by 1'.1' ,; 

Eqs. (44), (51), (58), (59): replace i by -i; 
Eq. (69): insert l / I'LL. inside the integral. 

APPENDIX B 

In linearizing the Boltzmann equation accord­
ing to form (c) an expansion of the exponential 
e-'" is required. Similarly, in evaluating the 
entropy density and entropy production by forms 
(a) and (b) the linear and quadratic terms in q, of 
In [f 'O)(l + q,») have been used. These formulas 
will be developed here for a noncommutative 
algebra. 

The classic Baker-Hausdorff formula for the 
cxpansion of z = In (e'e') in powers of y has recently 
been discussed by several authors." This expan­
sion may be written as follows: 

z = x + z, + z, + (B1) 

where 

z, (B2) 
-ti t Y -e 

11 J. 'Wei, J. Math. Phy.s . 4, 575, 1337 (1963); G. Weiss 
and A. A. Maradudin, ibid. 3, 771 (1962). 
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and 

z" = ~ C~ z"_,},. (B3) 

In these formulas, tJ., is the commutator super-
operator 

tJ.,y=xy-yx (B4) 

and the derivative is the Fr6chet derivative" 
(which is again a superoperator). The"first term 
Eq. (B2) is in convenient form for application, 
though it was found difficult to find an explicit 
expression for z, in terms of x and y from Eq. (B3). 
Consequently, a different formulation of this result 
will be ohtained. 

Let z(A) be considered as an analytic function 
of the complex variable A; then by a Taylor series 
expansion of the expoDeDtial and identification of 
the results, the foUowing derivative is obtained: 

a .p.) 
aA e 

~ ~ 1 ... az .. - ",-I 
~ ~-z -z 
" .. 0 ",.0 n! v>.. I 

i:. i:. m!p! ." az z' 
.-0,-0 (m + p + I)! ml aApl' 

11 z'" az zll> 
L (1 - a) "a' ria -, " I' 
_.11 0 m. Ul\p. 

11 (1- .. ,. az ... ria 
o e ax e , (B5) 

wherein p = n - m - 1 and the illtegral formula 
for the beta function mlpl/(m + p + 1) 1 has been 
used." The last integral may be evaluated using 
the commutator superoperator tJ., defined analogous 
to tJ., in Eq. (B4). Thus, 

l' (1-a). az co. ria - '11 -.. 4 . da. az 
o e aA e - e 0 e aA 

_ e'(1 - e-6
.) az. 

- tJ., aA (B6) 

For z(A) = In (e'e"), Eq. (B6) after inversion of the 
superoperator and setting A = 0 gives the first 
Gltteaux differential" of z(A) which is just Eq. (B2). 

I I E. llille aod R. S. Phillips, Functional AnallisU and 
&mi-{lTfJUp3 (American Mathematical Society, Providence, 
Rhode Island, 1957). 

1t See, (or example Higher Transcendental Functiona, 
edited by A. Erd~lyi (McGraw-Hill Book Company, Inc., 
New York, 1953), Vol. 1, Chap. 1. 

The second GAteaux differential of z(A) is ob­
tained in the same way, Damely by dilierentiating 
Eq. (B5) with respect to A, setting z(A) = In e'e", 
taking the limit A -+ 0, and solving for a'z/aA' 
using superoperators. Thus, 

..!..... I(~J _ l' l' [ (1-a) ' a2

z ... a>.. 2 e - 0 0 e ax 2 e 

+ 0 -,.,)(1 -")'(1 ) az "O-a'. aZ ... 
e - a aA e aA e 

+ 0-.), az 0-".' az •• ,] ria d{J 
e aA e a aA e • 

= ,1 - e-
6

• a'z + ,1 - e-
6

• [(-.!. az) az] 
e tJ. , aI.' e tJ., tJ., aA aA 

_ [..!... a.}, 1 - e-
6

• az + e.(1 - e-
6

• az) ..!... az 
tJ., aA tJ., aA tJ., ax tJ., aA 

_ ,1 - e -6. [az ..!... az] 
e tJ., aA tJ., aA ' (B7) 

so that for A = 0 and .(1.) = ID e'e" there results 

a'. I 
2z2 = ax 2 

), - 0 

tJ., • ( 1 ) tJ., 
= 1 -6. Y - I '. Y 1 d . Y -e -e -e 

+1 

+ (I~: 6'Y) I_Ie- 6 •
y . (B8) 

To apply these equations to the main text, one 
sees first of all that the second term in Eq. (29) is 
just Eq. (B6) in the limit A = 0 with the proper 
replacemeDt of x by -g and az/aA by cp. EquatioDs 
(34)-(35) are derived from the expaDsion (BI) for 
z(A) = ID e'e" with the replacement of x by -g 
aDd y by cp - tcp', the latter being necessary if 
e' is to be equal to 1 + cp to second order in cp. 
A small amount of algebraic manipulation and the 
ideDtity 

cpf(O) = t'O)e6 cp (B9) 

[with tJ. as in Eq. (24)] then yields the required 
results. 
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The cOllventional statemeut 9f statistical determinism is that "the expectation values of al l (Heisen­
berg) obscrvu.blcs are dctcrmihcd by the expectation values of the observablcs at one time." This re­
quires that a full algebra of sclf-adjoint opcru.tors be in one-to-one correspondence with measurement 
procedures performed at one time. For instance, it requires that if two noncommuting obscrvableB p 
and q are defined at t =0, there should exist a measurement procedure at t = 0 corresponding to p +q. 
No such procedure is known. The contrast betwccn the positive assertion of the existence of certain 
lu.boratory procedures and the inability to describe them constitutes perhaps the weakest point of 
quantum mechanics. However, the conventional statemeut of statistical causality is shown to be UIl­

tenable in a relativist.ic theory. This paper proposes 8. weaker form of causality which ( I ) uscs meaBure­
me~lts .made within a t.runcated light cone rn.ther than at onc time for predictive purposes, and (2) 
which lllvolves only etnctJy localized states, i.c., states which are vacuumlike outside a fini te volume. 
Failure of the conventional causality statement implies that the sct of Qunsilocal observables is not 
necessarily linear) i.('., if A and 13 a.re in a sct, A +B is not necessn.rily in it. This remark may open the 
way to 1), systematic inquiry into the problems of associating laboratory procedures to self-adjoint 
aperatore. 

I. INTRODUCTION 

T I-IE fact that quantum mechanics is an incom­
plete theory is generally acknowledged and de­

plored by those who are interested in fundamental 
problems. Quantum mechanics asserts'" that meas­
urement procedures at one time are in one-to-one 
correspondence with an algebra of self-adjoint 
operators on Hilbert space, but it does not specify 
the procedures. As an example, assume that pro­
cedures for measuring the position q and the mo­
mentum p at the time t = 0 arc known. Quantum 
lnechanics asserts that there exist procedures per­
formed at t = 0 which correspond to p + q. The 
assertion does not mean only that it is possible to 
design a procedure by which the swn of the expecta­
tion values (p). + (q). is obtained for every state 
'l'. If this were the whole assertion, the procedure 
could be trivially specified as an arithmetic addition 
of numbers obtained from many individual measure­
ments of p and of q on samples of the ensemble 'l'. 
The assertion is that the same procedure should 
also yield the expectation values of (p + q)' and 
of other real-valued functions of the operator p + q. 
For this purpose, results of the measurement of 
(p + q) on individual samples may be squared and 
averaged . One could, for instance, measure q and 

* This work performed under the auspices of the U. S. 
Atomic Energy Commission. 

1 P. A. M. Dirac, The Principlu of Quantum Medw.nics 
(Clarendon Press, Oxford, England 1947), p. 26. 

I J. von Neumann, Afa./.h.ematiscJte Grundlagen der Quanten­
Mechanik (Dover Publications, Inc., New York, 1943), p.167. 

then p in rapid succession and consider the sum of 
the observed values as the value of (p + q). How­
ever, the more accurately q is measured, the wider 
the statistical dispersion of subsequent values of p, 
until, in the limit, the measured value of p becomes 
entirely independent of the original state. 

Also, two me:u;urements of (p + q) performed in 
rapid succession should give the same or almost the 
same value. These requirements, imposed by the 
theory on the apparatus, cannot be met by any 
known device. On the other hand, the sum of two 
commuting ohservables A and B may be defined 
simply as the arithmetic addition operation on the 
two procedures. Operationally, the test for com­
mutativity is to determine if the expectation value 
(A + B) is independent of the order in which the 
measurements are performed. 

Why is it necessary to maintain the stringent 
postulate in the face of obvious difficulties? What 
would the theory lose in predictive power if the 
postulate were dropped or weakened? It is shown 
that the usual assumption about the correspondence 
between operators and procedures is indispensable 
for the commonly accepted form of statistical 
causality (or determinism).' The assertion of causal­
ity is 

(A) "The expectation values of the observables meas­
ured at one time (on a space/ike hypersur!ace) de-

• No precise distinction between the two words seems to 
enjoy ulllversal ac(.'eptance. 

1588 
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termine the expectation values of all observables at 
later times. H 

This seems to be a minimal substitute for classical 
causality, and it is understandable that one goes 
far to save it. 

We shall see that in the context of the general 
principles of quantum mechanics the causality (A) 
requires, in effect, that the observables on one space­
like hypersurfaee t = 0 form ... ~.inear set. In par­
ticular, for a complete set of dynamical variables 
1'(0), q(O), the linear comhination 1' (0) + q(O) must 
also be an observable at t = o. The dilemma ap­
parently is this: eitber we must find procedures 
for measuring such quantities as (1' + q) at t = 0, 
or we must abandon what seems to be a reasonably 
minimal form of causality. Yet, as we shall sbow, the 
statement (A) conflicts with the combination of (1) 
tbe relativistic principle of signal propagation with 
a finite velocity and (2) well-established non­
classical effects snch as measurability of parity. 
Therefore, one must accept a weaker form of sta­
tistical causality which does not refer to such all­
inclusive categories as "observables at time t any­
where in the universe" but, more modestly and 
realistically, to quasilocal observables [Sec. IV, 
Statement (e)]. 

The weaker form of causality does not demand 
that observables at one time form a linear set, and 
hence relieves us of the burden of trying to design 
extraordinary experimental procedures to satisfy the 
requirements of a theory. This result opens the way 
to a systematic investigation of the relation betwccn 
laboratory procedures and self-adjoint operators on 
Hilbert space. 

II. CONSEQUENCES OF CONVENTIONAL CAUSALITY 

A measurement procedure in a space-timc volume 
V or spacelike hyperplane S is a set of instructions 
and apparatus for an operation carried out within 
V or S; that is, all interaction between the ap­
paratus and the system takes place within V or S . 

The assumption that such procedures exist clearly 
requires some extrapolative idealization. If a meas­
uring instrumen t begins to interact with the system 
at the time t in a space volume v, the instrument 
must have been brought there previously, thus dis­
turbing the system. To justify this assumption, it 
must be asserted that the interaction previous to 
t can be minimized to any desired degree. 

In Sees. II- IV we are not interested in correia­
tion measurements, i.e., subsequent measurements 
On the same sample of an ensemble. We may assume 

discarded after the measurement. However, we do 
not assume that each measurement is instantaneous, 
and we classify observables by the time interval 
of measurement, i.e., the interval beginning ,.ith 
the interaction betwccn apparatus and object and 
ending at the moment when the necessary informa­
tion is stored. 

Many measurement procedures are equivalent in 
that they give identical results for all ensembles. 
An equivalence class of measurement procedures in 
V (or S) are called an observable in V (or S). Dif­
ferent observables may have identical expectation 
values for all ensembles, e.g., the momentum of a 
frcc particle, measured at different times. This de­
fines an equivalence class of observables which, 
following Dirac, we call a tldynamical variable." 
Self-adjoint operators on Hilbert space may be con­
sidered as images of observables in a many-to-one 
mapping, or as images of dynamical variables in a 
one-to-one mapping. 

We follow the conventional assumption to the 
extent that the set E of dynamical variables is 

• assumed to form a normed linear space so that the 
set of all observables is closed under addition. For 
example, if 1'(0) and q(O) are observables, then 
q(O) + 1'(0) may not be an observable at t = 0; 
but it is an observable. This is a much weaker as­
sumption than isomorphism between dynamical 
variables and observables at one time. For instance, 
for a frcc particle [q(t) = q(O) + pt], the Heisen­
berg operator q measured at the time t = 1 is equal 
to 1'(0) + q(O). In other words, the equivalence 
class of the dynamical variable q(O) + 1'(0) may not 
include an observable at t = 0, but it does include 
one at t = 1. In the remainder of this section, we 
consider only observables at one time (or on a 
spacelike hyperplane). 

Let G, be the set of dynamical variables ob­
servable at t, i.e., G, consists of those dynamical 
variables whose equivalence class includes an ob­
servable at t. To an ensemble p, one associates expec­
tation values of dynamical variables (A). (A E E). 
They form a positive linear functional f.(A) on the 
dynamical variables. According to Statement (A), 
the expectation values of the particular dynamical 
variables B (B E G,) determine all expectation 
values. In other words, if two ensembles have identi­
cal expectation values for all dynamical variables 
BEG" then they also have identical expectation 
values for all dynamical variables. That is, 

f.(B) = f. ·(B) (B E G,) (2.1) 

that each sample of the ensemble is destroyed or implies 
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FIG: ,I. Wav~fuDctioD of !i one-dime~ional part.icle with 
p081tlve (full hoe) and negative (dot.ted hne) reflection parity. 

f.(A) = f.,(A) (A E E). (2.2) 

The vanishing of a linear functional f. - f., in G, 
implies its vanishing on the whole set E; such a 
suhset G, is called total. Note added in proof: It is 
assumed that every hnear fun,tional can · be repre­
sented as the difference between two positive linear 
functionals. This assumption is justified only [or 
certain topologies of the space of dynamical varia­
bles. 

We need two definitions in order to state the 
consequences of this postulate. 

Definition 1. A subset G is den.e in E if, for each 
y E E, there exists a Cav.chy sequence of elements 
X. E G so that X. -> y . 

Definition 2. A subset.o is fUndamental if the set 
of all linear combinations of elements of G is dense in E. 

The condition for G, being total [i.e., the condition 
for the postulate (A)] is then given by the theorem:' 

Theorem. A subset G is total if and only if it is 
fundamental. 

For the purpose of designing measurement pro­
cedures, we can go farther. The knowledge of the 
expectation values of observables A, is equivalent 
to the knowledge of the expectation values of all 
linear combinations of the Ai. Also, there is no 
physical distinction between a procedure for ob­
taining a mean value and one which allows approxi­
mating it to any desired degree. lIence: 

Physically, a fundamental set of dynamical 
variables is equivalent to the whole set. 

To summarize, the postulate (A), together with the 
general principles of quantum mechanics, requires 
a one-to-one correspondence between the set of 
observables at one time and the set of all dynamical 
variables. 

In an attempt to avoid the unpleasant conse­
quences, one might weaken the statement of causal­
ity in an obvious way by requiring knowledge of 
expectation values of observables in a spacelike slah 
of finite thickness in the time dimension [State­
ment (B)].' 

• S. Ba.nach, TMorie des Optratio rt.3 Linooirea (Hafner 
Publishing Company, New York, 1932), p. 58. 

oR. Haag and D. Schroer, J. Math. Phys. 3, 249 (1963). 

While this weakening constitutes a further de­
parture from the idea that the present determines 
the future, it does not seem unreasonable as long 
as the thickness of the slab is small. This idea will 
not be pursued in the present paper since the next 
section will show that neither Statement (A) nor 
Statement (B) is tenable in a relativistic theory. 

III. THE FAILURE OF STATISTICAL CAUSALITY 
IN RELATIVITY 

The finite velocity of signal propagation imposes 
severe restrictions on the possibilities of the measur­
ing apparatus. Since the measuring instruments are 
macroscopic, it is sufficient to apply tbe basic 
principles of classical relativity to their operation. 

Consider a space volume v at a time t, and let 
S. be the set of all observables that can be meas­
ured in v at time t. If v' is another nonintersecting 
volume, a measurement in v cannot influence one 
in v' at the time t. That is, any instantaneous 
measurement by an instrument which occupies botb 
v and v' supplies no more information than could 
be obtained by simultaneous separate measurements 
in v and in v'. The same conclusion obviously holds 
if V and V' are space-time volumes which are space­
like with respect to eacb other, i.e., if V includes 
only points that are separated by spacelike inter­
vals from all points of V'. 

Consider a state that is vacuumlike everywhere 
e~cept in two congruent disjoint volumes v and v', 
i.e., the expectation values of all quasilocal observa­
bles at t = 0 outside of v and v' are those of tbe 
vacuum state. The remaining information is supplied 
by quasilocal observables in the space- time volumes 
V and V' which include v and v'. We may assume 
V and V' to be spacelike, with respect to each other. 
As an example, consider a one-dimensional one­
particle system with two states described by the 
wavefunctions "'(x) (Fig. 1): 

1
0 except for d < [xl < rl + "., 

'" = t(2)' sin (x - d) for d < x < d + "., 
±t(2)'sin (-x + d) for - d - .. < x < -d. 

(3.1) 

Instantaneous observations in the two segments 
d < Ixl < d + ". cannot distinguish between tbe 
two signs. By tbe principle of finite signal propaga­
tion, the time necessary to obtain additional in­
formation cannot be made arbitrarily small. If a 
photon is used for the purpose of comparing the 
physical situations in the two segments, tbe minimal 
time for obtaining information would be 2(d + ".)/c . 
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On the other hand, we know that the reflection 
operator, defined by 

Rf(x) = f( - x) (3.2) 

corresponds to an observable. The two functions 
in Eq. (3.1) are eigenfunctions of R with parity 
(eigenvalue) ± 1, and there are known methods 
for determination of parity. 

If, more generally, observations in a finite time 
interval are admitted, the same conclusions hold 
if the space- time volumes . 

-d - .- < .& < -d, It I < Ilt 

and 

d < x < d + .-, It I < Ilt 

are spacelike with respect to each other. For any 
finite timelike thickness Ilt, there are states (charac­
terized by f in our example) whose observable 
properties cannot be determined by an observation 
in the timelike slice. 

We conclude that the strong causality [Statement 
(A)J as well as the slightly weakened form (B) are 
untenable in relativistic quantum mechanics. 

IV. WEAK CAUSALITY 

A strictly localized ensemble p. has the property 
that at t = 0 the expectation values of all observables 
are vacuumlike outside the space volume v. More 
precisely, if w is a space volume entirely outside v 
and A. a quasilocal observable at t = 0 in w tbe~ 
the expectation value (A w ),. is equal to the v~cuum 
expectation value (A w ). of this observable. Accord­
ing to Sec. III, there exist observables whose expecta­
tIOn values are not functions of the instantaneous 
expectation values (A )". Consider, however a four­
dimensional cone defined as follows. Let Ii be the 
radius of the smallest spliere that contains v. Then 
this sphere and the hypersurface consisting of all 
hght rays from the surface of the sphere to its center 
defines a space-time cone C(v), shown in Fig. 2, 
such that observations in C can ascertain any 
" hit' " b p ase re a Ion etween parts of the physical 
system in v. Without contradicting either the rela­
tivistic principle of finite signal velocity or well­
established results of quantum mechanics, we can 
state a weaker fOID} of causality: 

(C) For a strictly localized ensemble P. in the space 
~olume v, the expectation values of the observables A c 
tn the corresponding space-time cone C(v) determine 
al! expectation values. 

It might appear, at first, that Statement (C) is 

R/, 

R 

FIo. 2. Weak. caUsality: For &. s~a.te strictly localized within 
~ sphere of r~1U8 R., a. determJDlOg set of observations must 
lOclude duratIOns of Ric. 

too weak to be useful as a substitute for (A) since 
the strictly localized ensembles are a very special 
class of ensembles or states. However, the concept 
of a physical system is meaningful only to the ex­
tent that it is not influenced by other parts of the 
universe which are left out in considering the system. 
If, nevertheless, the system is idealized so that it 
exteuds everywhere, then we must make the as­
sumption that nothing else exists, i.e., that the 
expectation values of quasilocal observables are 
vacuumlike at sufficiently large distances. State­
ment (C) seems to be adequate not because most 
ensembles are strictly localized but because the only 
way to deal with actual ensembles is to approximate 
them by strictly localized ones. In contrast to 
Statements (A) and (B), (C) evidently does not re­
quire that the set of observables associated with a 
precise instant should be closed under addition and 
thereby relieves the theorist of a heavy burden'. 

Another consequence of the principle of finite 
signal velocity is that a collection of strictly localized 
ensembles Ip.1 for a fixed volume v is invariant 
under operators that are images of the corresponding 
set of quasilocal observables {A .1. Indeed, according 
to the principles of quantum mechanics the vector 
A,'l'./IIA.'I'.II is the state created inlmediately after 
an instantaneous measurement A.. If this state 
differed from the vacuum state outside of v a 
signal would be transmitted instantaneously f:om 
v to other space points. 

This remark can serve to confirm the impossibility 
of determining the phase a in a state of the type 
considered in Sec. III, viz. 

~ = 'l'. + e;"l' •. 

by instantaneous measurements if v and v' are dis­
joint simultaneous space volumes. Clearly, 

('1'., ,'1'.) = 0, 

and according to our previous remark 

('1"" A'I' •. ) = 0 
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whether A is in IA.} or IA •. }. Hence, for any ob­
servable A , 

(<I>, A<I» = ('1'., A,y.) + (~"" A,y •. ) 

and the cross term always vanishes, so that no In­

stantaneous in.formation about the phase is available. 

V. THE PROJECTION AXIOM 

The weakening of classical determinism in quan­
tum mechanics is of two kinds: either the statements 
refer to all observables and all states but to the 
ensemble rather than the individual sample, or they 
refer to some observations on some states and suc­
cessive observations on one sample. The latter cases 
are realized by a special kind of measurement pro­
cedure called a "procedure of the' first kind,'" which 
is aptly described as filtering . A filter selects a sub­
set of an -original ensemble, and some unambiguous 
predictions can be made with respect to each sample 
of such a subset. Let us consider the restrictions 
that relativity in1POseS on these predictions. 

One of von Neumann's postulates is the pro­
jection axiom (M)': "If the observable R is measured 
on a system twice in succession, both observations 
yield the same value." Clearly, this form of the 
statement must be taken with a grain of salt. 
Margenau' has pointed out that in the overwhelm­
ing majority of measurements the system under ob­
servation is destroyed; it or its parts become perma­
nently attached to the measuring apparatus. In the 
spirit of Pauli J

6 a more literal version would preface 
the sentence by "In every equivalence class of pro­
cedures belonging to the observable R, there exists 
one such that . . .. " 

I s Axiom M necessary at all? It is argued here 
tbat at least in some modified form "Axiom M" 
is both physically desirable and indispensable. In 
classical physics the inunediate ~epetition of an 
observation confirms the first result. This fact is 
tacitly accepted as the basis of any science. If it 
were not so, could one speak of objectively true 
events at all? Since quantum mechanics must agree 
with classical physics in some limit, quantum me­
chanics must surely include some statement with 
predictive claim on successive measurements of 
individual samples. What could the statement be? 

Von Neumann points out that there are, a priori, 
three possible forms of causality or acausality in 
relation to the repetition test. (The words "con-

e W. Pauli, IJarulbuch der Physik (Springer-Verlag, Berlin 
1933 ), p. 152. ' 

7 Reference 2, p. 177. 
8 H. Ma.rgenau, Phys. Rev. 49, 240 (1936). 

lirmabiHty" or tlobjectivity" would perhaps be more 
felicitous than "causality.") Given a repetition, (1) 
the first and second results could be statistically 
independent, (2) the first result could have a sta­
tistical dispersal, but the second be each time 
identical with the first, or (3) both results could be 
uniquely determined by the initial state. 

The third case is that of classical mechanics; the 
first would come close to denying the existence of 
any objective observation, and hence of natural 
science. There remains the second case which is 
embodied in Axiom M- and perhaps a fourth pos­
sibility, namely that the results of the second meas­
urement could be statistically correlated to the first. 
The principle of simplicity impels us to choose the 
second rather than the fourth possibility unless 
there is definite evidence against the former. 

The point in which von Neumann's axiom needs 
revision (in addition to the minor restriction made 
above) is the time after which a confirmatory repeti­
tion can be made. As we have seen, in relativistic 
quautunl mechanics some observables that are in­
dispensable for prediction cannot be measured in­
stantly, i.e., there is an inevitable delay between the 
beginning of the interaction and the recording of the 
information. It is now shown that there is equally 
an inevitable delay before the second measurement 
can confirm the first result. 

In discussing the time sequence of measurements, 
it is convenient to think of a retrospective analysis 
of measurements completed in the distant past, 
rather than of a theory to be applied to experiments 
in actual progress. The first advantage of this view 
is that the use of probahility in the sense of a ra­
tional judgment on the basis of existing and, 
ordinarily, incomplete evidence never arises; the 
only kind of probability involved is the relative 
frequency of past events. The second advantage of 
the retrospective view is that the question of signal 
velocity between recording devices never arises. It 
must be remembered that, literally speaking, a 
prediction is not possible even in classical relativistic 
physics, since the time necessary to communicate 
information from local observing devices to a central 
predictor would be precisely as long as the time for 
which the theoretical predictive ability claims 
validity, viz. t = a/c, where a is the distance 
between the most distant of the simultaneous re­
cording devices. Instead, by prediction we mean the 
establishment of a functional relation between ob­
servations recorded at different times, all of them 
in the distant past with respect to the time at 
which the verification is made. 
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We consider the proeedures of the first kind which 
measure the parity of a sample at two different. 
times in such a way that the first and second meas­
urements have identical results. 

Resonance scattering of light provides such a 
procedure for some systems. Let there he two energy 
"ground" eigenstates with opposite parity, and let 
the state he a coherent superposition of the two 
(which are assumed to he nearly degenerate). If 
there is an excited energy eigenstate of known parity 
(say + 1), then resonance scattering for sufficiently 
long wavelength is possible only with parity cbange 
of the system. If the energy spread of the photon 
covers the 'energy difference hetween the two ground 
states and the excited states then the system is 
certain to' he in the state with parity - 1 after 
resonance of the photon has heen observed. The 
question is now: What is the smallest time between 
the beginning of the interaction between system 
and photon and its cessation? To simplify the 
question, tbink of a system which is initially in the 
negative-parity state, and ask for the time at which 
the wavefunction of the combination (system and 
photon) becomes a product function with the 
negative-parity eigenfunction as one factor. 

Consider an elcctrodynamic system (such as a 
positronium) consisting of two particles localized 
approximately in small volumes v and v' with a large 
distance between them. Intuitively, the answer to 
Our question is then the following. In order to he 
sensitive to the parity of the state, the photon has 
to he scattered by one particle (say, in v) and run 
to v' to he rescattered-or vice versa. The smallest 
time for such a process is evi~ently die. 

A more quantitative estimate may be derived by 
elementary perturbation theory. Dyson's operator' 
U(t, to) for finite times can he expanded and the 
terms transformed in the usual manner. The result 
of the contractions can be represented by the usual 
diagrams. The relevant fomth-order diagrams are 
showll in l?ig. 3; it is the interference of these two 
terms that is sensitive to parity. The rules for the 
evaluation of the diagrams differ from the usual 
ones only in that the integration over the coordinates 
of points 1 and 4 is omitted. The result is the prob­
ability amplitude for a process in which a photon 
reaches the system at t, and leaves it at t •. In order 
to obtain the probability for a resonance scattering 
from a ground state, the resulting matrix element 
would have to be integrated with respect to the 

• See. for example, S. S. Scbwebcr, H. A. Bethe, and 
F. De Hoffmann, Mesons and Fields (Row, Peterson and 
Co., Evanston, Illinois, 1955), Vol. 1. 

,., 

p,UnCI.E Ha.l PARTICLE No. 2 

), , ., 

P"'''T1CI.£ t4o. 2 

FIG. 3. Feynman diagrams for reaonancc acat.tering. The 
pboton is absorbed and re-emitt.ed by onc particle, then 
absorbed and re-emitt.ed by the ot.her particle. 

initial and final coordinates of the particles. Simi­
larly, an integration over some localized wave 
packet of photons would have to be performed on 
the final and initial coordinates of the photon. 

The usual evaluation of the diagrams exhibits 
the function D,(x, - x,), where the time coordi­
nates of x, and x, cannot differ by more than t. - t, 
while the space coordinates differ approximately 
by d. Since the function D, decreases rapidly outside 
the light cone, the matrix element is negligible 
unless the time t. - t, is larger than di e. The meas­
urement hegins when the photon interacts with 
particle No. 1 (or 2) and is repeatable after it has 
interacted with particle 2 (or 1) in diagram (a) 
[or (b)]. In the intermediate period, one of the 
particles is in an excited state and the total system 
is clearly not in the ground state, so that an ad­
ditional photon would not be scattered in the same 
manner. 

Only a particular class of fourth-order diagrams 
has heen considered, and one may ask why others 
should not contribute to the measurement. Physi­
cally, the reason is that the photon energy has been 
chosen for resonance (i.e., so that Thompson scatter­
ing, Compton scattering, etc., are negligible), but 
mathematically this cannot be shown from perturba­
tion since the excited intermediate state is not ob­
tainable by perturbation. 

It has thus heen shown that relativity imposes a 
time delay hetween a measmement of the first kind 
and the subsequent confirmatory observation. There­
fore, the term "immediate repetition" in Axiom M 
must he replaced by the phrase "repetition after 
the time Ilt that characterizes the space- time 
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volume V assigned to the observables." This leads 
to the modified a.'Ciom : 

(M') In every equivalence class of procedures be­
longing to an observable A v' there exist.! a procedure 
such that for all systems whose Hamiltonian commutes 
with A., it.! repetition after the time 6.t gives the same 

JOURNAL OF MATHEMATICAL PHYSICS 

result as the first measurement, where the interval 6t 
i8 the largest time like interval in V. 
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A simple and useful relat.ion between the Coulomb amplitudes F and G (in Mott's notation) is 
derived and F and G arc evaluated ano.lytically up to a' terms for arbitrary q - al p. These results 
are valid for aU angles, hut are particularly useful at small angles. The general analytic behavior of F 
and G in the variable % - ain te is discussed. The method is applicable to higher-order terms (or' and 
up). A double integral representation of F is also derived by using the Sommerfeld- Watson trans­
formation. This integral representation exhibits the dependence on a, q, and 8 scparntely. 

1. INTRODUCTION 

T HE solutions for the relativistic scattering of 
electrons in a Coulomb field were first obtained 

by Mott' in the form of partial wave amplitudes. 
These amplitudes were expressed as functions of 
the two parameters a and q, where a = Z1137, 
q = al fJ, and fJ = vi c. Attempts to sum the partial 
wave series analytically were successful only in 
powers of a (with fJ considered to be of order 1).'" 
The most recent of these attempts' led to expressions 
for the Coulomb amplitudes F and G (in MoWs 
notation) accurate to order a' and a' respectively, 
with extremely complicated coefficients which were 
functions of fJ and x = sin ~8. 

We have obtained a simple and useful relation 
between the Coulomb amplitudes F and G, and have 
succeeded in summing the partial wave series in 
powers of a' for arbitrary q, up to and including 
the terms in a'. Tbis organization of the expansion 
appears to be simpler and more natural than that 
in simultaneous power of a and q'L3, since the major 

• Supported in part by the Na.tional Science Foundation. 
t Now at University of Massachusetts, Amherst, Mrur 

saehusett.s. 
, N. F. Mott, Proc. Roy. Soc. (London) A124, 425 (1929); 

135, 429 ( 1932). 
1 W. A. McKinley and H. Fcshba.ch, Phys. Rev. 74, 1759 

(1948); R . ll . Dalit.z, P roc. Roy. Soc. (London) A206, 509 
(1951 ). 

• W. R. Johnson, T . A. Weber, and C. J. Mullin, Phys. 
Rev. 121, 933 (1962). 

complexity of the latter comes from expansion of 
the Coulomh phase factor, exp (2iq In x), in powers 
of q. In our expansion the result is separated into 
two terms, one of wbich contains the phase factor 
exp (2iq In xL the other of which does not. These 
results are then analytic in the variable x, apart 
from the Coulomb phase factor. Tbis separation is 
similar to that given by Drcll and Pratt' for fJ = 1. 

Our results are related to those of Rosen,' and 
of Fradkin, Weber, and Hammer.' Rosen derived 
a double-integral representation of the coefficients 
of powers of a'. Fradkin et al. derived a similar 
expansion in terms of a two-parameter fWlction 
T(8, q) up to a'. We have evaluated these coeffi­
cients as convergent expansions in powers of x, 
which are most useful in the small-angle region 
(near x = 0). In addition, the method is applicable 
for the a' and bigher terms, although the algebra 
is tedious and has not been carried out. 

For completeness we have also obtained a double­
integral representation of the Coulomb amplitudes, 
in which the dependence on a, q, aud 8 is exhibited 
in separate factors . 

Applications of the considerations in the present 
paper to physical problems have been considered 

4 S. D. Drell and R. H. Pratt, Phye. Rev. 125, 1394 (1962). 
• B. Rosen, J . Math. Phy •. 4, 392 (1963). 
• D. M. Fradkin, T. A. Weber, and C. L. Hammer, Ann . 

Phys. (N. Y.) 27, 338 ( 1964). 
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in a separate paper.' Among these applications are: 

(1) Accurate evaluation of the poorly convergent 
partial wave series for the Coulomh amplitudes at 
forward angles. 

(2) Comparison of attractive and repulsive 
Coulomb scattering, particularly in the noorela­
tivistic limit of large /q/ but finite a. 

(3) Behavior of the cross section and asymmetry 
function for small angles. 

(4) Behavior of the -cross section and asymmetry 
function at backward angles, where magnetic scat­
tering effects will be in)portant. 

(5) Modification of the Coulomh amplitudes he­
cause of screening by atomic electrons. 

2. RELATION BETWEEN F AND G FOR 
RELATIVISTIC COULOMB SCATTERING 

a. Partial Wave Expansion 

The relativistic amplitudes for Coulomb scattering 
have been obtained in partial wave expansion by 
Mott,' and his results are reproduced below. The 
amplitudes of the scattered wave in the two spin 
states are related to the functions f(O) and g(O), 
given in the general case by 

F(O) = ~ t. nC.[P.(cos 0) - p._,(cos 0)], 

G(O) = ~ t. n'C.[P.(cos 0) + p._,(cos 0)]. 

(2.6) 

b. Convergence of Partial Wave Expansion 

The series as they stand in (2.6) do not converge 
for all o. For large n, one has 

and for 0 "'" 0, P.(cos 0) ~ ,,-I. Therefore in the 
strict sense, F(O) is conditionally convergent and 
G(O) is divergent. Nevertheless, the expression for 
G(O) in (2.6) is to be understood as the limit of a 
corresponding sum which includes a suitable con­
vergence factor . 

A more convenient approach is to evaluate the 
sums in (2.6) for a = 0, obtaining the usual Born 
approximation (Fo and Go land then expand the 
difference between F, G and Fo, Go in partial wave 
series which converge properly. Mott has performed 
the sums for a = 0, obtaining 

Fo(O) = ti[r(1 - iq)/r(1 + iq)](sin to)';', (2.7) 
Go(O) = -iq cot' !OFo(O), 

2ikf(0) = L [en + I)(e';" - 1) 
.-0 

+ n(e"'-'- ' - 1)]P.(cos 0), 

and the convergent partial wave expressions for 
F,(O) = F(O) - Fo (O) and G,(8) = G(8) - Go(8) 

(2.1) are then given by -2ikg(8) = L (-c';" + e';'-' - ')p!(cos 0) . i -
.-0 F,(O) = "2 ~ nD,[P,(cos 8) - P,_,(cos 8)], 

(2.8) 
For Coulomb scattering the phase shifts in (2.1) 
are determined from the asymptotic form of the G,(O) = ~ t. n'D,[P,(cos 8) + P,_,(cos 8)], 
wavefunction; the prescription here is 

e2h - - - . - [n - iq(1 - /3')I]C" 

- [n + iq(1 - 1l')I]C" 

C, = -e' . ,, -,., rep, - iq)/r(p, + I + iq) 

and 

(2.2) 

(2.3) 

Il = vic, p, = (n' - a')I, a = Z1137 , q = ai ll. (2.4) 

Using 

kf(8) = -;q(l - 1l')IF(O) + G(8), 

kg(O) = ;q(l - 1l')IF(8) cot ;8 + G(8) tan ;8, 
Mott obtains 

(2.5) 

where 

D, = C, - C,(a = 0). (2.9) 

The convergence of the series in (2.8) is now assured 
since n2D. is bounded as n -. 00. 

c. Relation between F and G' 

The recnrrence relations satisfied by the Legendre 
polynomials can be put in the form 

(1 - cos O)d[P,(cos 8) + P,_,(cos 8)1/d cos 8 

= -n[P,(cos 8) - P, _,(cos 8)], 

(I + cos 8)d[P,(cos 8) - p,_ .(cos O)lId cos 0 

(2.10) 

= n[P,(cos 8) + P,_.(eos 0)]. (2 .11) 

, R. L. Gluckstern and S.-R Lin, Phys. Rev. 136, B 859 Equations (2.11) and (2.8) lead immediately to the 
(1964) . 

• The notation is identica.l with that of Mott (see Rcf. J) • The existence of such a relation was first pointed out 
except that our C .. differs from bis by a factor (- J )". by G. RawitBcher. 
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relation 

G,(9) ~ (I + cos 9)dF,(9)/d cos 9 

= - cot !9dF,(O)/dO. (2.12) 

From (2.7) one can easily demonstrate that 

Go(O) = (1 + cos O)dFo(O)/d cos 0 

= - cot tOdFo(O)/dO. (2 .13) 

Therefore F and G satisfy the same relation, namely 

G(O) = (1 + cos O)dF(O)/d cos 0 

~ - cot tOdF(O)/dO. (2.14) 

The significance of this relation is twofold: In any 
computation or evaluation of Coulonib amplitudes, 
it is only necessary to consider F(O). The other 
amplitude G(O) can be obtained by differentiation 
once F(O) is available. Moreover, since the series 
for F,(O) in (2.8) converges more rapidly than that 
for G,(O), numerical results obtained using (2.12) 
will be more accurate than those obtained with (2.8). 

d. Non-Coulomb Scattering 

The relation (2.14) suggests that it may be useful 
to cast the results (2.1) for general relativistic 
scattering into a more convergent form. If one 
defines the complex quantitics A. and B. in terms 
of the phase shifts by 

(2. 15) 

the amplitudes f and g can be written, for all direc­
tions except fJ = 0, as 

2ikf(O) = L n(A.P. + B.P._,), .. , 
. d -

2tkg(O) = dO ~ (-A.P._, + B.P.). 

Defining 
· 1 -

E(O) = 4. L n(A. + B.)(P. + p.- ,), 
1 .. _ I 

1 -
H(O) ~ 4. Ln(A. - B.)(P. - p.-.), 

1. ..... 1 

one finds 

kf(O) = E(O) - H(O) 

kg(O) = E(O) tan to + H(O) cot !O, 

(2.16) 

(2.17) 

(2. 18) 

where the recurrence relations (2.10) and (2.11) have 
been used. Comparison with (2.5) shows that E(O) 
and H(O) now play the role of iq(1 - (3')!F(O) and 

G(O). However, the relation (2. 14) no longer exists 
between E(O) and H(O). 

The rate of convergence of the expansions(2.17) 
may be increased by repeated applications of (2.10) 
and (2.11). For example, one may define the sums 

- 1 -
E(O) = -4. L (A. + B.)(P. - P.- ,), 

'/. n _ 1 

1 -
mO) = 4· L (A. - B.)(P. + p.- ,), 

t ,,_I 

leading to 
E(O) = -tan to dE(O)/dO 

H(O) = cot to dff(O)/ dO. 

(2.19) 

(2.20) 

This prescription must be used cautiously in numer­
ical calculations, since the more rapid convergence 
of (2.19) is to be balanced against the greater 
accuracy required for the numerical d i,fferentiation 
required in (2.20). 

e. Limits for F(O), G(O) at 0 = 0, " 

The convergent expression for F,(O) in (2.8) leads 
immediately to the results 

F,(O) ~ 0, 
(2.21) -F,(,,) = i L (-I)"nD •. .. , 

Explicit results for coefficients of F,(,,) expanded 
in powers of a are given later. It can similarly be 
shown from (2.8) or (2. 14) with some care regarding 
convergence, that 

(2.22) 

The quantity G, (0) is infinite as is also shown later, 
although this may be inferred directly from (2.8). 

3. SMALL-ANGLE EXPANSION FOR F AND G 

It is obvious from (2.8) that the main contribu­
tions to the behavior of F,(O) and G,(O) near 0 = 0 
come from large n. In fact, an expansion of D. for 
large n allows one to perform sums of the terms 
in this expansion for small 0, leading to the form 

-F,(O) ~ L: ajOi+2iq + L biOi, 
i-I ;-2 (3. 1) 

G,(O) "" L c,O'·'" + L d,O'. 
; -- 1 i-O 

After much labor, the first few values of a, and c, 
can be written down for arbitrary Cl, q. However 
b, and d, cannot be obtained explicit ly this way. 

It can be shown that (3.1) correctly describes the 
analytic property of F,(O), G,(O) in the variable o. 
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SpecificaUy, each function separates into two parts; 
one is regular in the variable 8 and the other has a 
branch point at 8 = 0, just as Fo(O) and Go(O) in 
(2.7) . We now obtain the series in (3.1) by expanding 
in powers of a' tor fued q. This modified Born 
series correctly exhibits the analytic behavior in 0, 

although succeeding powers in a' are more difficult 
to obtain. 

The starting point of this expansion is the integral 
representation for D.: 

D. = I. f'dt(1 - t)"'I"-"- ' 
r (1 + 2'q) 0 • 

X [I - e('-"""-" "]. (3.2) 
Writing 

one has 

nD. "" r (1 ~ 2ig) f dt(1 - t)"'I"-"- ' 

X [!a'( -i1r + In t) - ta'( - i1r + In t)' 

+ (a'/8n')( -i1r + In t)] 

== ~a3d!1) _ ia"d!2) + ia4 d!3). (3.3) 

The most convenient form to usc in evaluating the 
sums in (2.8) is the olle which has the appropriate 
power of n to cancel that of the d;n in (3.3). Specifi­
cally, one can write 

to' = I: d;"[P.(cos 0) - P._,(cos 8)], 

g'" = I: nd;"[P.(cos 8) + p._,(cos 0)], 

h'" = I: n'd;"[P.(cos 0) - p._,(cos 8)]. 

Use of the recurrence relations (2.10) gives 

(3.4) 

g'" = -cot!0d!(2'/d8, gO' -cottOdtO ' / d8, 

h(3' = tan to dg"'/d8, g(3) = -cot t8 dl(3)/dO. 
(3.5) 

One therefol'e evaluates tlJ , g(2" h ca) from (3.4), 
obtains g(3) 11m , 1 (2) from (3.5), and finally arrives at 

F,(8) = ~i[ta'IO) - la'l'" + la'I(3)], 

G,(O) = ti[la'90) - la'y'" + la'g"']. 
(3.6) 

Let us write the sums explicitly, replacing the 
factor (-i1r + In t) by (-i1r + a/ a,)t' 1,-0' This 
leads to 

to' = D.. f' dt(l - t)"'t'-"-' 
r(1 + 2'g) 0 

X I: I"(p. - P.-,), .-, 

D. . f' dt(1 - t)"'t' -"-' 
r(1 + 2'q) 0 

X I: t"(P. + P.- ,), .-, 

(3.7) 

---~----/' "-
/ '-, 

/ " / \ 
/ \ 
/ \ 

. e i. \ 

~=-=~$. $ ....L-+--iJL L _="~= 
\ 'e-" J 
\ / 
\ / 

\, / 
"-" ,// 

........... _---/ 
FIG. 1. The contour C for P(x) . 

and 

where 

D, == (-i1r + a/d,),_o' 

The sums over n lead to 

D l' 1°' = r (1 +' Zig) 0 dt(1 

[ 
l+t ] 

X (1 _ 2t cos 0 + t') 1 - 1 . 

Since 

1 - 2t cos 0 + t' = (1 - /.")(1 - 1£-") , 

(3.8) 

(3 .9) 

the integrals can be wri tten as double hypel'geo­
metric functions of the arguments e±i'. \\'e are 
interested in the behavior for small e, and our task 
is therefore to obtain a suitable analytic continuation 
of the double hypergeometric function . We do this 
directly from (3.8) and (3.9) , illustrating our method 
with (3.8). 

a. Term Proportional to u' for Arbitrary q 

Let us start with the integral representation 

f' (1 - t)" "'t' -"- ' 
p(x) = 0 dt [(1 - t)' + 4tx']1 • 

where x = sin !e. From (3.8) one has 

10
' = [D ,/ r(l + 2iq)][P(x) - p(O)]. 

(3.10) 

(3. 11) 
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a' 

FlO. 2. The contour 
C' for P(x ). 

-I 

Let us now consider the contour integral 

- 1 (t - 1)' ;'+>1'-;'" 
P(x) - c dt [(t _ o")(t - 0-"»)1 ' (3.12) 

where the con tour C is shown as the solid curve in 
Fig. 1. The singularities in the t plane are at t = 0, I , 
0", and e- il, and the phase of each factor is chosen 
to be zero at the point Q. If one deforms the contour 
to the dotted curve shown, one can neglect the 
contributions around t = 0 and t = co 1 obtaining 

P(x) = 2p(x) sinh 2"q - 2r(x) sinh ("q - i".) , (3.13) 

where 

_ f' (I - t)"'+ '( - t)' -;'- ' 
rex) - _. dt [(I _ t)' + 4tx')1 . (3 .14) 

It is clear from Fig. I that the integral representation 
p(x) does not allow one to approach the limit 8 = 0, 
since the branch points t = e'" merge with one 
of the endpoints of integration. However p(x) may 
be expressed in terms of P(x) and rex) from (3.13), 
each of which is now evaluated as 8 -> O. 

In tbe expression for rex), 14tx'l is always less than 
(I - t)' and one may expand the denominator in 

powers of x, obtaining 

• (2x)"r(t)( -I); 
rex) = :E ~~~-7'-­;_. j! ret - ]} 

xL'. dt(1 - t)",-,;( - t) ,- ;'+H. 

Setting u = (I - t) -', one finds 

rex) 

(3.15) 

t (-I)'(zx)"rmr(j - iq - .)r(j - iq + .). 
,_. j! ret - ))r(2j - Ziq) 

(3.16) 

In tbe integral representation for P(x) one may 
change variables from t to v according to t - I = 2vx. 
In this way one writes 

P(x) = (Zx)"o+' i dvv"" ' (1 + 2vx),-;'-' 

X (v' + 2vx + 1)-1, (3.17) 

where the contour is tbe same as Fig. I, displaced 
to v = O. For small x, one can expand both the 
factore (I + 2vx)' and (v' + I + 2vx)' in powers 
of x, obtaining 

P(x) = (2x)"'" 

t t (Zx);+'r(k + iq + I - .)r<t)(-I)' 
X ;_. >-0 k! r(iq + I .)j! ret )) 

(3 .18) 

wbere the contour C' is shown in Fig. 2. 
The phases of v and v' + I are taken to be zero 

at Q'. The integral over C' can be separated into 
two parts, one in the upper and the other in the 
lower half-plane. Each is a beta function, leading to 
the following result for P(x): 

P(x) = (2x)"'" t t (Zx);+' r (k + iq + I - .)r(t)(-I)'(-Z.n) . (3.19) 
;_, , _. k! r(iq + 1 - .) j! r[f + iq + !(k - j»)r[-iq - Hi + k)] 

Setting j = l - k, one can write 

P( ) = t (2x)'+l+2i'r(t)(-Z.-i) 
X ,_, r( -iq - lj2)r(iq + 1 _ ,) 

X ~ (-I)' r (k + iq + 1 - ,) () 
6, k! (I k)! r(! + iq - il + k) 3.20 

Tbe sum over k may be performed by using the beta 
function integral representation of r(k+a)/ r (k+b). 
One finally obtains 

P(x) = -2ir(!)(Zx)'+'" 

X t (2x) , ret + !l - ,)r(, + , + tl) 
'-0 1'( -iq - tl)r(t + iq tl)t! 

X cos (t"l - .".,). (3.21) 

Combining (3. 13), (3.16), and (3.Z1), one finds 

p(x) - p(O) = .1: [-x"'" t 1'( - iq) 
r(l + 2iq) " 1-' r( -iq - tl) 

X r( -iq + t) (2x), 1'(1 + 11 _ ) 
ret + iq + tl) I! ' , , 



                                                                                                                                    

RELATIVISTIC COULOMB SCATTERING OF ELECTRONS 1599 

x r(! + !I + ,) cos (!"I - ,,,) 

. ~ (2 )" r(!)( - )'r(l + 2iq - 21) 
- 'k. x i! r(t - i)r(l + 2iq) 

X r(j - iq - ,) r(j - iq + ,) sinh ("q - i".) 1 
(3.22) 

The operator D; may now be applied in order to 
obtain 1"'. Since r (a - ,) r (a + ,) is even in " 
the differentiation need only be applied to the trig­
onometric factors and, can be set equal to zero in 
the gamma functions. Thus 

to' = . 'i,H ~ r( -iq) r( -iq + !) 
U to r(-iq - tl) r(~ + iq + ,I) 

X (2x)'r'(t + t l)i' _ ~ f (2x)"rm 
l! sinh "q ,_, i! r(t - i) 

)( r(l + 2iq - 2}) r(j - iq) (3.23) 
r(l + 2iq) r(l;-- i + iq) 

One can therefore write for the ratio F, / Fo, accurate 
to order ci, 

Fi '""-J a
2 

t (1) -2'0 r(l + iq) _ ;of ~ 2j 

F - 2 x r(l _ . ) - xe £...- a,x 
o tq 1-0 

... Y"CI '" + x2 L bj X
2i + _._e_ X 2

-
2

i"o L CjX2/ , 
i-O sinh 1fq i-O 

where 

and 

a'i" r(j + t) 
1 + 2iq r(t)i! 

X r(~ + iq) r(j + 1 + iq) 
r(! + iq + i) r(l + iq) 

, (1 + 2iq) rmr(j + 1) 
-a 2iq(1 + iq) r(j + t) 
X f(2 + iq) f(l + iq + z) 

f(2 + iq + i) r(t + iq) 

_ • .!!.- r(! + 12 
- a 2q r(!)i! 

X r(-iq + t) f(j - iq) 
f (- iq + t + z) f(-iq) , 

of = 2 arg r(1 + iq) - 2 arg r (t - iq) 

= 4 arg r(I + iq) - 2 arg r(I + 2iq) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

+ 2q In 2. (3.28) 

The superscript (2) stands for the term in a'. 
It is obvious from the form of the coefficients 

a" b" c, that F,/Fo may be written in terms of 
hypergeometric functions as 

~: = a·t/';;:q) ,F,(t, 1 + iq, t + iq; x') 

(1 + 2iq)x' F (1 1 1 +. 1 2 + . ') 
- 2iq(1 + iq) 3 '2 , I 2 tq I '2 I tq; x 

-,~ ., } + 2X 
. ~e [,F,(t, -iq, t - iq; x') - 1] , 

q sm 1 7rq 
(3.29) 

where we have used the Pochhammer notation for 
the hypergeometric function," 

.. F .. (a' t ••• I a"" btl '" , bPI, z) 

= L r(a, + z) ... r (a. + z) 
,-0 r(a,) r(a.) 

X r(b,) 
f(b, + z) 

r(b.) z' 
r(b. + J) il 

To the same approximation one can write 

Gl ;~ ~ _ 2; 
- = xe L.J a -x 
Go i-O ' 

co ... , ... 

+ x, "b- 2i + _e_ 2-2'9 '""" - . 2i L....J jX °nh x L...J C,X , 
i-O 51 7I"q ;- 0 

where 
ii; = [1 + (2i + I) /2iq]a;, 

5, = [1 + (j + l )/iq]b" 

C; = [(j + I) /iq]c,. 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

Equations (3.32)- (3.34) are obtained from (2.14) 
rewritten in the form 

G, = [1 + ...£.!!:..] F,. (3 .35) 
Go 2iq dx Fo 

In terms of the hypergeo metric function, one finds, 
to order a'l, 

G,/Go = ",'{(j,,/q)xe" ,F, (t, I + iq, t + iq; x') 

I+2iq 'F( I ' . '1+· ') + 2q2 X 3 2 1 , ,2 + 1.q, 21 lq; X 

X
2

-
2iq 1fe"G' . 3 . 2 } 

- (1 2·) ·n! ,F,(! , I - tq, 'f - tq;x) . q - tq S1 1 "q 
(3.36) 

b. Term Proportional to u' for Arbitrary q 

The above procedure works as well for the term 
proportional to a', although the algebra is lengthier 
and the final result more complicated. A brief 
account of the analysis is given. 

The term with superscript (3) in (3 .6) comes 
directly from h'" = f''', evaluated in (3.23) and 
(3.24). 

10 See for exa.mple, A. Erdcly;, Higher Transcendental 
Functions (McGraw-Hill, New York, 1953), Vol. 1, p. 182. 
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From (3.5) onc fin ds 

g"' (O) = l' 2 dx h'" + A , 
o x 

(3.37) 

where the constant A is choscn so that g''l (".) = 0, i.e. , 

A = -1' 2 dx h'" = g"'(O). 
o x 

One thcn has 

f r( -iq) 
' -0 r( - iq - tl) 

x r( - iq + 1) (2x) , r '(t + t l) ., 
reI + iq + tl) I! 2iq + I + 1 ' 

.. e" f (2x)'; rm 
- sinh .. q ;_, ~ i! ret - ,) 

(3.38) 

X r(l + 2iq - 2,) rei - iq) ] + A (3.39) 
r(l + 2iq) r(l - j + i q) • 

and I'" is then obtained from (3.5) . . 
The term with superscript (2) in (3.6) comes from 

g'" which is given in (3.9) and can bc rewritten as 

lY l ' y" ' (8) = r ( 1 +' 2iq) " dl(J - 1)" ' - ' 1' - " - ' 

l 1 - t ] 
X (1 + t) [(1 _ I)' + 4tx'J' - 1 + B, (3.40) 

where the constant 

(3.41) 

is equivalent to the value g'''(O). 
The integral over x in the expression for A m 

(3.38) can be performed using (3.8), and leads to 

A = -2 D, d, l' dl(l - I)H.+, I' -" (3 .42) 
1'(1 + 2iq) 0 ' 

where the operator d, is defined as a/ aJJ.I,_o. Accord­
ing to (3.6), g'" and g'" occur in the combination 
g(;J) _ g(2 ) . One can then write the terms in a4 in 
the form (3.24) a nd (3.31). After much algebra, 
one finds 

{

a, i = ° 
= ia' ; ".Ir(n - t)(-:-1)"(2iq + 3n - t)r(1 - iq) r (! + iq) 

4q' ~ r (n)(n - t)(2iq + 2n - l ) r (l - n - iq)r(! + n + iq) , 

(3 .43) 
i;><O 

= j8~:;(~~~' +i ~ 0 ".lr(n)(2iq + 3n)r(1 + iq)r (} _ iq) ) 1 , __ , nr(n + t)(iq + n) r (1 + iq + n) r (t - iq - n) , 

(3.44) 

i;><O 

j
-iO,. ... (r'( l + 2iq) _ r'(1 - iq») II . = ° 
4q' r (1 + 2iq) r (l - iq)' J 

-a' ± " I(- l)" r (t + n)(i9 - 3n - 3)r(i9 - n - })r(n + J - i<iJ 
8q __ 0 r (n + 2)(n + l )(iq - n - l ) r (i9 + t)r(1 - iq) 

(3.45) 

i ;>< O. 

The quantities a~ 4 ) , b ~ -4 ) , and C~4) are obtained from 
(3.43)-(3.45) by using (3.32)-(3.34). 

A study of the form of the coeffi cients leads to 
the following conclusions: 

(1) The form of F,/ Fo and G, /Go to aU orders 
of a' is given by (3.24) and (3.31). 

(2) The terms not containing the factor X-H. start 
with successively higher powers of x as one gocs 
to higher order in 0:' . For example, 

a~·) = 0, a~G) = b~6) = 0, a~8) = a!8) = b~8) = O. 

(3) The expressions given are convergent for aU 
values of x except x = 1. For this value of x (8 = .. ) 
alternate expressions obtained in the following sub-

section are valid . 
(4) The terms containing the factor l,H. all 

contain an additional factor e" /sinh ... q. Since the 
factor x -H. is rapidly oscillating near 8 = 0, the 
character of the Coulomb amplitudes for large posi-

II The quantity 
r '( l + 2iq) r'(I - iq) 
r ( l + 2iq) r ( 1 iq ) 

may also be written as 

4 ~q acg r ( l + 2iq ) - ~q "rg r ( l + iq) 

+~ 2!q + 2 t.:'~·h ''1 (3 + tanh' .-I})}, 
and can also be expressed in terms of dojt / dq by means or (3 .28). 
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tivc and negative q will be substantially different. 
This has been pointed out by Fradkin, Weber, and 
Hammer,' and also by Rawitscher," who note the 
absence of oscillations in the nonrelativistic limit 
(large iqil for the repulsive Coulomb case (q < 0). 

c. Values at 0 = " 

To complete the expressions given in (3.24) and 
(3.31) the value of F,/Fo at e = " accurate to 
order ex' will be obtained. This term is given by 

, 
F,(,,) "'" t: {' >I (,,) 

- io/ D, r' ( I - I)' ''C - '' 
= - 2- r (1 + 2iq) Jo dt I + t 

_ io/ '£ r (2i q + j + I) . 
4 ; - 0 r (2i q + I ) 2' 

r(. - t q + I) 
X D. ru + iq + • + 2) 

(3.46) 

One then has 

F, (,,) __ ex' '£ r (2iq + j + I ) r(l + iq) J.. 
Fo(") - 2 ,_0 r (2i q + I) r (2 + iq + j) 2' 

X [-i" + r'(1 - iq) _ 1"' (2' + iq + D]. (3.47) 
r(1 - tq) r(2 + tq + J) 

4. INTEGRAL REPRESENTATION FOR F(O) 

In order to complete the more-formal aspects 
of our work we have obtained an integral representa­
tion of the function F(e) which separates the de­
pendence on the parameters ex and q and which 
exhibits the analytic properties in the x = sin t8 
plane. The technique used to obtain the result 
parallels that of Rosen,' who obtains representations 
as double integrals for the individual terms in an 
expansion in power of a'. We obtain a double 
integral for F(e) without expansion in a or q." 

For this purpose we write F(8) as 

F(8) = ~ t. nC.(P. - p.- ,) 

ida;> 
= -2 (1 - z) dz ?; C.(P. + p._,), (4. 1) 

where z = cos e and C. is given in (2.3). Applying 
the Sommerfeld- Watson transformation one has 

F(e) = HI - z) 

X E:. f [P.(-z) -:- P.- ,(-z)]C(v) dv, (4 .2) 
dz c 8m P1r 

---
no. Rawitscher, Phys. Letters 9, 337 (1964 ). 
11 The possibility of such an integral representation waa 

pointed out by L. Brown (private communica.tion ) who 
obtained the corresponding result for the Klein-Gordon 
equation. 

o 
FIG. 3. The contour C 

and C' for F( 0). , 
c 

where the contour C is shown as the solid curve 
in Fig. 3. The quantity C(v) is given by 

C(v) = -e-"'-')' 

X r(p(v) - iq)/r(p(v) + iq + 1), (4.3) 

where p(v) = (v' - a')I. It can be shown that 
both P.(z) and C(v) are bounded for large v in the 
region of interest and that the contour can be 
deformed to the straight-line contour C'. 

We now use the integral representation 

I d I j - dz . - ' 
s in V1r dzP,(- z) = - ;;: 0 (8' + I - 2sz)! , (4.4) 

which COil verges for - 2 < Re " < 1. ':[,his leads to 

F(8) ~ .!.. (I ) 1- ds(1 + s) 
% - z 0 (8' + I - 28Z)\ 

X L dVC(V)8- ·. (4.5) 

The poles in the v plane are located at 

v· = 0<' + (m + I + iq)', m = 0, 1,2 

which are all to the left of the line Re v = I. The 
contour C' may therefore be closed to the right 
giving a vanishing contribution for 8 > I. If one 
then uses the beta-function integral representation 
for C(v), one has 

I l' d8(1 + 8) 
F(e) ~ - 4" ( I - z) r(2iq + I) 0 (s' + 1 - 2sz)\ 

X l' dt!!.. l(1 - I) '; 'C ;' ] 
o dt 

X f d" e - i ( p - · ) 'O"e - · Ln _+Ptll l / (4.6) 
c' p 

where an integration by parts has been performed 
in the variable t. The behavior of the integrand for 
large v is governed by the exponent 

with p "'" v. In the right half-plane, the integrand 
tends to zero if 8 > t. Contributions to the integral 
therefore come only for t > 8, and these may be 
evaluated by closing the contour to the left to form 
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a loop around the branch points at v = ±a which 
are the only singularities remaining in the v plane. 
Setting 

v=acosc/J, p = ia sin tPl 

the integral over the loop becomes 

if" d4> el - i .. + 1n I).,. .111.+(; .. -1 ... )0 00 •• 

-, 

= 2"-iI.{a[(i,,. - In s)' - (i". - In t)']I). (4.7) 

The final integral representation for F(O) is tberefore 

__ ~ _ 1 l' ds(l + 8) 
F(O) - 2 (1 z) r(2iq + 1) • (s' + 1 - 2sz)1 

X f' dt!!.. [(1 - t)';'t-;'] 
• dt 

X I.{a[(i". - In s)' - (i.- - In t)']I). (4.8) 

This integral representation clearly separates the 
a and q dependence and suggests that the analytic 
behavior of F(O) in the variables a and q will be 
different. 

The analytic form of F(O) in the variable x = sin to 
will be the same as that given ill the cr' and a' terms 
already obtained. In fact the sathe contour deforma­
tion as in Sec. 3 can be used in tbe s plane to dem­
onstrate that F(O) can be separated into the form 
in (3.24) for arbitrary a. The coefficients of successive 
powers of a' can be obtained by using the power 
series expansion for I •. The individual terms present 
themselves as double integrals in this formulation, 
as in the work of Rosen.6 The terms in a2 and c/ have 
been reduced after much labor to those obtained 
in (3.24)-(3.34) and (3 .43)-(3.45). Higher terms can 
similarly be obtained, but the results do not appear 
to be simple, nor do they seem to be easier to calcu­
late in this way than with the method of Sec. 3. 

5. RELATION WITH BORN EXPANSIONS 

At tbis point it is useful to discuss the relationship 
of our present results with the previous Born expan­
sion'" results obtained hy simultaneous expansion 
in powers of a and q = a; /3. The coefficients obtained 
in this way have logarithmic dependence on the 
angle, a result which is easy to understand since the 
expansion of ,/;11 in powers of a: is 

x';' = t (2·r f '!.)-(In x)-. 
... -0 ml \P (5.1) 

A useful prescription for Coulomb-type problems is 
therefore to extract the phase 2iq In (sin to) where­
ever the logarithmic factors occur. If this procedure 
is applied to the Born expansions, agreement is 
obtained with our results to all orders available. 

It is also clear at this point that the analytic 
behavior obtained here for the Coulomb amplitudes 
of the Dirac equation must be quite similar to that 
for the Klein- Gordon equation, where the phase 
shifts are given by 

x rep' + t - iq)[r(p' + t + iqJr' (5.2) 

with 

n' = 1+ t, p' = (n" - a')I. 

These results are discussed for large Iql by Fradkin, 
Weber and Hammer,' and by Rawitscher." 
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Electric charge bas no direct meaning for strong int-cractions, yet is involved in tile octet model in 
sllch a way tha.t the size of the elementary unit of electric charge becomes tied to the topology of the 
group of strong interaction symmetries. This tie may indicate a relationship of electric charge to 
another kind of charge got directly from topology of tJle group. 

I. INTRODUCTION 

I T has been noted by Cell-Mann' that the theory 
of SU(3) symmetry and the identification of the 

operator 
z = ty + I, (1 ) 

as the charge in units of that of the positron Z = Q/ e, 
suggest the existence of particles of charge ±le, 
"subelectrons." This comes from the possibility that 
arhitrary representations D(p, q) of SU(3) arc 
realized hy multiplets of partieles. 

On the other haud, there is an "octet model" 
which rules out subelectron rcpresentations. The 
octet model may be posited in several ways. Briefest 
is the rule2 

p==qmod3 (2) 

for a physical representation. Equivalently, that 
all physical or "octet" representations be obtained 
from D(l, I), the octet, by tensor product and 
rc'<luction. Justifications for (2) in the form of 
physical models arise because tensor product and 
reduction appear in the discussion of bound states. 
One viewpoint is that the basic particles belong to 
D(I, 1) octets. Another' is that the subelectron 
multiplets arc missed experimcntally, perhaps be­
cause they are associated with high mass, and all 
ordinary particles arc got from D(I, 0) @ D(O, 1) = 

D(O, 0) EB DU, 1) binding. If the distinction between 
basic and compound particles is removed, however, 
these models leave Rule (2) an undigested empirieal 
fact. 

The subelectron matrix representations are also 
characterized by being triple-valued representations 
of pSU(3), the factor group of SU(3) by its center C, 
whereas octet representations are single-valued. This, 

* This work was supported by the U. S. Atomic Energy 
Commission under Contra.ct AT(30-1)-2262. 

1 Lectures of T. D. Lee and S. L. Glashow (unpUblished). 
• J. J . de Swart, Rev. Mod. Phys. 35, 916 (1963), Eq. (7.4) . 

The argument and matrices at the beginning of Sec. 2 are 
adapted from de Swa.rt. 

a This idea. of M. Gell-Mann is said to have molivated 
his "Eightfold Way." 

though generally known, ' will be explained in Sec. 2, 
because it is closely related to the point raised here. 
Namely, this distinction between subelectron and 
octet representations is a direct manifestation of the 
fact that pSU(3) is not simply connccted. A similar 
manifestation is the notion of "dual charge.'" The 
first of these is a mathematical fact, the sccond is 
related to a conserved quantity and is therefore 
more of a physical hypothesis. It is unfortunately 
not completely physical, as dual charge also entails 
topological complexity of ordinary space-time, 
whereas there is no schcme of calculation wedding 
quantum mcchanics to topological complexity of 
space- timc. The point of this note is to suggest a 
relationship between subelectrons and dual charge. 
It will be seen that a difference exists in a classical 
theory bctween fields belonging to subelectron rep­
resentations and those belonging to others, if it is 
postulated that dual charge and electric charge are 
essentially thc same. Whether this distinction is 
reflected ill mass differenccs, in a law against sub­
electrons, or in some other way, is hard to say. 

2. REVIEW OF THE DISTINCTION BETWEEN 
SUBELECTRON AND OCTET REPRE­

SENTATIONS OF SU(3) 

SU(3) = D (I, 0) is the group of all 3 by 3 complex 
unitary matrices of determinant 1. Corresponding 
infinitesimal operators, defined with an "iJ1 factored 
out, are the Hermitian matrices of trace 0, sU(3) . 
By leaving one "third" complex dimension in the 
representation space alone, one finds an SU(2) sub­
group of isotopic spin t; 

I s = diag ct, - t, 0), (3) 

4 The author gratefully acknowledges information to this 
effect from S. L. Glashow. The referee hll8 provided the 
following references: M. Gourdin, Nuovo Cimeuto 30, 587, 
(1963); L. C. Biedenharn and E. C. Fowler, "Fractional 
Charges in the SU3 Scheme", Duke University p,reprint, 
H163 j and C. R. Hagen and A. J. Ma.cFariane, 'Quarks, 
Triality, and Unitary Symmetry Schemes" (Rochester Uni­
versity preprint, 1964), 

• E. Lubkin, Ann. Pbys. (X. Y. ) 23, 233 ( 1963), e8J>CcinJly 
pp. 263- 273. 
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and the su(3) matrices which commute with the 
isotopic spin matrices are all proportional to 

Y = diag (t, t. -f)· (4) 

The requirement that the hypercharge operator Y 
commute with I" 13 , 13 , and helong to su(3) fixes 
(4) up to a scale factor, which is then adjusted to 
fit Eq. (1) with Z's which match nuclear physics 
and the successful assignments of particles to D(l, 1) 
and D(3, 0) multiplets. From ( I), (3), (4), 

Z = diag (t, - 1, -i), (5) 

and in particulal', an eigenvalue Z' == -t mod l. 
The representation D(p, q) is ohtained from the 

tensor product of p factors D(l, 0) with q of the 
contragredient representation D(O, 1) of transposed 
inverse matrices, equivalently complex-conjugate 
matrices, by subjecting the representation space 
of tensors to symmetry conditions. Since complex 
conjugation corresponds to reversing sign in su(3), 
the matrices in D(O, 1) for la, Y, Z are the negatives 
of (3)-(5). In particular, Z' EO t mod 1 in D(O, 1). 
Eigenvalues of , infinitesimal operators add when 
tensor products are taken, so 

Z' = -t(P - q) mod 1, (6) 

generally, whence the rule (2) against subelectrons. 
The center C of SU(3) consists. of its constant 

matrices, by Schur's lemma. The condition that 
the determinant be 1 shows that these are ouly 
M(X) = diag (X, X, X), where X = I , w, or w', and 
w = exp (-it,..). Observe that 

M(w) = exp (-i2".Z) . (7) 

Topology of the group is brought into the discus­
sion through the following circumstance. Most 
physical SU(3) arguments really concern only su(3), 
so that it is of interest to consider replacing SU(3) 
by another connected compact Lie group G with 
an infinitesimal algebra isomorphic to su(3). 

The only other such group is pSU(3): SU(3) is 
simply connected.' All G are obtained from the 
simply connected one by congruence modulo a 
discrete central subgroup.' But the only central sub­
groups are the identity alone, which gives back 
SU(3), and the whole three-element center C, which 
gives pSU(3)' 

• C. C. Cbevn.Uey, Theory of Lie Groups (Ptinceton Uni­
versity Press, Princeton, New Jersey, 1946), p. 60. 

7 Reference 6, p. 49 . 
• pSU(3) ::::;: D(l, 1) is also obtained as tbe adjoint repre­

sentation, and by aaking for the action of SU(3) {or even of 
U(3) or GL(3») on rays instead of vectors, whence the nota­
tion up" for "projective", suggested by Dr. Brllno Harris of 
the Departmeot of Mathematics. 

Topology enters because the discrete central sub­
group employed in the construction is also the first 
homology group of the group G: In pSU(3), there 
are three types of closed paths, corresponding to a 
curve beginning at M(I) and ending at M(I), M(w), 
or M(w') in SU(3) itself; only the first of these types 
may be shrunk to a point. A matrix representation 
R of su(3) if extended over pSU(3) is single-valued 
if and only if the matrix R[M(X)] representing M(X) 
is independentofA; i.e., if R[M(w)] is the appropriate 
unit matrix. The other matrix representations are 
triple valued. 

In D(p, q), M(w) is represented by w'(w*)' = w'-' 
times a unit matrix; this also from (6) and (7). 
If w,.-11. = W -SZ' is the lttype" of the representation, 
then Type I corresponds to single-valued representa­
tions of pSU(3) and rule (2), whereas the triple­
valued representations are those of type wand w', 
p '" q ± 1 mod 3, Z' "" 'f't mod 1, respectively 
Subelectron representations correspond to pSU(3)­
multivalued types. 

3. pSU(3) 

It would be premature to take single-valued ness 
of a D(p, q) considered as a pSU(3) representation 
as a law for nonexistence of subelectrons. An an­
alogous law for the group of rotations in ordinary 
space, 0(3) ~ pSU(2), would forbid half-integral 
spin. Furthermore, the use of the representations 
as ray representations or projective representations 
in quantum mechanics collapses their multi valued­
ness: the three representative matrices for an element 
of pSU(3) in a multivalued ordinary matrix rep­
resentation are obtained from one of them by 
multiplying by the phase factors 1, w, and w', and 
are therefore identical in their transformation of 
rays. In fact, because of the requirement of unitarity 
and the irrelevance of a uniform phase factor, the 
reduction' GL(n) -+ pSU(n) together with the loss 
of multivaluedness in virtue of the replacement of 
matrix representations by ray representations is the 
largest symmetry group conceivable belonging to an 
n-Ievel quantum mechanical system, together with 
the correct description of the representations as 
they are used. 

The only remaining general feature known to the 
author and associated with the three-element group 
that might have physical meaning is dual charge . 

4. REVIEW OF DUAL CHARGE' 

Suppose su(3) symmetry is taken seriously, in 
spite of the fact of broken symmetry, so that a 
choice of a reference frame in an attached D (p, q) 
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representation space of "tensors" at a space- time 
point is subject to a D(p, q) ambiguity, and that 
following the philosophy of general relativity as 
explained by Yang and Mills,' a parallel displace­
ment field (gauge field) must be introduced to 
define an absolute (covariant) derivative, and that 
this absolute derivative, not the literal derivative, 
must appear in some unnamed Lagrangian which 
is to tie the theory to physics. The parallel displace­
ment assigns a D(p, q) matrix to each loop in 
ordinary space, with the ambiguity of an unimpor­
tant conjugation which will not be mentioned 
further. That D (p, q) matrix explains how a tensor 
is altered when displaced parallelly around the loop. 
Consider a spherical bag in ordinary space as a 
sequence of paraUels of latitude, each one of which 
is a loop, beginning with a degenerate or point loop 
(north pole) and ending with another (south pole). 
Each parallel of latitude corresponds to a D(p, q) 
matrix, the poles to the unit matrix. Therefore, the 
bag as a whole corresponds to a loop L of D(p, q) 
matrices, beginning and ending at the unit matrix. 
This loop L can be broken into a succession of 
many small tninsforma~ions, each onc, rougbJy 
speaking, associated with an element of su(3) . By 
putting these smaU transformations together in 
SU(3), the loop L is imaged back in SU(3), so 
that it appears as a path P from the identity M (1) 
to either M(l), M(w), or M(:"). In the first case, 
the dual charge D contained in the bag is defined 
to be 0, in the second Case it is -1, in the third 
case, 1. 

If the bag can be continuously deformed in 
ordinary space to a point, without running through 
singularities of the displacement or tensor fields, 
then D = 0, so that speculations on D;>6 0 entail 
singularities or wormholes in ordinary space. 

The dual charge of a system is the sum of the 
dual charges of its components, reduced modulo 3. 

5. POSSIBLE ARGUMENT AGAINST 
SUBELECTRONS 

If p '" q mod 3, then the path P in SU(3) must 
terminate at M(l), and D = o. This is because, 
if the path P is not a closed loop, then L is not, 
as the representation map SU(3) ...... D (p, q) is an 
isomorphism. Now suppose space should be imagined 
as a froth of wormholes,'o with D's having aU 
possible values. Then D (p, q) tensors can't be 
supported unless p '" q mod 3. 

• C. N. Yang and R. L. MBls, Phys. Rev. 96,191 (1954). 
HI J. A. Wbeeler, Geometrodynurnic8 (Academic Press Inc., 

New York, 1962). 

However, if the picture of a tensor field is replaced 
by a Htriad" field of unordered triads of tensors, 
mutuaUy differing by factors of w, w', D = 0 cor­
responds to the three sheets being separate; D = ± 1 
to their being united in one "Riemann surface. If 
This possibility should be considered, because the 
multivalucdness collapses on going to ray representa­
tions, and is therefore not excluded in the sense 
of quantum mechanics even by a law of a single­
valued ness for quantum fields. 

The surface of a bag is simply connected. There­
fore, it cannot support three attached sheets which 
are separate over each point." D ;>6 0 triad fields 
therefore entail at least one branch point on a bag. 
To avoid singularity, the magnitude of the triad 
field must vanish there. We are reminded of Dirac's 
nodal lines." 

If 

6. POSSIBLE IDENTIFICATION OF DUAL 
CHARGE WITH ELECTRIC CHARGE 

iD '" Z' mod 1. (8) 

or if i D E -Z' mod I, so that electric charge is 
a refinement of the crude topological notion of 
dual charge, then all subelectrons possess D = ±l. 
Even without requiring the vacuum to be a froth 
of wormholes, the option of using a triad field would 
then be necessary to realize a single-valued quantum 
field for a subelectron, even if the problem of writing 
such a field is restricted to the surface of a sphere 
of large radius, which contains a single subelectron. 
If a triad field with its three branches united is for 
some reason impossible, the subelectron would be­
come impossible under (8) at the same time that the 
basis (8) of the argument becomes vacuous! 

7. RELATION TO GRAVITY 

It is hard to imagine (8) without a wormhole 
model for charge in general. Nevertheless, the 
inability to shrink a bag to a point is definitely 
argued only for D '" 0, so that under the hypothesis 
(8), only subelectrons would necessarily be associated 
with wormholes. If the reason for the unshrink­
ability is singularities, then the metric of space-time 
would be expected to depart greatly from flat-space 
values. If the reason is that nonsingular fields are 
distributed over a space-time manifold with an 
actual IIneck," again a large distortion would be 
expected in the ordinary metric. If such distortion 
is pictured physically as a strong gravitational field, 
and if the mass tensor is the only source for the 
development of this field, then even if the phenom-

11 Reference 6, p. 46, Theorem 2. 
12 P. A. M. Dirac, Proc. Roy. Soc. (London) 133, GO (1931). 
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enon has no essential roots in gravity theory, there 
is an argument here for large concentra tion of mass. 
This a rgument cannot be converted into any fan­
tastically large mass, however, because the large 
concentration of mass may be confined to an ar­
bitrarily small region. 

In greater detail, a mass m yields a Compton wave­
length m-' and a gravitational radius proportional to 
m. These are equal" form = 2.2 X lO-·g~lO"BeV. 
But this fantastic mass drops out of the picture if 
the Compton wavelength of the particle is allowed 
to greatly exceed the characteristic dimension of 
the wormhole; if the wormhole is quantum mechan­
ically smeared in its mean position. 2

<4 

8. DUAL CHARGE FOR THE ROTATION GROUP 

Conserved quantum numbers not incorporated in 
any group-theoretical scheme are atomic number, 
electron number, and muon number. These numbers 

u Reference 10 p. 77. 
14 Compare Reference to, p. 82. 

JOURNAL OF MATHEMATICAL PHYSICS 

are all associated with fermions, which belong to 
double-valued representations of the rotation group, 
0 (3 ). The use of spinor doublets in place of spinor 
fields changes the situation from that of no dual 
charge for ordinary fermion fields" to possible dual 
charge for all fields, and then by sheer analogy to 
(8), perhaps to dual charge only for fermion fields, 
or only for some fermion fields. For 0(3), dual 
charge is of course an integer modulo 2, but may 
be a crude representation of one of the unclassified 
free integer conserved quantities. Of course, the 
conservation of fermion number modulo 2 follows 
simply from conservation of angular momentum , and 
in itself needs no explanation; the above indicates 
merely the possibility of a parallel in 0(3) of the 
previous discussion . The relation of the rotation 
group to the 10-parameter Lorentz group which ties 
Fermi statistics to half-integral spin, has not been 
explored in relation to the above. 

u Reference 5, p. 271. 
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Coulomb Green's Function 

J ULIAN SCHWING ER 

Harvard University, Cambridge, Afassachu·seU8 
(Received 19 June 1964) 

A one-parameter integral representation is given for the momentum space Green's function of 
the nonrelativisWc Coulomb problem. 

I T has long been known that the degeneracy of 
the bound states in the non relativistic Coulomb 

problem can be described by a four-dimensional 
Euclidean rotation group, and that the momentum 
representation is most convenient for realizing the 
connection. It scems not to have been recognized, 
however, that the same approach can be used to 
obtain an explicit construction for the Green's 
function of this problem. The derivation' is given 
here. 

The momentunl representation equation for the 

1 It was worked out to prescnt at a Harvard quantum 
mechanics course given in the late 1940's. I have been 
stimulated to rescue it from the quiet death of lecture note. 
by recent publications in this Journal, which give alternative 
(orms of the Green's function: E. H. Wichmann and C. H. 
Woo, J. Math. Pbys. 2, 178 (1961); L. H08Uer, ibid. 5, 591 
(1964). 

Green's function is (to = 1) 

(E - ~)G(P, p') + ~ f (dp") (p _1 pi,). 

X G(p", p') = 6(p - p'). 

We shall solve this equation by assuming, at first, 
that 

E = - (p~/2m) 

is real and negative. The general result is inferred 
by analytic continuation. 

The parameters 

~ = 
2p,p 

p~ + pj . 

define the surface of a nnit four-dimcnsional Eu-
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clidean sphere, 
~: +e = ), 

the points of which are in one to one correspondence 
with the momentum space. The element of area 
on the sphere is 

(d~) (2Po ) ' 
dn = lfoT = P: + p' (dp) , 

if one keeps in mind that p ~ Po corresponds to the 
two semispheres ~o = Of' (1 - ( ' ) j. As anotherform of 
this relation, we write the delta function conncct­
ing two points on the unit sphere as 

o(n - n') = (P: + p')' o(p - p') . 
2po 

N ext, observe that 

(~ - f )' = (~o - ~:)' + «( - f )' 

4p: (p I)' 
(P: + p') (p: + p") - p . 

Then, if we define 

r (n, n') = -16
1 

, (p: + p')'O(P, p')(P: + p")', 
mpo 

that function obeys a four-dimensional Euclidean 
surface integral equation, 

r(n, n') - 2. J dn" D(~ - f')r(n" , n') 

= o(n - n'), 
where 

D(~ - f) = :..' (~ ~ n' 
. and 

v = Ze'm/ po. 

The function D that is defined similarly through­
out the Euclidean space is the Green's function 
of the four-dimensional Poisson equation, 

-a'D(~ - n = o(~ - n 
It can be constructed in terms of a complete set 
of four-dimensional solid harmonics. In the spherical 
coordinates indicated by p, n, these are 

n = 1,2, .. . I 

where the quantum numbers I, m provide a three­
dimensional harmonic classification of the four­
dimensional harmonics. The largest value of 1 con­
tained in the homogeneous polynomial p·- ' Y.,.(n) 
is the degree of the polynomial, n - 1. Thus, 

-I:=;m:=;l, O:=;l:=;n-l 

label the n' distinct harmonics that have a common 
value of n. 

The Green's function D is exhibited as 

D(~ - n = :t p~: : 21n 2: Y.,. (n) Y.,.W)', 
II _ I P> hi. 

where 

o(n - n') = 2: Y.,.(n) Y.,.(n')' .1. 
conveys the normalization and completeness of the 
surface harmonics. One can verify tbat D has the 
radial discontinuity implied by tbe delta function 
inhomogeneity of the diffcrential equation, 

_p'.E... D(~ - nJ"" = o(n - n'). ap ,.'-0 

The function D is used in the integral equation for 
r with p = p' = 1. The equation is solved by 

r (n, n') = 2: Y. ,.(n) Y.,.(n')' . 
• 1. 1 - (v/ n) 

The singularities of this function at v=n= 1,2, ... 
give the expected negative energy eigenvalues. 
The residues of 0 at the corresponding poles in 
the E plane provide the normalized wavefunc­
tions, which are 

4 5/ 2 

W.,.(P) = (P: !to p')' Y. ,.(n) , 

Po = Z e'm/n. 

One can exhibit r (n, n') in essentially closed 
form with the end of the expansion for D. We use 
the following version of this expansion: 

1 1 
2;' (1 - p)' + p(~ - ()' 

= :t p.-I ! 2: Y.,.(n) Y.,.(n')', 
,,-I n I", 

where ~ and ~' are of unit length and 0 < p < 1. 
Note, incidentally, that if we set ~ = e and inte­
grate over the unit sphere, of area 2 .. ', we get 

1 ~ . _, 1 
(1 - p)' = f=: p n m .. 

where m. is the multiplicity of the quantum number 
n. This confirms that m. = n'. . 

The identity 

1 II 2 ] 

) _ (v/ n) = 1 + n + v n(n - v)' 

together with the integral representation 

1 
n-v 

valid for v < 1, gives 

l ' d - •• - , 
PP P I 

o 
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r ( ll, 11') ~ 0(11 - 11') + 2> (I; ~ J;' )' 

v' l' -. I + 2,1 ° dpp (I - p)' + p(1; - J;' )" (I) 

Equivalent forms, produced by partial illtcgra-
tions, are 

r(ll , 11') ~ 0(11 - 11') 

+ v 1'd -, d 
2".' ° pp dp ( I 

and 

p 

p)' + p(1; - n" (2) 

' ) - _I l' d -. !i. p(1 - p') 
r(ll, 11 - 2".' ° pp dp [(I - p)' + p(l; - n ' I" 

(3) 
which uses the limiting relation 

1 1 _ p2 

o(n - n') ~ 1!~,1 2".' [(I - p)' + p(1; - n'I' 
Note that r is a function of a single variable, 
(I; - n '. , 

The restriction v < 1 can be removed by re­
placing the real integrals with contour integrals, 

1'dpp- ' ( ) ---> 2 .i e' " f dpp-'( ) . 
o S ill 7rII c 

Tbe path C begins at p ~ 1 + Oi; where the phase 
of p is zero and terminates at p ~ I - Oi, after 
encircling the origin within the unit circle. 

The Green's function expressions implied by (I), 
(2), and (3) are 

o(p - p' ) Ze' 1 1 1 
G(p, p' ) ~ E _ T - 2".' E - l ' (p - p')' E - T' 

Ze' 1 [. l' d -" - -2 'E-T'~ pp 
11'" I - 0 

x "'-(p-- -p"')" p----;(~m-;/2"'E);;;7,(~;-, _- ''''T)C-;(En, -----;;;T"' )"( I- p")' ] E ~ 7" , 
(1') 

where 
T ~ p'/2m , ~ ~ -iv ~ Ze'm/ k; 

G(p ') ~ o(p - p') Ze' I [1' d - " d 
, P E - T - 2".' E - T 0 pp dp 

X (P-p')'p- (m / 2E)&-T)(E - T' )(1 p)' ] E~T'; 
(2') 

and 

G(p, p') - _..i.. E.1' d -.,!i. - 4".' E ° pp dp 

p(l- P') 
X [(p-p')'p- (m / 2E)(E T )(E 1")( 1 p)'I' 

(3') 

The Green's function is regular everywhere in 
the complex E plane with the exception of the 
physical energy spectrum. This consists of the 
negative-energy eigenvalues already idcntified and 
the positive-energy continuum. The integral repre­
sentations (1 '), (2'), and (3') are not completely 
general since it is required that 

Re i~ ~ - 1m ~ < I . 

As we have indicated, this restriction can be re­
moved. It is not necessary to do so, however, if 
one is interested in the limit of real k. These repre­
sentations can therefore be applied directly to the 
physical scattering problem. 

The asymptotic conditions that characterize fi nite 
angle deflections are 

E - T~O. E - 7" r-..J 0, (p - p')' > O. 

The second of the three forms given for G is most 
convenient here. The asymptotic behavior is domi­
nated by small p values, and one immediately 
obtains 

G(p , p') ~ G'(p)( -1/ 4".'m)f(P, p')G'(p'), 

where 

1 [ . E - 1']( 2".~ 
G'(p) ~ E _ T exp -,~ log ~ e'''-

and 

f(P ') 2mZe' [. I 4k' ] 
,p ~ (p _ p' )' exp -,~ og (p _ p')' , 

p2 = p,2 = k2 . 

One would have found the same asymptot ic form 
for any potential that decreases more rapidly than 
the Coulomb potential at large distances, but with 
G'(p) = (E - T)-'. The factors G°(p') and G'(p) 
describe the propagation of the particle before and 
after the collision, respectively, and f is identified 
as the scattering amplitude. The same interpreta­
tion is applicable here since the modified G' just 
incorporates the long-range effect. of the Coulomb 
potential. This is most evident from the asymptotic 
behavior of the corresponding spatial function, 
which is a distorted spherical wave, 

J (dp) ""G() 
(2".)' e p 

~ ( - m/2rr) exp [i(kr + ~ log 2kr + ,)), 
, ~ arg r(1 - i~). 

The scattering amplitude obtained III this way 
coincides with the known result, 

fed) ~ (Ze'/4E) esc' !d exp [-i~ log esc' !d). 
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Given n1 nonnegative rcal numbers Ujk which form a matrix with row and column vectors of unit 
ma.gnitude, it is shown under wha.t conditions there exista a uni tary matrix (U it), such that IUjl:1 = Ujl:. 
The results may be shown to contain a theorem on unitary matrices. 

T HE formulation of a pbysical test of tbe quantal 
superposition principle' is dependent on the 

solution of tbe following mathematical problem: 
Given n2 nonnegative real numbers Ulk which obey 
tbe 2n - 1 independent relations 

" " L U~I: = L U~k = I, (1) 
i " l k_ 1 

when is it possible to construct a unitary matrix 
(U;,), such that 

[U,,[ = u,,? (2) 

Alternatively, the question may be formulated: 
When do there exist real solutions V;, to the set 
of equations 

L u;.u;, exp i(vn - v;,) = 0, (3) 
i-I 

where k = 1, ... , n and I = k + 1, ... , n, and 
the V;, are the arguments of the matrix elements 

Uik = Ujk exp'ivjl:? (4) 

Ratber than attempting to consider tbe difficult 
nonlinear equations (3) , we try to solve tbe problem 
by making use of a convenient parameterization of 
unitary matrices. Murnaghan' bas shown that an 
n-dimensional unitary matrix may be factorized into 
a diagonal unitary matrix and tn(n - 1) unitary 
unimodular matrices of a particularly simple struc­
ture. Thus, if U" denotes tbe unitary matrix and 
D (a" ... a") denotes the diagonal matrix with 
elements 

(5) 
then 

where 3" denotes the product 
" ,1,-1 

3" = II II 'U;.(e; •. iT;,), (7) 
k-2 i - I 

The unitary unimodular matrices 'U.;k(O jl:, O" /k) are 
functions of only two parameters each: Ojk and O"jk. 
Only four elements in 'U;, are different from 6;. : the 
(jil and (kk) elements have the value c;. '" cos e;., 
the (jk) element bas the value -8;. exp (- iiT;,), 
where Silt: == sin Ojl:, and the (kj) element has the 
value Sik exp iO"/k' 

The n-dimensional unitary group is an n2 -param­
eter group. When the parameters are chosen, as in 
(6) and (7), to be the n parameters a;, the tn(n - 1) 
parameters Ojl: and the tn(n - 1) parameters O"jk, 
the parametric space is 

-71" <Ct.; ~71", 

To solve our problem, as formulated in (2), we 
first 0 bserve that 

[U;.[ = [3;.[, 

because the unitary diagonal matrix D in (6) does 
not alter the values of the moduli of the elements 
of 3" when multiplied into 3". Thus the parameters 
Ctj need not enter into our problem. 

Let us identify the moduli of the elements of 3' 
with 16 given nonnegative real numbers Ui.lo which 
obey (1), so that nine of them are independent, and 
try to solve for the e's and iT's. We have 

~r' = 'U.::J(012 . 0"12) ''ll:a(OI3, 0"13) · cu.~3(823' 0" :13) 

.'U:~( Ou, 0"14.) ·cu.!i O2,,, 0":14) .cu.:.( 034 • 0"34). 

The product of the last three matrices becomes 

_____ =-_.::....::.:.:..:.._-...:...=::....:.. ___ --...:(.::.:...6) explicitly U" = D(a, . . .. , Ct")3", 

c" -S14s24e' (-cr , . + .. .. l 

0 C,. 
(8) 

0 0 c" -s3~e- ,· .. •· 

vue ..... ' · cl "s:14e' ..... 

I M. RODS and B. E. La.urent (to be published). 
! F. D. Murnaghan, The Unitary and Rotation Groups (Spartan Books, Washington, D. C., 1962). 
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Multiplying '11:, into (8), the second and third rows mh in such a way that it is convenient to introduce 
a new parameter 

Then (8) becomes explicitly, omitting the unaltered first and fourth rows, 

[
0 o"c" 

o S23c24e' .... 

-(~3s24s3 .. e;.,·· + S23c:"')e-i .... 

- 823824Sa .. e'''·· + elise ... 

Next, multiplyjng 9l~ 3 into this, the first and third rows mix in such a way that it is convenient to introduce 
a second new parSJllctcr 

Multiplying in the final factor '11:, and introducing a third new parameter 

we obtain the product matrh 3': 

CI~13CH Z12('Y121 'Yu, 8
2S

)e- i .,. ZI3(')'121 'ru, "YU, 823 )e- · ..... ZI4('YI2, "Yu, 1'23, 8
2a

)e-· .... 

3' 81~UcUe; ... •• Z22('Y121 'YUJ 0,,) Zl/3('Y12J 'Yu) ')'231 8
23

)e- ;··· Z24('Y12, '"(13, "Y23, 8,,)e-" " 
(9) 

Bucu e• .. ·• ( 8) 10 .. Zu "Yu, 23 e ZIl3("YI8J ')'23, 823) zu("Y13J 1'231 823)8- ...... 

sue'·" CU 82.e
i .... cuc:u.sa"ei 

.... CuCuCa-'l 

The Zu. are complex polynonrials, in which the arbrument of each term is a linear sum of "r'S or zero. 
It is evident from (9) that the moduli 13;.1 are functions of nine parameters only: the sh parameters 8;. 

and the three parameters ,,;., but not of the remaining three independent parameters U;" which enter only 
in the arguments of the matrn elements. 

We now want to express the parameters OJ. and 'Yil. in terms of nine independent Ui.t'S. From 

we can immediately solve for five of the 8;.'s, which become 

014 = arc sin U.n ; 

8 = arc sm· u (1 - u,', - u,',)-'. S4 43 

There remain four equations containing the parameters 

u" = Iz"(",,, 8,,)1; u" = Iz"(",,, "", "", 8,,)1; u" = Iz"(",,, "", 8,,)1; "', = Iz"(",,, "", 8,,)1. (10) 

From the first of Eqs. (10), cos "" may be wived in tenns of 0" and inserted into the other three equa­
tions. Then from the last two equations (10), cos "" and cos "", respectively, may be wived in terms of 8" 
and inserted into the u" equation, which thus becomes 

u" = 1(8,,) . (11) 

The answer given by this procedure to our initially fonnulatod question is then as follows: it is possible 
to construct a unitary matrh (U;.) with IU"I = U;. only when 

(1) there exists a solution 0 :0; 0" :0; !". to Eq. (11), and when this wlution, inserted into (10), yields 

(2) 

I cos ""I :0; 1; I cos ""I :0; 1; I cos ""I :0; 1. (12) 

The conditions (12) are restrictions on the allowed volume in the ninlXlimensional u;.-space. If these con­
ditions all hold with the inequality sign, the unitary matrix U' is completely detennined by the nine given 
Ui.'S and seven phases: the three independent q ,,,'s and the four a/s. 
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If one or several of the conditions (12) hold with 
the equality sign, the number of independent u;.'s 
decreases correspondingly and the arbitrariness of 
the unitary matrix exceeds that of the seven phases. 

It is straightforward to generalize the four-dimen­
sional case to n dimensions. 3" then consists of 
tn(n - 1) factors; the product of the last n - 1 
factors gives the generalization of (8) . 

The first ,,/;. appears when we multiply this 
product with the nth matrix 

which mixes the rows of number n - 2 and n - J. 
This "/;. will he 

')' .. -2 ... -1 S 0" .. _2, .. _ 1 - (f .. _2, .. + 0'",._1 ,PI' 

Each time we mUltiply the next factor matrix into 
the previous product, it becomes convenient to intro­
duce a new parameter')' i,!:, which is a sum of O' .. ,,'s with 
weights + 1 or -1. The final product J" will thus 
contain tn(n - 1) parameters 0;., Hn - l )(n - 2) 
parameters "'( i /o and n - 1 parameters U j,\:. The 
moduli 137.1 of the matrix elements will be functions 
of the parameters 0;. and "/;., totali,ug (n - I) ', 
and the parameters U;. enter only in the arguments 
of ~; .... 

Next, we write down the (n - I )' requirements 

(13) 

where, for instance, j = 2,' . " nand k = 1, ' . " n-l. 
We can immediately solve for the 2n - 3 param­
ters 0" and Om (k ". 1), and get expressions similar 
to those of the four-dirnensional case. The number of 
remaining equations (13), corresponding to Eqs. 
(10), is (n - 2)'. 

The structure of the remaining equations allows 
each cos "/;, to be solved as a function of the O;.'s. 
Carrying through this process of elimination, we 
are finally left with ten - 2) (n - 3) equations, corre­
sponding to (ll) and containing the remaining 
ten - 2)(n - 3) 8;.'s. 

The problem (13) or (2) thus has a solution when 
(1) the set of ten - 2)(n - 3) equations have a 
solution with each 0;, within the interval 

o .:s;Ojt.:s;~7r 

and, using this solution in the expressions for the 
cos 't il, 

(2) Icos ,,/,.1 :5 J (14) 

for each 'Yilt; . 

The conditions (14) are restrictions on the allowed 
volume in the (n - 1) '-dimensional u;.-space. If 
these conditions all hold with the inequality sign, 
the unitary matrix rr is completely determined by 
the (n - I)' given u;.'s and 2n - 1 phases: the 
n - 1 independent u ;.'s and t he n a/s. Let us call 
such a unitary matrix regular, whereas if (14) holds 
with one or more equality signs we call the unitary 
matrix irregular. 

Let us furth er define a phase transformation by 
D, M D 'l1 where DI and D 'J are diagonal unitary 
matrices. Such a transformation has 2n - l param­
eters; it further has the property of leaving the 
moduli IM ;.I of the elements of an arbitrary matrix 
M unchanged. 

Part of our results may then be stated as the 
following 

Theorem,. A regular unitary matrix is determined, 
up to a phase transformation, by the moduli of its 
elements. 

The irregular unitary matrices are clearly not 
completely determined by the moduli of their ele­
ments and a phase transformation, because there 
are relations between the moduli and thus the num­
ber of independent moduli is smaller than (n - I)'. 
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The problem of generating a complete set of linearly independent nth-order tensors which are in­
variant under a crystallographic group is considered. A number of methods for the solution of this 
problem such us tilC use of tensor bMCS, the addition of tensors of lower symmetry, and the method of 
polynomial invariants are discussed. Thc limitations of these methods arc outli.ned. 

1. INTRODUCTION 

A N nth-order tensor C .. ; •... ;. which satisfies the 
equations 

for all transformations '1' = Il t~;J1 belonging to a 
group G is said to be invariant under G. A tensor 
which is invariant under the orthogonal group is 
said to be an isotropic tensor. A tensor which is 
invariant under a proper subgroup of the orthogonal 
group, for example, one of the crystallographic 
groups, is said to be an anisotropic tensor. \\Tc are 
concerned with the problem of generating a complete 
set of linearly independent nth-order tcnsors in­
variant under the crystallographic groups and would 
like to comment on the efficiency of certain of the 
available methods when applied to the generation 
of invariant tensors of high order. 

II. TENSOR BASES 

A tensor basis for the group G is a set of tensors 
each of which is invariant under G such that any 
tensor which is invariant under G is expressible as a 
linear combination of outer products of the basic 
tensors. We list in Table I the tensor hases associated 
with those crystallographic groups G for which the 
three-dimensional representation of the group G 
furnished by the symmetry transformation matrices 
T" . .. , T. is reducihle to the sum of three one­
dimensional representations. We also list the number 
P.(G) of linearly independent nth-order tensors 
which are invariant under G. The quantity P. (G) 
is readily obtained from group-theoretic considera­
tions. The crystallographic groups are identified by 
their Schonllies and Shubnikov symbols and the 
vectors ell e2J eSI B, C appearing in Table I arc de­
fined by 

e,; = (1,0, 0) , eu = (0, 1,0) , e,; = (0,0, 1) , 
(2) 

B ; = (I, i, 0), C; = ( I , -i, 0) , i 2 = -1. 

• This work was supported by the National Science 
Foundation. 

The first eight tensor bases are those given by 
Sirotin.' The remaining eight tensor bases are ob­
tained jmmediately from thc llselection rules" given 
by Sirotin, although the tensor bases listed by 
Sirotin for these cases difTer from those in Tablc 1. 
Tensor bases for the crystallographic groups Du , C .. , 
D41 Ddt C3•, D3) Dadl DUI Cru , De, D ell ']', ']\, 7'dl and 
O. have been recently determined by Smith and 
Rivlin.' While it is a simple matter to generate the 
complete set of p.(G) linearly independent nth­
order tensors invariant under G from the tensor basis 
elements for those groups G listed in Table I, we 
maintain that for the remaining crystallographic 
groups the use of tensor bases is not the appropriate 
way to generate the set of nth-order linearly inde­
pendent invariant tensors if n is large. This statement 
also applies to the crystallographic groups C., S., 
CUI Ca, C8111 Co, C"II, C3 ; if the tensor bases listed by 
Sirotin' or Smith and Rivlin' are nsed instead of 
those given in Table 1. This contrasts with the 
statement by Sirotin' that if the tensor basis is 
known one may readily construct the set of linearly 
independent invariant tensors. In support of this 
point of view, we note that it may be readily verified 
that every nth-order (n is even) two-<limensional 
isotropic tensor is expressible as a linear combination 
of the lG.) distinct linearly independent isotropic 
tensors obtained from 

(3) 
B. = (I, i), C. = (I, -t), i ' = - 1 

by the n! permutations of the subscripts a" ... , a •. 
The usual statement concerning two-<lirnensional 
isotropic tensors is that /j., forms a tensor basis for 
the two-dimensional orthogonal group, i.c., that 
any n th-order two-<lin,ensional isotropic tensor is 
expressible as a linear combination of the n l/2·" · 

'Iu. 1. Sirotin, Dokl. Akad. Nauk SSSR 133, 321 (1960) 
[English transl. : Soviet Phys.-Doklady 5,774 (1961)] . 

t C. F. Smith and R. S. Rivlin. Arch. Ratl. Mcch. Anal. 
15, 170 (1964). 
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TABLE 1. Tensor bases. 

Point groups 

CI , I 
C" :2 
C., 17t 
C,,2 
C2A• 2 : m 

Ch , 2om 
D 2,2: 2 
D 2A , m·2:m 

Tensor bases 

eli, e2;, t s. 
tlielj, Clit2;, ClitS;, Ct;elj, tHe' /. ClOt. , 
e li, C2;, CJiC" 
CHel;. eUCH. CH, CliCZj 
t lotl;, tHtl;, tHt'l, CJ.:e2j 

tl.e 'j, tHe,;. eH 
ejiClh t2leH. e, iCH. e"et/flu 
tl"t'i, tHe'f, e . it'i 

eli, BiCh 8 ;8,8,)3" CiC,C£, 

P, 

POI - 3" 
2P. - 3' + (-3 )' 
2P, - 3' + 1 
2P. - 3' + (-I)' 
4P. - 3' + (-3 )' 
+ 1 +(- 1)' 
4P, - 3' + 2 + (- I)' 
4P, - 3' + 3'( - I)' 
SP, - 3' + (-3)­
+3+3 '(- 1)-

c., 4 
8./4" 
C .... , 4:m 

t H t Sj, BiCi , B;BjBJ3t, CiC,CIcC" eaiB,B., CHCiC" 
e,at' i, B,Ci , lJ.BjBJ11, GiCiC.C , 

4P, - 3' + 2 + (-I)-
4P_ - 3' + 3·( -I)' 
SP_ - 3' + (-3)' 

e,,3 
Cu. 3 :m 
C •• 6 
010\, 6 :m 

ta;, BiCi, BiBiB., C;CiCIt 
t Ht ' i , BiCh BiBjBIc, CiCfC" 
Cli, BiC i, B;B;B.IJtB ... B .. , C;CjCeG/G ... C .. 
t He ' i, B;Ch B;BjBIt;B,B",B", C.CiCIt.CtC .. C. 

+ 3 +3'(-1)' 
3P .. = 3" 
6P, - 3' + 2·(-2 )' + 1 
6P_ - 3' + 2 ·(-2 )' + (-I)-
12P, - 3' + (-3 )' + 2 ·2' 
+ 2·(-2 )' + 1 + (-I)' 

CH , S f:i;e.j, BiC;I B;BjBtB,B .. B .. , C;CjC,.crC ... C., eHEiB.B" tHGjC.C , 6P, - 3' + (-3)' 

(n/ 2) ! distinct tensors formed from 

(4) 

by the n! permutations of the subscripts. We observe 
that for n = 12 we obtain 12!/2' ·6! = 10395 dis­
t inct tensors from (4). However from (3) we see 
that these are expressible in terms of !(~') = 462 
isotropic tensors. Thus the generation of the set of 
invariant tensors from the tensor basis elements 
leads in this ease to the introduction of a large 
number of redundant tensors. The generation of three 
dimensional isotropic tensors from the tensor basis 
0" also leads to the introduction of redundant 
tensors for (even) n greater than 6. Since either 
0 •• or 0" is an element of the tensor bases given by 
Smith and Rivlin' for the crystallographic groups 
not listed in Table I, it is clear that for large values 
of n the use of tensor bases would lead in these 
cases to the generation of redundant tensors. A 
procedure which is readily applicable for the cry­
stallographic groups D", ... , O. is described by 
Sirotin.' 

m. ADDITION OF TENSORS OF LOWER SYMMETRY 

In a recent paper,' Lokhin and Sedov have pro­
posed an alternate method for generating the set 
of P,(G) linearly independent nth-order tensors in­
variant under a crystallographic group G. Consider 
the sequence of groups G C G, C G, C ... C G, 
where each group is a subgroup of tbe groups to the 
rigbt of it in the sequence. It is clear that any tensor 

• V. V. Lokhin and L. 1. Sedov, PrikJ. Math. Mech. 27, 
393 ( 1963) . 

invariant under a group Gr is also invariant under 
the groups preceding G,. The method then proceeds 
by first listing the set of nth-order tensors invariant 
under G" then augmenting this set by the t ensors 
which are invariant under Op-l but are not invariant 
under G" ... , and finally listing the tensors which 
arc invariant under G but which are not invariant 
under G, . This method has been previously discussed 
by Sirotin'" and has considerable merit in special 
cases.' However when applied to the general case 
the method as outlined by Lokhin and Sedov' has 
some objectionable features. For example, the group 
G, is in many instances taken to be the three­
dimensional orthogonal group and it is then required 
to list the set of three-dimensional isotropic tensors 
of given order. This is readily accomplished for 
n = 6 or less but for larger values of n (n even) it is a 
matter of considerable difficulty. The set of linearly 
independent isotropic tensors of order 10 (say) may 
be generated from 0,,;.0,., • ... c,. , .. by applying 
Young's symmetry'- ' operators to this tensor. How­
ever, this process is tedious and the resulting tensors 
are sufficiently cumbersome so as to render the 
procedure impractical for even moderate values of n. 
It is also to be noted that while it may not be difficult 
to generate P.(G,_,) - P.(G,) tensors which are 
invariant under Gr - 1 but which are not invariant 

'Iu. 1. Sirotin, Kristallografica 5, 171 (1960) [English 
trans!.: Soviet Phys.- Cryst. 5, 157 (19OO)}. 

'Iu. 1. Sirotin, Kristaliografica 6, 33 1 (1961) [English 
trans!.: Soviet Phys.- Cryst. 6, 263 (1961)] . 

• T. L. Wade, Am. J . Math. 63, 645 (1941). 
7 M. Hammermesb, Group Theory (Addison-Wesley Pub­

li shing Company, IDC., Rca.dmg, Massachusetts, 1962), p. 244 . 
• H. Weyl, The Classical Groups (Princeton University 

Press, Princeton, New Jersey, 1939), pp. 96-136. 
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under 0" it may prove to be very troublesome to 
verify that they are linearly independent. 

IV. POLYNOMIAL INVARIANTS 

A polynomial function W of the symmetric tensor 
S is said to be invariant under the group ° if 

W(S) = W(TSr') (5) 

for every transformation T belonging to the group 
0. Consider the problem of determining the form 
of the eighth-order tensor C, •... ;. associated with 
the fourtb-order elastic constants for tbe group a" 
i.e., the tensor Ci •..• t • appearing in the expression 

wbere W. is a scalar function of degree four in the 
finite strain tensor 0" which is invariant under the 
group a,. The tensor C ..... ,. appearing in (6) is re­
quired to be invariant under a, and is also required 
to be symmetric in i l and i 21 ia and i .. , etc. The form 
of the general polynomial function of 0" which is 
invariant under a, is known' and we note that this 
information immediately yields the form of the 
fourth-order elastic constant tensor C, .... ,. and also 
the form of the tensor C, .... , •• associated with the 
elastic constanta of arbitrary order n. Thus, it has 
been shown that any polynomial function of 0" 
which is invariant under a, is uniquely expressible 
in the form 

S o + S,L, + S,L, + S,L, + S.L: + S,L,L,. (7) . 
where So, ... , S, are polynomials in the quantities 
K" ... , K, defined by 

(K I I , .·, Ke) = (I: 0 111 L GlIG221 CIlGzzO'3. 

L: 0:" L: 0:,0:, . 0,,0,,0,,). (8) 

and where 

L l = L GIICG: 1 + G~2). L2 = L GltG:IG~2' (9) 
L3 = L G~3G22G33' 

In (8) and (9), L: On ... Ou denotes the sum of the 
three quantities ohtained by pennuting the sub­
scripts in the summand cyclically. Hence the func­
tion W. given by (6) is expressible as a linear com-

• O. F. Smith, Arch. Ratl. Mecb. Anal. 10, 108 (1962). 

bination of the eleven quantities 

( 10) 

We may associate a tensor with each of the invari­
ants (10) . Thus, since 

(11 ) 

we associate 0,,,.0,.,.0;.,.0,,,. with J(:. The tensor 
C; •... ,. in (6) is then expressible as a linear combina­
tion of the eleven tensors associa.ted with the in­
variants (10). It is clear that this analysis may be 
extended so as to obtain thc elastic constants of 
arbitrary order. 

The fourth-order clastic constants for a, have 
been obtained recently by Ghatc" and are in agree­
ment with the results listed above. We fcel that 
obtaining the form of the elastic constant tensors 
from consideration of the form of polynomial in­
variants of a single symmetric tensor 0" is preferable 
to the method adopted by Ghate" and note that 
elastic constant tensors of arbitrary order and for 
all crystallographic groups may be read off almost 
immediately from the results given by Smith.' 

V. CONCLUSION 

For the crystallographic groups C,' C" C., C" C .. , 
c2 ., D2J DUI C., C""., Cal Cu, Ce, Ct.A) C3 ;, it is pre­
ferable to generate the set of invariant tensors from 
the tensor bases listed in Table r. For the crystal­
lographic groups D2ol , ChI D4 , D ... , Ca., Da, Du , D 3 A.J 

ChI De, DUI T, TA, Toll 0, 0", the set of nth-order in­
variant tensors may be generated efficiently by use 
of tensor bases only for small values of n (say 5 or 
less) but for larger values of n it is preferable to 
use the method discussed by Sirotin.' The method of 
addition of tensors of lower symmetry may prove to 
be highly efficient in special cases but in general it 
will suffer by comparison with the use of tensor bases 
for the low-symmetry crystal classes and with the 
method of Sirotin' for the high-symmetry crystal 
classes. For special cases such as the determination 
of the elastic constant tensor, the use of polynomial 
invariants is highly efficient .. 

" P. B. Gbate. J. Appl. Phy •. 35. 337 (1964) . 
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The equations of motion of lattice vibrations are formulated with the a.ction principle as a. starting 
point. As a result one obtains, in addition to the equations of motion, the conservation Jaws for 
energy a.nd mome~tum. The latter are contained in a. set of finite difference equations. Boundary 
conditions on the field variables must be specified ovcr a region equal to one lattice spacing in order 
for the entire procedure to be mea.ningful. The quantized version of the theory can be constructed 
in a conventional way, and the commutators of the fie ld variables exhibit a set of periodically spaced 
singularities. In this way we construct a field which is nonlocal with respect to ita dependence on 
space variables, but is local with respect to its time dependence. 

T HE conventional theory of lattice vibrations is 
formulated in terms of a set of coupled finite 

difference equations. Because of tbe periodicity of 
tbe lattice, one may transform to normal modes 
wbere it is possible, in a completely straightforward 
manner, to quantize the decoupled equations.' Such 
a theory is strictly one of particle dynamics, and the 
wave character of the lattice vibrations can be 
discussed only by going to the continuum limit. 

Now there is a fundamental difference between 
a particle theory as compared to a wave theory of 
lattice vibrations; for the latter requires the specifi­
cation of a function throughout all points in space, 
while the former allows field functions to be specified 
only at tbe lattice sites. Nevertheless, the inter­
acting phonon field can be studied in terms of a point 
interaction with, say, the electron field. A conven­
tional field theoretic description of this electron 
phonon system can then be developed, but this is 
convenient only if we consider the continuum limit 
for the phonon field.' 

At present, to the knowledge of the author, no 
formulation has been given in the literature of a 
theory involving field variables which are continuous 
functions of the space varia hIes and which satisfy 
the finite difference equations of the particle theory 
at the lattice points. Such a theory is outlined below 
in the following sections.3 The development is pre­
sented with the action integral as a starting point. 
This allows a straightforward deduction of the con­
servation laws, and is particularly convenient when 
one quantizes the theory. We consider the one-dimen­
sional case only, since all of the salient features 

I J. Ziman, Electrons and Phonom (Oxford University 
Press, London, 1960), Chap. 1. 

, Y. Namhu, Phys. Rev. 117, 648 (1960). 
S A preliminary report of this work is presented in the 

following reference: A. D. Levine and A. N. Vaidya, Bull. 
Am. PhYB. Soc. 7, 546 (1962). 

manifest themselves here, and the only new result 
to be obtained in the three-dimensional problem is 
the angular momentum conservation law, as well as 
the derivation of the spin of the phonon. 

I 

We consider a one-dimensional linear chain of 
length L, consisting of N particles separated by a 
distance a. In the particle theory of lattice vibrations 
we obtain the set of coupled finite difference equa­
tions for the displacements of the lattice points 

~, = (o'/a')(~I+> + ~>-> - 2~,), (1) 

where ~, is the displacement of the lattice site. 
We introduce a field, defined at all points in space, 
which can be made identical to the lattice displace­
ments at the lattice sites. Thus, we want an equation 
of the form 

~(x, t) = [c'/a'][4>(x + a, t) 

+ 4>(x - a, t) - 24>(x, t)]. (1') 

For the sake of brevity, we introduce the following 
notation: 

f(x ± a) = T .f(x) 

and 

('+. dxf(x) - f+' dxf(x) = {f.. - 1.}f(x). 

Let us now introduce the following Lagrangian 
density' 

4 The method of taking finite differences for the purposes 
of obtaining the equatioDs of motion is not unique. For 
example, we could employ finite differences oC the field Oper­
ators evaluated a.t (x ± a/2) with equally satisfactory re­
sulta . The only modificatioos that .appe~ in the final results 
correspond to the manner of speCificatIOn of the variations 
at the boundaries. We employ the present convention on the 
finite differences as a matter of convenience. 

1615 
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L = [,p(x, 0]'/2 - [c'/2a'][(T. 

with the action integral 

1l<P(x, t)]' (2) where we have written 

1= r dx r dt L{,p , T.,p, ,pl· (3) 

The variation of the action integral will then be 

01 = II dx d{(aL/a,p)o"", + (aL/a7'.,p)oo7'.,p 

+ (aL/a,p)M + {' dx Lot i:: .. 
+ r dt Lox l:: ] ' (4) 

where 
a"", = -,pot - ,p.ox (5) 

is the intrinsic variation of ,p at the boundaries.' 
Now the third term in the square-bracketed expres­
sion of (4) may be transformed, using integration 
by parts in a conventional manner. The second term 
in the same bracketed expression is transformed in 
the following way: 

{' dx f{,p(x) lOoT . ,p(x) .. 
= r dx T . ([Lf{,p(x) I]M(x» . 

"' 
Now, the latter expression may be rewritten as 

r dx(T. - 1)([Lf{,p(x) I] o"",(x» .. 
+ {' dx[T - f{,p(x) I] oo,p(x). .. 

But the first integral of this last expression may be 
rewritten as a surfacelike integral: 

{1. - n [T - f{,p(X)I]Oo,p(x) 

Thus, combining all of our results, the variation of 
the action integral may be written as 

OJ = II dx dt[aL/ a,p 

+ T_(aL/aT. ,p) - a,(aL/a,p)]o"", 

r dt(l/a){J., - J..}s, ox 

f" f"' dt s, oxl:: - dx IT ox l:: 
I, J<, r (l/a){1. - n G at - r H dx otl::, (6) 

• N. N . Bogoliubov and D. V. Sbirkov, Introduction to 
the Theory of Quantized Fields (Interacicoce Publishers, Inc., 
New York, 1959), Chaps. 1 and 2. 

S = S, + S, S, = aT_{aL/aT.,pI,px , S, = - L, 

n = (aL/a,pl<P .. 

G = aT- (a L/ aT .,p)<b, 

H = (a },h),p - [,. (7) 

The symbols introduced are as follows: S will be the 
stress density, II the momentum density, G the power 
Bow density, and H the energy density. We have 
employed (5) to represent the variation of the field 
function at the boundary layers in order to obtain (6). 

We must impose certain conditions on the system 
and the allowed variations before we can use the 
action principle to obtain the desired results. For one 
thing, as is already evident if one observes the Sur­
facelike integrals of (6), we mnst continue the defini­
tion of the system beyond the spatial limits x, and 
Z" at least to within one lattice spacing. This means 
that our results will be restricted to the interiors 
of large or infinite lattices. Another condition .which 
we must impose) in order to obtain meaningful 
conservation laws is that the -variations of x and t 
are uniform at the boundaries x, and x, within a 
distance of one lattice spacing. Thus, we cannot 
specify variations at the boundaries which involve 
relative displacements of the end lattice points as 
a function of the distance between the lattice points. 
This seems to be a reasonable assumption of the 
physical situation that one encounters. Of course, 
it must be strictly understood that we are omitting 
all effects of surface vibrations from our con­
siderations. 

We may now obtain all of the desired information 
about the system using (6). The application of the 
action integral at the interior of the space- time 
domain gives us the equation of motion: 

(aL/a,p) + L(aL/aT.,p) - a,(aL/a,p) = O. (8) 

If we insert the Lagrangian (2) into (8) we obtain 
(1') as we had set out to do. Application of the action 
principle to the coefficients of ox and at in (6) gives 
us the conservation laws for momentum and energy, 
respectively: 

r dt(l/a){J., - J..}S, 

+ J:' dt S,I:: + {' dx nl:: = 0, (A9) 

r dt(l/a){J. , - i,}G + r dx HI:: = o. (9E) 

These conservation laws appear in integral form. 
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The corresponding differential forms for these laws 
are 

(l/a)(T. - I)S, + as,/ax + all/al = 0, (9A') 

(l/a)(T. - I)G + aH/al = 0. (9B') 

Note that these latter equations occur as finite 
difference equations. The reader may verify readily 
that the equation of motion (8) is consistent with 
the conservation laws (9). 

One may consider the continuum limit of the 
equations which we have used, and show that it is 
identical to the continuum theory of the one-<limen­
sional wave-equation problem. For example, the 
Lagrangian (2) becomes 

L = t</>' - (!c').p!. 

The equation of motion (1') is q, = c'¢xx while the 
conservation equations (9) hecome ordinary dif­
ferential equations. We might also note that the 
stress density So, the power flow density G, and the 
energy density H, hecome identical to the cor­
responding quantities of the continuum theory. (The 
momentum density II already is of the form which 
we encounter in a conventional continuum theory.) 
If we introduce a plane-wave representation 

the equation of motion (1') yields the dispersion law 

w = (2c/ a) sin tka (10) 

which, as we may note approaches the result for the 
continuum limit when ka is much less than unity. 

It is well to bear in mind the fact that some of the 
results of the theory we have outlined above are a 
consequence of the assumption of nearest-neighbor 
interactions. If this restriction is removed, the basic 
structure of the theory remains nnalterOd, although 
the individual equations become more involved. The 
most important difference occurs in the assumptions 
pertaining to boundary conditions aud variations at 
the hound aries. Thus, for example, if we were to 
include second nearest neighbor interactions, it would 
be necessary to continue the domain of the lattice 
to a length equal to two lattice spacings beyond X,. 
At the same time, it would be necessary to demand 
that the variations of x and I at the howldaries 
x, and x, be nniform in a spacelike region equal to 
two lattice spacings beyond these two limits. With 
these alterations the entire procedure goes through 
as before. If now, one were to increase the number 
of neighbors whose interaction must be accounted 
for, it would become necessary to maintain uniform 

variations of x and I throughout a substantial portion 
of the lattice domain, and the physical interpretation 
of such a theory would become quite obscure. How­
ever, when we begin to take all of the neighboring 
interactions into account, we go over to 8. limit where 
the lattice model is no longer adequate, and we must 
consider the system as a many-body problem. Since 
we confine our considerations to those cases where 
the lattice model is adequate, the physical interpreta­
tion of our theory docs not present any difficulty. 

II 

We may now proceed to the quantization of the 
classical field equations which we have developed. 
Starting with the canonical momcntum 6 

p(t) = [' dx'll(x', I), .. (11) 

we have 

[P(I), ¢(x, I)] = (h/i)./>.(x, I). (11') 

Comhining these relations with (7) and (2) we find 

[¢(x, I), ¢(x', I')] = D(x - x', I - I') (12) 

with 

D(x - x', 0) = 0, 

D,(x - x', I - 1')1._,. = (li/i)6(x - x'). 

(13a) 

(13b) 

The explicit form of these commutator functions 
can be ohtained hy using a plane-wave representation 

¢(x, I) = (I/L)-1 :E WIW,)I , 
X {b,e-;· " + bte;·"je"'; (14a) 

we obtain (12) and (13) if we set 

[b,,, b,.] = 0, (14b) 

Here the operators b* and b are the conventional 
creation and annihilation operators for the plane­
wave states. The singularities of the commutator 
function are determined by (13) and the dispersion 
law (10). The explicit form of the commutator func­
tion can he deduced quite readily using a plane­
wave expansion of the form (14), and the procedure 
is sufli.eiently well known, so that we may limit 
ourselves to quoting the result': 

• J. M. Jauch and F. Rohrlich, The Theory of Electron8 
and Photons (Addison-\Vesley Publishing Company, Inc., 
Cambridge, Massachusetts, 1955), p. 27. 

7 We make use of the Fourier decomposition for Bessel 
functions in arriving at this result. See : G. H. Watson, A 
Treatise on the Theory of Bes3el Functions (Cambridge Uni­
versity Press, New York, 1944), p. 20. 
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D(~, T) = ~ 6(~ - mal { J,.(2ct'/a) dt', (15) 

where the sum over 1n runs from zero to infinity 
and the J are the ordinary Bessel functions. Now 
the commutator function is also the Green's function 
for the solution of the homogeneous equation of 
motion (1'). If, at some given time t, we may specify 
the field operator and its time derivative, then at 
any subsequent time the field operator will be given 
by 

</>(x, t) = i J dx'[Dt(x - x', t - t,l</>(x', t,) 

- D(x - x', t - t,)4>(x', t,)]. (15') 

The dcrivation of this last result may be obtained, 
starting with (1') and proceeding as one does in the 
continuum theory. If we have some disturbance, 
then from (15) it is clear that this disturbance will 
be propagated from one lattice cell to the next, as 
if the system consiBted of a set of percussion centers. 

We write down explicitly the (normal product) 
plane-wave expansion of the energy and momentum. 
This, of course, could be obtained by substituting 
(14) into (7), 

P = L: hkbtb., 
• (16) 

E = ~ n...btb. = J dxH. 

There are two points worthy of note in connection 
with these last relationships. In the particle theory 
of lattice vibrations, there is a degeneracy in the 
system due to the nature of the dispersion law (10) 
so that it is necessary to divide up the domain of 
wavenumber space into zones: and sum all dynam­
ical effects over the zones. If this is not done, dynam­
ical variables such as energy and momentum will 
contain coherent sums over the degenerate states in 
the separate zones, and these will give rise to un­
physical results. In a wave theory, such as we have 
considered in this paper, such degeneracies do not 
occur, and there need be no restriction in the summa­
tions of relation (16). Of course, in practical applic .... 
tions of the theory a sum over zones may be very 
helpful, the point being that here it is no longer 
needed. We should also keep in mind the fact that 
we arc dealing with a nonlocal theory. The difficulties 
which one normally encounters for such a theory' 

• L. Brillouin, Wave PropO(Jalion and Periodic Strucl.ures 
(McGraw-Hili Book Company, Inc., New York, 1946), pp. 
102-107 148- 164 . 

• A. Pais and G. Uhle.beck, Pbys. lli>v. 82, 914 (1951). 

do not appear because the theory which we have 
developed is not covariant, and is local in its de­
pendence on time, even though it is nonlocal in its 
dependence on space variables. 

The three-dimensional problem may be treated 
in the same manner as the one-dimensional problem 
described here. A realistic three-dimensional model 
must include second nearest neighbor interactions." 
Thus, the relations become quite involved. However, 
the procedure and the results are very similar to the 
ones obtained here. The main diJTerence ariBes from 
the variations corresponding to rotations of the 
system from which one may deduce the angular 
momentum conservation laws. The properties involv­
ing the spin of the phonon that enter into these 
considerations have been discussed elsewhere in 
terms of a continuum theory, and are very similar 
to the ones given in that reference." The dispersion 
law and the commutator function do not have the 
simple forms given in this paper, but one can readily 
discuss the singularities, and demonstrate explicitly 
how the wave propogates in such a system. 

In this article, we have demonstrated the possi­
bility of quantizing a system of finite dilJerence 
equations and constructing a nonlocal field that 
corresponds to these equations. Apart from the 
purely heuristic value, it iB interesting to look at 
the interactions of such a field, and study it to 
determine what physical effects manifest themselves 
when oue considers the renormalized interacting 
sYstems. It is also interesting to consider electro­
magnetic interactions of such systems and attempt 
to gain an insight into the gauge condition that 
plays such an inlportant role in the electromagnetic 
properties of these interacting systems. Such studies 
are now under way. 
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The problem of mul t iple scattering of wavC8 by randomly positioned objects has been treated by 
several au thore, for example, Foldy, La..'C, Twersky, Waterma n, a nd Truel!. The p rescnt work extends 
the theory to electroma.gnetic veetor fields and to sca.ttercrs of arbitrary size and properties. A general 
formulation hns been made for scattering by any type oC discrete and iden tical Bcatt.ercrs which are 
similarly oriented. The case of spherical sca.tterers has been treated by using the rigorous Mie tbeory 
both for sparse and denee concentra.tion. Results indicate that in case of sparse concentration, the 
statistical expectation of the total field has a polarization similar to that of the normally incident 
wave and the distribution oC scatterers is equivalent to a homogeneous medium with n modified 
refractive index. In case of dense concentration the medium can sustain a number of plane-wave 
modes. A dispersion relation for the modified medium hns been obtained . When the special CnBCS of 
small spheres is considered, the well-known results obtained by other authors are recovered. 

1. INTRODUCTION 

T HE study of wave propagation in a random 
medium is interesting both theoretically and 

from the experimental point of view due to its 
numerous practical applications. Consequently, it 
has received considerable attention in the literature. 
Various approaches are used for a theoretical 
investigation of the subject, depending upon the 
statistical model chosen to describe the medium. 
In this paper we consider a random distribution 
of distinct obstacles. As the wave propagates in 
such a medium, it is scattered hy the obstacles 
and the problem is, therefore, formulated in terms 
of multiply scattered waves. 

The problem of scattering by distributions of 
objects dates back to 1881 when the Lorentz­
Lorenz formula for the refractive index of a gas 
was developed . This was followed by Lord Rayleigh's 
classical work in 1899 on the scattering of waves by 
random distributions which explained the color 
of the sky. However, the first systematic treatment 
of mUltiple scattering of waves was given in a 
paper by Foldy in 1495.' Much work has since been 
done on the subject with valuable contributions 
from Lax,' Twersky,' and Waterman and Truell.' 

• This work was done at the University of Illinois with 
partial supports from the Agency for International Develop­
ment and the National AeronautJca and Space Administration 
under Grant No. NeG 24-59. A more detailed version haa 
been published as a technical report with the same title by 
the Department of Electrical Engineering, University of 
Illinois, Urbana, Illinois 1963. 

, L. L. Foldy, PbY8. lli.v. 67, 107 (19·15). 
'M. Lax, Rev. Mod. PbY8. 23, 287 (1951); PhY8. Rev. 

85,621 (1952). 
• V. Twersky, J. Math. PbY8. 3, 700 (1962). 
, P. C. Waterman and R . Trucll, J. Ma.th . Pbys. 2, 5 12 

(1961 ). 

The formulation used in this paper follows closely 
the work of Waterman and Truell. The new features 
considered here are the vector nature of the electro­
magnetic waves and the tillite size of the scatterers. 
We consider the incidence of an electromagnetic 
wave on a semi-infinite medium containing a ran­
dom distribution of identical, similarly oriented 
scattering objects. The statistical expectation of 
the tield for an ensemble of confignrations of the 
scatterers is obtained using the joint probability 
density distribution of scatterers. The special case 
of spherical scatterers is considered in detail. When 
the concentration of spheres is sparse, an expres­
sion is obtained for the refractive index of the 
synthetic medium by considering the first-order 
scattering only. The polarization of a normally 
incident wave is found to rClnain unchanged . For 
dense concentrations, multiple scattering effects 
have to be taken into account and a dispersion 
equation for the refractive index of the synthetic 
mediwn is obtained. For tillite-size spheres, this 
equation is higher than a quadratic and shows that 
more than one mode can propagate in the syn­
thetic medium. 

2. FORMULATION OF THE PROBLEM 

Let us consider a random distribution of m 
identical, similarly oriented scatterers of arbitrary 
size, shape, and scattering properties. Let the various 
configurations of scatterers be governed by the 
probability density distribution p (r" r" . .. , r~). 
Here p (rl, t 2 , ••• , ron) dVI dV2 ••• dv .. is the joint 
probability of finding one scatterer in the volume 
dv, centered at r" another scatterer in the volume 

1619 
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FIG. 1. The geometry of the problem. 

dv, centered at r, and so on. Since all scatterers are 
identical and similarly oriented, a configuration of 
scatterers is specified by the scatterer positions 
alone. To facilitate mathematical formulation, let 
us introduce the following notation. 

Let S be the domain of all points in the con­
figurational space. Let S, be the domain of all 
points lying in the right half-space z ~ 0, and S, 
the domain of all points lying in the left half-space 
z < 0, so that S, V S, = S. Let S., be the domain 
of all points lying inside the scatterer centered at 
r,. To be specific we shall restrict the centers of all 
scatterers to the right half-space z ~ ° and shall 
not permit interpenetration of scatterers. This is 
expressed by imposing the following conditions on 
the density function: 

pCrlJ f21 ... J r",) = 0 for fj E 821 Vi, 
p(r" r" ... ,r.) = ° for S., n s" ". 0, 

Vj, k; j". k. 

We shall consider only elastic scattering and assume 
that the scatterers are in no way affected by the 
incident field and that the motion of scatterers, 
if any, is too slow to be of significance. 

Let an electromagnetic wave E' (r, t) be incident 
from the left. We shall consider only the forced 
oscillation case with time dependence .-1.' and 
shall suppress the time dependence for convenience. 
For a configuration T il r2 , • • . I f ... of scatterers, the 
total field at a point r is denoted by E (r : r" ... ,r.). 
Clearly, if r ES" it may lie outside all scatterers 
(as at P in Fig. 1) or it may lie within some scatterer 
centered at r, (as at P'). However, if r ES, (as 
at P") and far from the boundary z = 0, it must 
lie outside all scatterers. For convenience, we shall 
not consider the case when rES, but is so close 
to the boundary that it is within some scatterer 
whose center is in S,. This" edge" effect seems to 
be very complicated and in the following we shall 
ignore this small region and only consider the 
fields in S, and S, away from the edge. The incident 

field as well as the field outside of all scatterers in 
a given configuration is supposed to satisfy the 
wa.ve equation 

~ 

(\7' + k')E(r : r" ... , r.) = 0, rES - V s.,. 
i-I 

If r is inside any scatterer , say at r i, then the 
field satisfies 

(\7' + k:)E(r : r " ... ,r.) = 0, r ES,,, Vj. 

All these fields are also supposed to satisfy certain 
radiation and boundary conditions. 

2.1 Derivation of Exact Equations 

Let E '(r , r , : r" ... , r~) denote the scattered 
field at r from a scatterer at ri for the configuration 
r" ... , r. of scatterers. We shan write this scattered 
field in terms of the exciting field E"(r, : r" ... , r.) 
at the scatterer at r , and a scattering operator 
T(r, r ,). Thus, 

E-Cr, f , : Ti l'" I r ... ) = T(T, f j)EE(r; : Ti l' " ,r",), 
~ 

r EE V S,/. 
j-l 

If r lies inside some scatterer, say one centered at T" 

then we shall make use of the interior scattering 
operator T'(r, r ,) and write 

E(r : T il'" , r ... ) = TICr, fj)EE(rj : Til'" , r .. ), 

rES" . 

The scattering operators T and T' are merely 
formal and are introduced purely to stress the 
functional dependences. For convenience we shall let 

T(r, r,) = 0, for r ES." 

T'(r, ri) = 0, for r EE S.,. 

The total field at a point lying in the scattering 
medium, i.e., r E 8 1 can, therefore, be written in a 
selI-consistent manner as 

E(r : r, ,···, r.) , . 

j
E'(r) + ~ 7'(r, r ,)E"(r, : r" .. . , r.), 

r EE U S." 
j - I 

T I(r, r ,)Ei':(r , : Ti l '" , r .. ), r E S~i' 

Following Waterman and Truell, these equations 
can be combined into one hy using the symbol 
a(r, r,) defined as follows 

a(r, r.) = {O, 
1, r EE s .• . 
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Using this symbol, the total field for a given con­
fi guration can be written as 

E(r : r" ... , r.) = [fr a(r , r.) ] .-, 
X [E'(r) + t T(r , ri)E"(ri : r" ... ,r.)] ,v, 

+ t [1 - a(r , r,)][T'(;, r.)E"(r, : r" ... , r.)], .-, 
r ES,. (1) 

It has been found by various authors that the 
field given by Eq. (1) cannot be evaluated ex­
plicitly except in simplest cases. The scheme here 
is to take the eusemble average of (1) as it stands 
and make approximations later. 

The statistical expectation, or the average value, 
of the total field is defined by 

(E(r» = J dv, J dv, ... J dv. 

X p(r" ... , r .)E(r : r" ... , r.). 

In this, the volume of integration for each scatterer 
is the entire volume accessible to scatterers. If the 
average is taken with one or more scatterers held 
fixed, we get the first, second, etc., partial average. 
Thus 

(EE(rs : r l» =0: first. partial average of the exciting field at 

r) with the scatteter atr l held fLXCd, 

J dv, ... J dv.p(r" ... ,r. : r ,) 

where p er"~ . .. , r. : r,) is the conditional probability 
density function when the scatterer at r, is given . 
It has been shown by Waterman and Truell that 
due to exclusion of interpenetration, we can write 

-p(r" ... ,r.) II a(r , r,) .-, 

= per "~ .. . ,r.>[ 1 - 1;, (l - a(r, r.)} J. 
Using this relation, Eq. (1) can be averaged to 
get the result 

(E(r» = E '(r>[ 1 - L ... dv' per') ] 

+ 1 .. ,. dv'p (r')T(r, r')(E"(r' : r '» - fes,. dv'p(r') 

x f dv" p(r" : r')T(r, r'){E E(r' : r' I r"» 
r E S.", 8 r'f\S.'·-O 

+ f dv'p(r')T'(r, r')(E"(r ' : r'», r E 8,. (2) 
r E 8,' 

Here, per') is the density of scatterers at r' and is 
related to the single scattercr probability through 
per') = p(r')/m. The conditional density p(r" : r') 
is related to the conditional probability through 
p(r" : r ') = p(r" : r')/(m - 1). The domain of 
integration r ES" indicates that the r' integra­
tion is to be carried out over all points r' such that 
r is inside the scatterer at r'. Similarly, the domain 
r EE S,. indicates that r is to be outside the scatterer 
at r' and S, n S" . = 0 indicates that the r" 
integration is to be carried out over all points r' 
such that the scatterer at r" docs not penetrate 
the scatterer at r'. 

If the point of observation lies in the left haU­
space, i.e., r ES" then the total field is given by 

E(r:r,,···,r.) 
. 

= E'(r) + I: T(r, r i)E"(r, : r" .. . ,r.). 
i-' 

The average total field then becomes 

(E(r» = E'(r) + 1...,. dv' p(r')T(r, r')(EE(r' : r'», 

r ES,. (3) 

The partial averages of the exciting field that 
occur in Eqs. (2) and (3) can be obtained from the 
self-consistent equation 

. 
= E'(r ,) + L: T (ri : r.)E"(r. : r" ... , r.). (4) .-, -, 

The ensemhle average of this equation taken with 
the scatterer at r , held fixed gives the first partial 
average 

(EE(r, : r ,» = E'(r,) 

+ r dv' p(r' : ri)7'(r" r')(E"(r' : r', r,». (5) 
J8~jrv1 "_0 

This equation involves the first and second partial 
averages of tho exciting field. An equation for the 
second partial average can be similarly obtained 
and will involve the third partial average. Similarly, 
each equation for a partial average will involve 
a partial average of one higher order. In order to 
break this hierarchy of equations and get an inte-
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gral equation in the closed form, some approxi­
mations have to be made. 

2.2 Approximations 

There are several types of approximations possible. 
In a weakly random medium, we can use different 
orders of iteration of Eq. (4) for the excitiog field . 
In the first iteration the exciting field is replaced 
by the iocident field alone. In the second iteration 
we consider the exciting field as made up of the 
iocident field plus the once scattered fields and so 
on. At each stage of iteration io such an approach, 
we are confronted with an essentially new problem 
of integration when any specific type of scatterers 
are considered. 

Another approach is to consider the excitiog 
field at a scatterer at r; in a given configuration 
as an expansion in which the first term is the total 
field at r; when this scatterer is not there [that is, 
io a configuration of (m - 1) scatterers]. The 
second and higher terms then include the rescatteriog 
of the field scattered from this scatterer when it is 
put back in the configuration. Thus, we have 

E E(r; : rl l .,. Ir".) = E(r; :r,! .f. ,r ... ) 

. 
+ L: T(r;, r.)T(r" r ;)E(r; : r " .!. , r .• ) + .-, 

' ; 

. (6) 

The prime on the configuration rll . .. J r ... indi­
cates that the scatterer at r ; has been removed. 
The approximation then consists of neglecting 
the second and higher terms io the right-hand 
side of Eq. (6) . This approximatioo has been con­
sidered io detail by Waterman and Truell' and 
they have developed a criterion of its validity. 
According to this criterion, the second and higher 
terms are much smaller than the first if 

PoQ./k « 1, 

where Po is the number density of scatterers (assumed 
constant), Q. is the scattering cross section of a 
Biogle scatterer and k is the propagation constant 
of the medium in which the scatterers are located. 
Although this criterion has been developed usiog 
point scatterers and scalar waves, it is shown to be 
quite generally valid. 

A third approach is to consider tbe hierarchy of 
equations for partial averages of the exciting field 
of which Eq. (5) is the first . The approximation 
consists of breakiog the hierarchy at some point, 
that is, taking 

(EE(rl : TI , f 2, ... I Til fj» ~ (E E(r, : Ti l' " If;», 

for some i and j. If we break the hierarchy at the 
first equation itself, then we have 

(E"(r, : r" r,» I':;; (EE(r, : r,». (7) 

This approximation has been discussed by Lax' 
and is designated as the" quasicrystall ioe" approxi­
mation by him. He has shown that this is a very 
good approximation in the case of dense systems 
when multiple scattering effects are most important. 
For the case of statistically independent distribu­
tions, it can be shown to be equivalent to the 
second approximation considered. 

We shall simplify the equation by using the 
second approximation and considering the case of 
statistically independent distributions only. Thus 
we put 

and 
p(r" ... , r.) = p(r,)p(r,) ... p(r .). 

Straightforward simplification then leads to the 
equations 

(E(r» = [I - LB .. dv' p(r') ] 

X [EI(r) + f.s .. dv' p(r')T(r , r')(E"(r' : r'» ] 

+ 1 dv'p(r')T'(r, r')(E"(r' : r'», r ES" (8) 
,es, . 

(E(r» = EI(r) + f .... dv' p(r')T(r , r' )(EE(r' : r'», 

rES" (9) 

(EE(r : r» = E'(r) + L" ... _ 0 dv' p(r')T(r, r' ) 

X (E E(r' : r'». (10) 

These equations are quite generally valid for scat­
terers of arbitrary size and shape. We shall now 
consider the special case when the scatterers are 
spheres of arbitrary radius a and electromagnetic 
properties J1. ., E. , k. with constant number density 
Po and when the incident wave is a linearly polarized 
plane wave and is incident normally. We shall 
consider both the sparse concentration case when 
single scattering theory is good enough as well as 
the dense concentration case when multiple scatter­
ing has to be taken into account. 

3. SINGLE SCATTERING BY SPHERICAL SCATTERERS 

When the scatterers are sparsely packed, only 
first-order scat.tering (Born approximation) need 
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be considered. In this case we replace the exciting 
field by the incident field and neglect the second 
term in Eq. (10). Considering the incident field of 
the form '.e"·, Eqs. (8) and (9) now involve the 
scattered and "transmitted" fields [T(r, r') i.e;'·· ] 
and [T' (r, r')t.e;'·· ] at the point r for a sphere 
centered at r'. The problem of scattering of a linearly 
polarized plane wave by a sphere was first solved 
rigorously hy Gustav Mie in 1908 and the results 
are expressed in terms of an infinite series involving 
spherical vector wavefunctions.' Using the co­
ordinate systems shown in Fig. 2 and letting 
c. = ,~ (2n + I) /n(n + 1), the various fields can 
be expressed as follows : 

J <-O 

, 
la, 
, , 
'P 

, >. 
------ -1 1 

o~~-----------.~----------

FlO. 2. The coordinate systems. 

= e;'" L: c.[mi •• (r" k) - in: •• (r., k)j, Equations (8) and (9) can, therefore, be written as ... 
T(r, r')E '(r') 

T'(r, r')E'(r') 

= eih
' L c .. [a!m~I,.(rl' k.) - ib!n~I .. (rl' k.)) . .. , 

The coefficienU:i a:, b:, a!, and b! are obtained from 
boundary conditions and are functions of the radius 
and properties of the spheres. These fields are 
now expressed in terms of a coordinate system 
centered at the center of the scattering sphere. 
The position of the scatterer is taken care of by 
the phase factor e .. ••. However, since the center of 
the scatterer, r ', is the variable of integration, the 
integrand must be expressed in terms of some other 
coordinate system which is fixed. The translation 
addition theorems for spherical vector wavefunc­
tions are very involved, in general, and, therefore, 
we choose the fixed coordinate system to be centered 
at the point of observation P. We now use the 
simple coordinate transformation r, = - r,. It 
can be easily shown that 

mi;:(r" k) = (-I)"mi;!(r" k), 

n:;!(r" k) = (-I)""n: ,:(r" k). 

'J. A. Stratton, Electromagnetic Theory (McGraw-Hill 
Book Company, Inc., New York 1941 ), p. 564. In most cases 
we are using his notations with Blight and obvious modifica­
tions. It was pointed out by the reviewer that similar tech­
niques as that used in this section have also been applied to 
the periodic case by N. Kasterin, Koning. Akd. Wentena. 
4, 460 (l897) and to waves in a lattice of spherical particles 
based on angular momentum theorems by P. H . Morse, Proc. 
Acad. Sci. 42, 276 (1956). 

(E(r» = (1 - v.)'.e"· 

+ (1 - v.)p.e"·j dv,e"" 
~. > .... . ~ -. 

x [t. (-l)·c.{a,:mg,.(r" k) + ib:n!,.(r" k)1 ] 

x [t. (-I)"c.[a,:mi,.(r" k.) + ib;n:,.(r" k.)1 J, 
(11) 

where rES" and 

(E(r» = i.e'" + p.e'" J dv,e"" 

X [t. (-I)"c.{a,:mg,.(r" k) + ib:n!,.(r" k)1 J, (12) 

where r ES,. Here v. = f ,es .· Po dv' = (1 ),..a' Po, 

is the fractional volume occupied by the scatterers. 
The domains of integration used here are shown ill 
Fig. 3. For convenience, we restrict the point of 
observation P to lie outside the slab region -a < 
z < a. The integration in Eqs. (11) and (12) can be 
carried out exactly by expanding the vector wave­
functions m and n in terms of their Cartesian com­
ponents.' The summation and integration can be 
interchanged. The integrands involved are of the 
form 

where P~ is the associated Legendre polynomial 
Ii P. M . Morse and H. Feshbach, Methods of Theoretical 

Physics (McGraw-Hill Book Company, Inc., New York, 
1953), Part II, p . 1899. 
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'. 

" 

st-----., 

" 
(bl rr <0 
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'. 

" 

{el It ~-l; :'<- 0 

FIG. 3. The domains of integration (shaded regions). 

and z. stands for either the spherical Bessel func­
tion or spherical Hankel function. Since the do­
mains of integration have a "', symmetry the terms 
of the type 

go to zero. Thus the only terms which do not go 
to zero are those which are independent of "". 
This reduces Eqs. (11 ) and (12) to the following: 

(E(r). = (1 - v,)e'" + (I - 1I,)e;" Po t (-2it .-. 
x 1 dv"i"'[(2n + J)a:P.(cos O,)h..(kr,) 

~ .>., •• ~- ~ 

+ ib:{(n + I )P._.(cos O,)h._.(kr,) 

. ;" ~ (-it - nP ... (cos O,)h ... (kr,)ll + e Po f:-r -2-

x 1 dv,e;'''[(2n + l)o.:1'.(cos O,)i.(k,r,) 
r.< .. 

+ ib!{ (n + 1)P. _.(cos O,)j._.(k,r,) 

- nP ... (eos O,)i ... (k,r,)Il, 

when r E 8 1, and 

(E(r», = e;" + e'" Po t (-it f dv,e;'" 
,,- I 2 ." ~ -. 

X [(2n + l )a:P.(cos O,)h.(kr,) 

+ ib:{ (n + I )P._.(cos O,)h._.(kr,) 

- nP ••• (cos O,)h ••• (kr,)IL 

(13) 

(14) 

when r ES,. It is thus seen that the average total 
field is a lso linearly polarized in the x direction, 
like the incident field. This was also found by 
Twersky.' It is to be notieed that there is no singu­
larity in the integrands in any of the domains of 
integration. Previous work on this subject is re­
stricted to the case of small spheres and the fields 
interior to the spheres are ignored. The problem is 
thus reduced to that of point scatterers. This 
introduces a singularity in the kernel of the integral 
equation and there is some ambiguity in treating 
such integrals since the results depend upon the 
shape of the volume excluded in the Cauchy princi­
pal value technique (for instance, see Waterman 
and Truell' ). In our treatment, where the fields 
interior to the scatterers are properly accounted for, 
such ambiguity no longer exists. The spherical 
Hankel function is regular at infinity and the 
spherical Bessel function is regular at the origin. 
Typical integrals are now of the form 

e;h·p .(cos O,)h.(kr,) and e;'''P.(C05 O,)j.(kr,) . 

In the domain shown in Fig. 3 (b) , the integration 
can be carried out in a straightforward manner and 
in the domain 3(c) we make usc of cylindrical 
coordinates and the relation' 

. (1 a) e"" p.(cos O,)h.(kr,) = (- t) p . ik az, ikr, ' 

These integrations can then be carried out following 
the work of Waterman and Truell. For the domain 
shown in Fig. 3(a), we convert the volume integral 
to a surface integral by the formula 

1. dv,e;·"P.(cos O,)".(kr,) 

= 1. [P.(C05 O,)".(kr,)\7k"(4~' - ~~)} 
- e;'{~' - ~~)\7 {P.(cos O,)h.(kr,) I }dS. (15) 

1 B . van der Pol , Physica 3, 393 (1936). 
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The surface u encloses the volume V and dS is in 
the direction of the outward normal. This formula 
has becn developed in the report. After some 
lengthy computations using the above relations, 
the average total field can be shown to be given by 

(E(r». = (1 - v.)e .... 

+ (1 - v.)e .... p"[~~ t. (2n + I )(a: + b:) 

+ i;c t. (2n+ l )a:a.+ (n+ l )b:a,._, +nb:a,.+,) ] 

+ """"'{2:' t. (2n + l )a!.B. + (n + l)b!.B._, 

+ nb!.B •• ') J, r ES, . (16) 

The symbols a. and f3. are defined as follows 

a,. = "[".(!Ji:m + h:(!Ji.(!) 

+ 2,(h.mi:'(') - h:(!Ji:(lJ}], 
f3. = 1 ~,~, [N.i.(,)j._,(N.,) - i.- ,(lli.(N,llJ, , 

where, = ka, N. = k./k and the primes indicate 
differentiation with respect to the argument of the 
function concerned. Equation (16) can be written 
in the form 

(E(r». = E:e .... (1 + i6kz), 

with obvious definitions for E: and 6. If 6 is small, 
as it will be in caSes where the Born approximation 
is sufficiently good, then this can also be written as 

r E S" (17) 

where N B = 1 + 6. Thus, the wave propagates with 
a IItransmission" coefficient E~ in a medium of 
refractive index N B. 

In the left balf-plane, Eq. (12) leads to 

(E(r». = e .... 

+ .- .... [~k:i t. (-1)"(2n + I)(a: - b:) J. (18) 

This equation is of the form 

(E(r». = e;" + E;e-;", r E S,. (19) 

This also sbows tbat the right half-space containing 
the scatterers acts like a modified medium which 
reflects part of the incident field with a "reflcction" 
coefficients E~. The refiection coefficient, trans­
mission coefficient and refractive index of the 
equivalent medium are functions of the size, density 
and electromagnetic properties of the scattcl'crs 

and of the wavelength considered . Some of their 
properties are discussed in Sec. 5. 

4. MULTIPLE SCATTERING BY 
SPHERICAL SCATTERERS 

4.1 The Exciting Field 

In a dense distribution, the effects of mUltiple 
scattering can not be neglected. The various orders 
of scattering can be considered by successive itera­
tion of the exciting field equation. However in this 
method, as was pointed out earlier, a new problem 
in integration is confronted at each stage. The 
complexity of the integrals involved increases very 
rapidly even for such a simple shape of scatterer 
as a sphere. We shall, therefore, direct our attention 
to solving Eq. (10) for the exciting field. 

Most of the earlier work on multiple scattering 
has shown that a distribution of scatterers can be 
replaced by a modified homogeneous medium. 
Thus Foldy has obtained an expression for the 
refractive index of such a modified medium for 
the case of isotropic point scatterers. A similar 
result for anisotropic point scatterers has been 
obtained by Waterman and Truell for the case of 
scalar wavcs. The single scattering approach of 
Sec. 3 gives the refractive index of the modified 
medium when vector waves are considered and no 
restriction is placed on the size of the scatterers. 
On the basis of these results we shall assume that 
the exciting field can be represented by a collection 
of uniform plane-wave modes when mUltiple scatter­
ing effects are taken into account. From the geometry 
of the problem and the results of Born approximation 
it is clear that these plane waves will all travel in 
the positive z direction and will be linearly polar­
ized like the incident wave. Therefore, we assume 
the following form for the exciting field as a trial 
solution 

(EE(r : r» = L t.E,e;''', ,-, 
where all the k,'s are assumed to be distinct, i.e., 
k, r! k: for 1 = I' . Substituting this in Eq. (10) 
we get 

-L ~E,eilt,. = i"e'lu ,-, 

+ Po I. ,"" ,' _0 dV{ 7'(r , r') (20) 

In order to carry out the integration, we need to 
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know IT(r, r') L~-. t.E;'''·], which is the scattered 
field at r from a scatterer at r' excited by a col­
lection of plane waves of the type t.E I exp ik,z. 
Each of these plane waves gives rise to a scattered 
field which travels in a medium of propagation 
constant k, and a "transmitted" field inside the 
scatterer where the propagation constant is k,. 
Thus using the coordinate system of Fig. 2, we can 
write the incident, scattered and transmitted fields 
of each plane-wave mode as follows: 

.-. 
(2 Ia) 

(21b) 

" 
= E,e'tl.· L c..[A: .. m~, .. (r' l k.) - iB~ .. n~ h.(r l' k.)]. 

(21c) 

The media corresponding to the incident, scattered 
and transmitted fields are characterized by (~., 

Ell kl ), CJI., E, k), and (Il., E., k.), respectively. This 
is the so-called a two-exterior" formalism of 
Twersky,' indicating that the incident and scattered 
fields travel in two different media. The coefficients 
are found from boundary conditions and are given by 

A;. = E- ~,j.(N,t)[Nlij~(Nli)l', - ",j~(N.i)[N,ij.(':,i)l' , 
~I ~h.(t)[N,iJ.(N, i») - ~,J.(N,mih.(r)) 

A;. = ~. ~h.(i)[Nlij.(Nlm: - ~,j.(NIr)[ih.(i»):, 
~I ~h.(r)[N,iJ.(N,r») - ~,J.(N,t)[ih.(i») 

(22) 

B; .. = Nfl A;,,(,u --+ E); B' "N' A'r .. ) I .. = - -N I .. V' --oJ> E • , . 
The notation A;~ t(1l --+ E) means that Jl, Jl., Ji.1 arc 
to be replaced by E, Ea , Ef in the expressions for 
A;;'. The relations 

k, = N.k, 

have also been used. 

k, = N,k 

We can now substitute Eq. (21b) in Eq. (20) 
and carry out the integration by referring the 
whole integrand to a coordinate system centered 
at r. The domain of integration in this caSe is the 
right half-space excluding a sphere of radius 2a 
centered at r, since the sphere the sphere at r' 
must not penetrate the sphere at r. The integration 
is carried out by converting to a surface integral 
using Green's theorem. Some lengthy but straight­
forward computations lead to the equation 

L E,e'Jc, · = e'k. 
1-, 

+ t. E,e'" k'(;;~ 1) [t. (2n + I) (A ;. + 8;.) ] 

+ ~ E e"" 2"po [~ ((2 + I)A' 6 I k'(N; _ 1) f=: n I.'YI. 

+ (n + I)B;.'YI .• _. + nB;.'YI .• +,) 1 (23) 

'. I 

where 

'Y ,. = (2i)'[N,j._.(2N,ilh.(2i) - j.(2N,i)h. _1 (2il)· 

Since this equation is true for aU • > 2a in the 
right half-space, we can equate the coefficients of 
e"", for all I, and of e'" and get the following equa­
tions 

L [(2n + I)A;.'YI. + (n + I)B;.'YI .• _I + nB;.'YI. •• J .-. 
= (2i'/3v,)(N; - I), 

and 

~ E 3iv, 
6 Po ' I 4i'(N I - 1) 

l = 1,2, . .. , (24) 

X [t. (2n + 1)(A;. + B;.) ] + 1 = O. (25) 

Equation (24) is the dispersion relation governing 
the refractive index of the medium. Its roots are 
the different modes which the medium can sustain. 
However, since the coefficients A~ ... and B; .. involve 
hath N, and ~I, one more equation is needed . This 
can he derived by considering an incident H field 
so that H' (r) = t,e"'. A similar analysis leads to 
the equation 

L [(2n + i)C;.'YI. + (n + I)D; .'YI .• _. + nD;.'YI .• ,,) .-. 
= (2i'/3v,)(N; - 1) , (26) 
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where 

c~ .. = ~,B;,./N,~ , and n; .. = N'J.l.IA~ ... / p. . 
Between Eqs. (24) and (26) we can get a trans­
cendental equation in which the only unknown 
is N,. The different modes will be governed by this 
equation. 

4.2 The Average Total Field 

The average total field can be derived in a straight­
forward manner by substituting Eqs. (2Ia), (2Ib), 
(21c) into Eqs. (8) and (9) . The techniques of inte­
gration are similar to those outlined in Scc. 3. Equa­
tion (8) leads to the following equation giving the 
average total field in the right half-space (2 > a) 

(E(r» . = (1 - v,)e'" 

+ 1;, (1 - v,)E,po k'(N ~ _ 1) e'" 

X [t. (2n + J)(A ;. + 8;.) ] 

• ? [ 1 • + L E ,po ~k~ e;'" N ,-_V'I L 1(2" + I )A ;.0," 
1_1 I " _ I 

+ (n + 1)8;.0 ... _. + nB;. o, .... } 

1 • 
+ N; _ N! ~ {(2n + I)A: .... 

+ (n + 11B: •• , .• _. + nB: •• , ,. +, } ]. 

where 

and 

'" = r[N,j.(N,rli._.(N,,) - N,j. _.(N,rli.(N,!)J. 

By virtue of Eq, (25) , the first two terms of this 
equation add up to zero. The equation, therefore, 
reduces to the form 

. 
(E (r». = L E:e·· .. , z> a. (27) ,-. 

Thus, the average total field propagatcs in the 

right half-spacc as a collection of plane-wave modes. 
The extinction theorem is verified since there is no 
e'" component in the field. The transmission co­
efficients E: are given by the equation 

E ' 3v,(1 - v,) E ~ [(2 + I)A' Ii 
/ , = 2tS(N: _ 1) / , f:1 n h I" 

+ (n + I )B;.o, .• _. + nB;.o ..... ] 

+ 2"(N~V:'" N:) E, t. [(2n + I)A: •• ,. 

+ (n + I)B: ..... _. + nB: •• , .... ]. (28) 

The average total field in the left half-space is 
similarly obtained from Eq. (9) and is given by 

(E(r» . = e'" + E' e'''' , (29) 

where 

E' - t 3iv, 
- ,_. 4,'(N, + I) 

X E,[t. (-I )"(2n + 1)(A;. - B;.)]. (30) 

This treatment has given a fairly good picture of 
the multiply scattered field. There is not enough 
information to determine uniquely the amplitudes 
E, of the plane-wave modes. Because of the com­
plexity of integrals the treatment has excluded 
from consideration the region -a < 2 < a. How­
ever, sufficient information has been obtained to 
determine the refractive index of the modified 
medium from the dispersion relation. 

5. SPECIAL CASES 

The results obtained in Sees. 3 and 4 for single 
and multiple scattering reduce to simple and well 
known results when special cases are considered . 
Thus at low frequencies, when the radius of the 
sphere is small compared to the wavelength, the 
parameter ,( = ka) is very smalL In this case we 
can take the small-argument approximation of 
spherical Bessel and Hankel functions. In the case 
of single scattering the refractive index for this 
case is given by 

N n = + ~ v [~' - ~ - ~, - ~N: ] / {I + ~ [~. - ~ _ .'! ~ , - ~N: , ] 
2 ' ~ , + 2~ 2~, + ~N: 4 ~ , + 2~ 5 2~ , + ~N, 

3v, ~ , } 
(1 - v,) (2~, - ~N:) , 

(31) 

where " N" « 1. If the permeabili ty ~, of the 
spheres is nearly equal to that of the background 
medium and the case of sparse concentration of 
spheres is considered, then 1', I'::j ~ and v, « I, 

In this case, to the first power of v, we get 

.3 N: -l 
N. = 1 + 2 v, N ! + 2 = 1 + 2 .. p,a, (32) 
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where the polarizability of spheres is a 
a'(N! - 1)1(N! + 2) . This is the well known 
refractive index of Rayleigh scattering given in 
the Clausius- Mossotti form. The small-sphere 
approximation is equivalent to neglecting all orders 
of multipoles, except the first-order electric dipole 
in the Mie expansion. 

For the case of small perfectly conducting spheres, 
we cannot let N, -+ '" directly ill the above equa­
tion, since this was derived for N.t « 1. However, 
taking asymptotic expansions for a: and b: for 
N. -+ '" and t « 1, the total field and refractive 
index in this case are given by 

The constants ~I and 'I can be determined from 
these equations for any type of spheres. Suitable 
combination of these two equations yields a quartic 
equation in Il,E,_ To the lowest order in v. the 
refractive index N, is 1. To the next order in v. 
we obtain 

N, = 1 +, (" I, - 1 + ~.!~ - 1) 
,v, ,.I, + 2 ~./~ + 2 ' 

(35) 

which is just the generalization of the Clausius­
Mossotti relation given in Eq. (32) . 

When the spheres are perfectly conducting, the 
dispersion relation reduces to the following 

(E(r)), = {(I - ~v.)e"·v,,,, 
e{h - ~-v.e-'''· I 

z> a , 
(33) (;8 t')N; - [~(1 +~) + 7~ t' + (~i)t' JN: 

and 

Nu = 1 + ~v •. (34) 

When the sphere size is comparable to wavelength 
the contribution of the higher order multipoles 
can no longer be neglected. In this case the re­
fmctive index N 8 for the Born approximation will, 
in general, have an imaginary part also, indicating 
attenuation in the medium. Numerical values of 
N 8 for perfectly conducting spheres for values of 
i from 0.1 to 5 and for v. from 0.001 to 0.1 have 
been computed and are given in the report. 

For the case of multiple scattering, when i, 
N .t, and Nit are much less than unity, Eqs. (24) 
and (26) reduce to 

3 ~ [~. - ~ I JN: + ["~ - "J(2 + N:) 
~I J1. . + 2~ '. + 2, 

= (N: - 1)lv" 

3 !. ["~ - ''IN: + [~. - ~I J(2 + N:) 
'I '. + 2, ~. + 2~ 

= (N: - 1)l v •. 

+ [~ (2 + t) + ~O t' - (~i) t' J = O. 

For very small values of to we have only one mode 
with refractive index given by 

N: = (1 + 2v.)/(1 + tv.). 

This expression has been derived earlier by Twersky.' 
For sparse concentrations, we get back the re­
fractive index and transmission and reflection co­
efficients obtained in the case of Born approxima­
tion. By comparing the results with the standard 
expressions for the transmission and reflection 
coefficients, we get 

'I = ,( I + 3v,). 

These expressions also agree with Twersky's.' As t 
increases we get more than one mode and their 
refractives indices have to be computed numerically. 
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A: physical 3-vector and dyadic formalism for the treatment of general rclativistic prohlema is 
derived, by sy.stematie i~troduction of a proper tetrad field. The method is especiaJly appropriate 
when ~bere eXIsts a physically or geomet.rically preferred timelike congruence; all quantities in the 
formalism are then shown to have immediate physical interpretation as proper local observables. A 
co~plete a~d nonredundant set of equations for the analysis of timelike congruences is developed in 
thi s opera.tlOnallanguage. Application is made to some simple examples involving local observations, 
and the direct measurement of the Riemann tensor discussed. 

A. INTRODUCTION 

THE spinor analysis and the tetrad (or vierbein) 
formahsm were both employed in the 1930's, 

in connection with attempts to generalize general 
relativity and to formulate a unified theory of 
electricity and g.-avitation. The lack of success in 
this particular endeavor, however, led to a sub­
sequent lack of interest in the formal techniques 
thus opened up. Now, in just the last few years, 
greatly renewed interest in the spinor analysis has 
followed upon its successful application to cases 
of gravitational radiation, within the now-classical 
theory of Einsteinian general relativity.' Such cases 
are characterized by having preferred null con­
gruences. The tetrad formalism, we believe, can be 
of equally great service, within Einstein theory, 
when appropriately applied to situations having 
preferred timelike congruences. When a tetrad 
formalism is based on a preferred congruence it then 
naturally leads to a three-dimensional dyadic and 
vector formulation which explicitly depends on (and 
expresses) the dimensionality and signature of 
physical space-tin,e. For the many important re­
sults that depend on this dimensionality and signa­
ture for their validity, the usual tensor calculus is 
rather an imperfect instrument, tending to prove 
easily only more general results, valid in n dimen­
sions with arbitrary signatures. 

The dyadic formalism we present in the present 
paper has the advantages of physical interpret­
ability, mathematical completeness, and wide applica­
bility. We are at considerable pains in several 
sections of the paper to give the physical interpreta­
tion of all dyadic quantities arising from the formal­
ism- in almost all cases this is rather easily done, 
for indeed the naturally occurring dyadic quantities 
are found to be those already familiar either from 

classical mechanics or from quite simple geometric 
considerations. The result is a much more under­
standable set of relations, than in the more custom­
ary 4-tensor formulation of general relativity, 
especially when a physically distinguished con­
gruence is present. The second advantage is in the 
completeness of the dyadic partial differential equa­
tions. The more usual tensorial techniques for dis­
cussing congruences in curved (3 + 1)-dimensional 
manifolds are quite ad hoc, and although the litera­
ture is replete with many elegant results for special 
cases, a systematic mathematical approach or 
algorithm which overlooks no such results, writes 
no redundant equations, and yet is completely 
general, seems not to be available. Although this 
technical point is difficult to express in an introduc­
tion, it should become clear in the body of the 
paper. Finally, there promise to be many areas of 
application of the dyadic formalism: a timelike 
congruence which is in some way distinguished or 
preferred occurs in such varied situations as space­
times supporting matter-energy distributions, cos­
mological models with preferred galactic distribu­
tioDS, and space- times having symmetries and 
isometrics described by congruences. The possibility 
of generating new exact solutions of the field equa­
tions should also be mentioned, especially since the 
dyadic formalism is not wedded to a choice of 
(holonomic) coordinates. The applicability of the 
dyadic formalism to the explicit prediction of exper­
imental results is noteworthy: the dyadic quantities 
are world scalars, proper components everywhere 
resolved along the orthogonal space and time axes 
of local Lorentz tetrads; they are, that is, precisely 
the raw material of observational physics. We 
demonstrate this last point by presenting equations 
for the differential absolute acceleration and preces­
sion between adjacent inertially oriented test 

• Sponsored by the National Aeronautics aDd Space Ad- . I I 
minist.rat ion undcr Contract No. NAS7-100. partlC es, W lich show in principle how 14 compo-

I E. Newman and R. Penrose, J. Math PhYB. 3, 5G6 (1962). nents of the Riemann tensor are locally measurable. 
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The differential precession equation in particular 
seems not to have been given previously in a form 
involving strictly local, proper, observations, and 
uni ting the differential Thomas precession of ac­
celerating particles with the general relativistic Fok­
ker precession. 

In Sec. B of this paper we discuss tetrad fields 
and the formulation of general relativity in terms 
of such anholonomic reference systems. Section C 
introduces the 3-dyadic formalism, based on a tetrad 
field attached to a preferred timelike congruence, 
and elucidates the physical significance of the dyadic 
quantities. In Sec. D we transcribe the tetrad equa­
tions into this physical dyadic language. 

In a succeeding paper' we will demonstrate the 
u til ity of the dyadic formalism in a consideration 
of the Herglotz-Nother theorem on the motion of 
Born-rigid bodies, which assumes a simplicity other­
wise entirely concealed. In addition we will there 
derive new results for Born congruences in curved 
space-times. In future papers, we intend j;o present 
the dyadic method applied in several other situations 
having, again, preferred timelike congruences. 

B. TETRAD FORMALISM 

1. Tetrad Fields 

The use of auxiliary eunuples in differential 
geometry is of course not new, going back at least 
to the work of Ricci. To introduce the 3-dyadic 
treatment of Secs. C and D, we nevertheless must 
briefly recapitulate in a uniform notation much of 
tbe formalism expounded, for example, in Schouten' 
and Eisenhart.' 

Tbe method of analysis follows upon systematic 
introduction of a tetrad field based on a given time­
like congruence; we will in fact use four orthonormal 
reference vector fields ,}. ', where r = 0 labels a 
timelike vector, and r = 1, 2, 3 are three spaceJike 
vectors. The label r is a "Lorentz index" in the 
terminology of Synge: and we will reserve Latin 
indices for this purpose. These unit vector fields ,)0, ' 

will trace out four congruences not, in general, 3-
surface orthogonal. The method is thus equivalent to 
the introduction of convenient, everywhere orthog­
onal, but anbolonomic coordinates, in the termi­
nology of Schouten.' 

I H. D. Wahlquist and F . B. Estabrook, unpublished. 
3 J. A. Schouten, Ricci-Calculus (Springer-Verlag, Berlin, 

1954), 2nd cd . 
• L. P. Eisenhart, Riemannian Geametry (Princeton Uni­

versity Press, Princeton, New Jersey, 1926). 
I J. L. Synge, RelatirJity: The General Theory (North­

Holland Publishing CAmpsny, Amsterdam, 1960). 

By transvcction with the contravariant tetrad 
vectors tAl' or their covariant duals, ·A p , we will 
systematically "strangle" all tensor indices of fields 
of interest, thus replacing these indices by Lorentz 
indices, labeling the resulting arrays of world scalars. 
This formalism in many ways bridges the conven­
tional approach in which tensors are considered as 
arrays of components, and that of the school of 
Cartan, with its perhaps more physical emphasis 
on algebraic quantities in tangent vector spaces.' 

At any point of space-time, the given timelike 
congruence, and in particular the orthonormal vector 
tetrad there, defines a preferred local Minkowskian 
frame, with respect to which Lorentz indices take 
meaning as labeling proper components, spacelike, 
timelike, and mixed . We will use the special relativ­
istic M inkowski metric form ~" = ~" = diag( - 1, 1, 
1, 1) to raise and lower Lorentz indices, and so 
to express the tetrad orthollormality relations 

The metric tensor components are, as in the Cartan 
formalism, simply given by quadratic forms in the 
unit vectors: 

(B.2) 

In general, it appears that results which are valid 
only for a certain dimensionality and signature of 
a space, are much more easily and directly demon­
strated with such a tetrad formalism. The main 
algebraic inconvenience which will arise is due to 
the lack of commutivity in the process of successive 
Hintrinsic" differentiation of scalars (i.e., absolute 
differentiation along the unit vector fields); we 
derive the necessary commutation formulas m 
Sec. B3. 

2. The Object of Anbolonomity 

The variation of the tetrad field is described by 
the set of strangled intrinsic dcrivatives of the unit 
vectors: 

(B.3) 

These are essentialJy the "rotation coefficients" in­
troduced by Ricci. It is shown in Sec. B3 that the 
set of scalars r;; ' can properly be regarded as the 
anbolonomic components of the affinity in our 3 + 1 
metric space. From Eq. (B.!) it inlmediately follows 
that r ,,' = - r ," and indeed there are here exactly 
24 scalar fields. A more elegant set of 24 scalars, 

• See, for example. A. Lichnerowicz, Elements oj Tensor 
Calculm (Methuen a.nd Company, Ltd., London, 1962). 
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however, may be defined using only simple curls 
of the vector fields: 

fl: .. '" to •.. - ·X •.• ).A' ,x'. (B.4) 

In our metric spacc this is equivalent to 

(B .5) 

The fl ... are again antisymmetric on the last pair 
of indices: fl ... = -fl,,, . For the present case of 
orthonormal unit vectors the Eq. (B.5) can be 
readily solved for the anholonomic affinity compo­
nents, which demonstrates the equivalence of the 
two sets: 

r ... = fl ... + fl ... + fl.... (B.6) 

It is thus clear that the curls of the tetrad fields 
carryall the metric information, and so knowledge 
of the 40 Christoffel symbols is not now required. 
This is an advantage of an orthonormal tetrad 
formulation, also met with in the spinor calculus, 
where thcre are just 24 components in the spin 
connection. In the following we give explicit expres­
sions for the Riemann tensor components in terms 
of the r ... fields. 

The components W •• defined as in Eq. (B.4) are 
termed the "object of anholonomity" by Schouten,' 
who introduces them in general, non-Riemannian, 
spaces. The vanishing of the W .. everywhere is the 
integrability condition for the unit vectors to be 
gradients of four families of hypersurfaces-hence, 
derivable from ordinary or holonomic coordinates. 
In our present case. the vanishing of W •• would 
imply the existence of four everywhere orthogonal, 
equally spaced (hence, Cartesian) coordinate fam­
ilies, which is to say, the flatness of space-time. 

Intrinsic differentiation of Eq. (B.4) with respect 
to ,X' and subsequent complete antisymmetrization 
with respect to Lorentz indices s, t, and p, results in 
a set of 16 first-order differential identities: 

(B.7) 

Here the brackets denote complete alltisymmetriza­
tion-in the case of three indices, this involves add­
ing six terms with appropriate signs according to 
the even or odd permutation of the indices, and 
multiplication by t. These equations are to be 
found in Ref. 3, p. lOl; they are in fact integra­
bility conditions on the 24 world scalar fields W . .. 
allowing them to be derivable from four congruences 
or vector fields .x· in the manner given. 

The 16 integrability conditions are especially 
noteworthy, in that the metric properties of space­
time nowhere enter in their derivation. There are 
twenty other equations implied in a metric space-

time by the form of Eq. (B.5); when second covariant 
derivatives are eliminated by antisymmetrization 
(this time on two indices only) components of the 
strangled Riemann tensor R"" are introduced. If 
the 16 relations already written arc systematically 
eliminated, by imposing the algebraic symmetries 
of the Riemann tensor in metric 4-space, one finally 
obtains the fwther independent set: 
n ( q ,)( · · 1l + nl.l)(r,JI) = 2n ( rl>hn ~ ~;) _ n ( IP)"n~~!) 

n ( r')'n~~:) - !11')'(I(pn/)" 
+ Sl" {Jl CI n~~;) + gV{l(J>1r~: ) - iSoIr

". (B .S) 

Here we have used parentheses to denote total 
symmetrization-in the case of two indices, for 
example, this means summation of two terms with 
indices transposed, and multiplication by t. In 
addition, it has proved algebraically convenient to 
use the symmetrized Riemann tensor (Ref. 5, p. 54), 

S"" = - !en .... + R"'·). (B .9) 

It is clear that all of Eq. (13.8) has the name sym­
metries as S·, .... : viz., symmetry on the first pair 
of indices, symmetry on the second pair, symmetry 
on the two pairs of indices, and a cyclic symmetry 
on, nay, the last three indices. Hence there are 
precisely 20 independent relations in Eq. (B.8). The 
complete set of 36 differential relations for the 
tetrad field, consists of Eqs. (B.7) and (B.8) . 

Although their separate origins are obscured by 
the process, it is often convenient to have Eqs. (B.7) 
and (B.8) written together in one set of 36 equations 
involving the usual Riemann tensor, the anholonomic 
affinity components, and their intrinsic derivatives 
(Ref. 4, p. 98): 

rlll.r l . ". = !rJ>rvr~:v - trlr·f'~:v 

+ r l J>lIvr~or + !R"''', (B.I0) 

where indices enclosed between bars are excluded 
from the antisymmetrization brackets. Equation 
(B.lO) is, of course, also the promised direct expres­
sion of the components of the Riemann tensor in 
terms of the tetrad field. 

3. Further Relations 

In Sec. D the dyadic forms of Eqs. (B.7) and 
(B.8) are presented as a general tool for the analysis 
of space-time congruences. We must, however, first 
supplement these equations by commutation form­
ulas, and by the Bianchi Identities. 

Because of the anholonomity, two successive 
intrinsic derivative indices do not commute-even 
though they are derivatives of world scalars. This 
is easily seen from the definition of intrinsic deriva-
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tive; it is perhaps morc illuminating, however, to 
derive the important resulting commutation formula 
from the general formula for strangulation of co­
variant derivatives. Consider a tensor rr:::,. .. :. with 
a single covariant differentiation index; strangle by 
multiplication with 'I-•. .• 1-' .. • 1-'; using the ortho­
normal properties of the tetrad, the resulting expres­
sion can be written in terms of intrinsic derivatives: 

('1':: :,.. .. ;,,)'X,. ..... 'A" .. • ).." = T~ : : .. " 

+ r~;'T~ :: .. .. + ... - r~~ClT~ ::q .. (Ril) 

In this scalar exprcssion the set of r;;' plays exactly 
the formal role of an affinity. We emphasize, how­
ever, that whereas with ordinary holonomic coor­
dinates an affinity in a Riemann space is symmetric 
on the first two indices (and so in four dimensions has 
40 components), as a result of the orthonol'mal 
nature of our present anholonomic reference frame 
r~/ is antisymmetric on the Jast two indices and 
in four dimensions has 24 cornponents. 7 

Since we may commute covariant derivatives of 
any scalar, T~::U .. ;I'.I = 0, it then follows immed­
iately upon strangulation according to Eq. (B.il) 
that the commutation formula for intrinsic dif­
ferentiation is (suppressing aU nonderivative Lorentz 
indices) 

(B.12) 

We conclude tills section by recording the in­
tegrability conditions for the (20) components of 
the Riemann tensor field, allowing them to be 
derivable as in Eq. (B.8). If we are given a Rie­
mannian metric form, these conditions are of course 
identically satisfied: they are indeed the Identities 
of Bianchi. In our tetrad notation, they follow 
readily upon intrinsic differentiation of Eq. (B.8), 
antisymmetrization, and use of the commutation 
relation Eq. (B.12) to eliminate second derivatives. 
The Bianchi Identities may be most easily written 
in terms of the strangled double-dual of the Riemann 
tensor; they are 

·R~~~~. I + 2*R·"lrr~/'1 + 2*Rp rl{'r;;-' = 0, (B.l3) 

where 
(B. 14) 

and E""" is the usual four-dimensional permutation 
symbol. As is immediately obvious in the dyadic 
notation, there are exactly 20 independent con­
ditions in Eq. (RI3); thesc include the four con­
tracted Bianchi Identities. These 20 equations are 
of great impOItance and utility when deriving the 

1 It is mnemonically most convenient to write all the H cor_ 
rection" terms in Eq. (B. ll ) with plus signs, summing always 
Oil the second index or the anholollomic affinit.y. 

consequences of special assumptions and symme­
tries imposed on the gravitational field, and on the 
stress-energy tensor; both of these, in Einstein's 
theory, are comprised in the geometrical Riemann 
tensor. 

C. 3-VECTOR AND 3-DYADIC ALGEBRAIC 
FORMALISM AND INTERPRETATION 

1. Introduction 

In the general tetrad formalism the associated 
congruences are geometrical reference objects more 
or less devoid of intrinsic physical significance. If, 
however, we identify the timelike congruence with 
the world lincs of a material continuum, described 
by the velocity 4-vector field GA', this is no longer 
the case. The oX/' congruence might represent, in 
various instances, the motion of a relativistic fiujd, 
a rigid body as defined by Born's constraint condi­
tion, a proper frame of reference fot' the performance 
of experiments, or a privileged cosmological matter 
distribution. But regardless of the particula rs, it is 
the attitude of considering the timelike congruence 
to be a physically given object that provides the 
rationale for the 3-dyadic formalism to be presented 
here. A region of space-time in which such a 
congruence exists is endowed with a unique time 
direction at each point, and it becomes physically 
reasonable then to dissolve the 4-dimensional union 
of space and time with respect to the congruence. 
Of course, such a decoupling is almost always done 
at some point in any physical problem in relativity 
theory, by selection of a "convenient" set of coor~ 
dinates. With the tetrad and dyadic formalisms this 
is donc at the outset before further specification 
of the particular system at hand, and without 
prejudice as to the admissibility or desirability of 
any holonomic coordinate system. 

In Scc. C 2 we introduce a representation of thc 
anholonomic affinity, r~; I, by splitting its compo­
nents into independent three-dimensional arrays 
having spaeelike Lorentz indices only. The three 
spacelike tetrad vectors used to generate these com­
ponents are not, of cow-se, unique. In Sec. C3 it is 
shown that certain restricted transformations be­
tween sets of these auxiliary vectors are the analogs 
of the familiar orthogonal rotations of Cartesian axes 
in 3-space, and that the arrays of proper components 
will transform precisely as conventional 3-vector or 
3-dyadic fields under such spatial rotations. A 
detailed discussion of the kincmatical and geo­
metrical significance of the quantities thus intro­
duced is given in Secs. C4 and C5. 
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2. Three-Dimensional Representation of r ,,, 

The splitting apart of the components of tbe 
anbolonomic affinity into independent 3-dimensional 
arrays proceeds by segregating tbose components 
whicb differ in tbe number and location of timelike 
indices, bere denoted by O. It sbould be noted that 
raising or lowering the 0 index changes the sign 
of a quantity. We sball benceforth reserve the 
letters from tbe first half of the Latin alphabet 
(a ... m) to indicate spacelike indices. Tbese take 
on the values 1, 2, 3 only, and the summation conven­
tion for such indices is limited to tbis range. Since 
tbe local spacelike metric ~.. = .;, the vertical 
position of these indices does not matter. Paren­
tbeses and brackets around indices have the same 
significance as in Sec. B, and E.,. denotes tbe usual 
three-dimensional permutation symbol. 

With these conventions, the components of r ''' . 
having at least one timelike index may be written: 

roo. = - r o•o == a., (C. 1) 

- 1',, 1>0 = roOI> == S". + E..br.
Qc , (C.2) 

roG• = - rOb<. == Eub.Wel (C.3) 

where tbe quantities on the right constitute a three­
dimensional representation consistent with the anti­
symmetry of r,,, on its last two indices. The array 
of scalars, S •• , is defined to be symmetric to the 
interchange of a and b; from Eq. (C.2) it follows that 

(C.4) 

Tbese definitions provide a representation for 15 
of tbe 24 independent components of tbe affinity. 
Tbe remaining nine, comprised in the wholly space­
like r ... , describe characteristics of the non unique 
auxiliary congruences. Again by virtue of the anti­
symmetry on band c, we may represent six of these 
quantities by a symmetric array, N." and the final 
three by L, as follows: 

iE, •• r;'· == N., - !N\8., + E;d~L., (C.5) 

wbere tbe contraction, N~., bas been explicitly sub­
tracted for reasons of formal simplicity later. From 
this equation we further have: 

0 ... = - 0 ... = u -S •• + E ••• (O' - ",')), 

O""e - 0" •• = l(E~dN"d + 2L[ca'I.)· 

3. Vector-Dyadic Notation 

(C.IO) 

(C .Il) 

(C. 12) 

In tbe representation just dcveloped, the set of 
24 components of eitber roo' or 0,,, clearly falls 
into natural three-dimensional subarrays for whicb a 
vector and dyadic notatioll would be convenient. 
In sucb notation the equations involving these 
quantities would preserve tbe familiar formalism of 
3-space rotation covariance which here corresponds 
to the arbitrariness remaining in the selection of 
the auxiliary spacelike tetrad vectors, even when 
oX' is pbysically given. Since the quantities in ques­
tion are defined in terms of the tetrad vectors 
tbemselves and tbeir derivatives, it is not obvious 
that this program must succeed at all; cspccially 
if we insist tbat the vector or dyadic character shaIl 
bold not just at a single event, but throughout 
space-time. 

Accordingly, we now perform an analysis of tbe 
transformation properties of the arrays under a 
general, four-dirnensional, proper orthogonal trans­
formation of tbe tetrad fields which leaves oX' fixed. 
We determine tbe widest group of such transforma­
tions under which the arrays will bave tbe 3-vector 
and dyadic cbaracter at every point. Not surpris­
ingly, tbe set of acceptable transformations is quite 
restricted, in tbe sense that tbe parameters of the 
transformation at one event determine the trans­
formation througbout space-time. For such trans­
formations, however, we show that the arrays a. 
and L. are polar 3-vcctors, say a and L; while O. 
and "'. form axial vectors, 0 and <.>. The symmetric 
arrays S..,. and Nd transform as dyadics, Sand N, 
although the latter has a pseudocbaracter under 
inversions of tbe spatial tetrad vectors. 

Consider then an orthogonal transformation of 
tbe three auxiliary spacelike vector fields. We may 
write such a transformation most generally as 

.X."=A~.tJX·, . (C. 13) 

Nod - !N~IIt5Rd == !E;:lI roU C1 (C.6) where A~. is a tensor field satisfying 

N~ /I == E .. ,,~ rolle, (C.7) 
and 

(C.8) 

For future reference it is convenient also to catalog 
the components of the object of anholonomity, 0,,,, 
in terms of this representation, viz., 

(C.9) 

(C.14) 

In tbe present case we require that the ortbogonal 
tensor field be proper, and tbat it leave uncbanged 
the GA' congruence; it follows that it has an unmoved 
2-flat and can be written in the canonical form' 

• F. B. Estabrook, California Institute of Technology, 
PlL8adena., California, Jet Propulsion Labomtory, Resea.rch 
Summary No. 36-14, p. 119 (1962). 
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A" = cosO g" + sinO (-g,-'., ... oX'r' 

+ 2 sin'(!O) (r,r. - oX, oX,). (C.15) 

r' is a unit spacelike four-vector orthogonal to oX'; 
together they define the unmoved 2-f1at. In the local 
tetrad frame, we see a simple spatial rotation by 
angle 0 about the r' direction. Equation (C.14) and 
the invariance of oX' and r' can be verified imme­
diately by direct computation. Strangling Eq. (C.15) 
we get the familiar 3-space proper rotation matrix 

0 •• = cosO Ii •• + sinO •••• r + 2sin'(!0) r.r. . (C.I6) 

e is the unit 3-vector with strangled components 
r. == r, .X'; it points along the axis of the rotation. 
Noting that 0 0• = 0, 0 " = -1, we can also write 

arrange that the quantities w' transform precisely 
like a 3-vector, and so justify our choice of notation 
for this set of three components. The restriction 
G •• = 0 amounts to correlating the rotation induced 
by 0 •• of the three spacelike unit vectors of a 
fundamental tetrad at a given event, to the rotations 
of all other such tetrads induced at all other events 
along the world line of the oX' congruence through 
the given event, so that w is not intrinsically changed, 
but only locally projected on a different anholonomic 
coordinate mesh. 

The remaining components, those of the symmetric 
3-dyadic N •• or N, and the 3-vector L., or L, will 
also transform precisely as the notation suggests 
only under special forms of 0 ••. In fact, one finds 

(C .17) N" = N"O;'O;' + !/'·0" .• 0,'1i·· 
Any vector V' orthogonal to oh' may be expanded 

in either auxiliary tetrad system, 

V" = av {1A" = ·V ,x.I', (C. IS) 

and substituting from Eq. (C.13) we can see that 
the components 'V transform contragradiently to 
the unit vectors: 

(C .19) 

The arrays of components all, nil and Sab can be 
immediately shown, from their definitions Eqs. (C.I) 
and (C.2), to transform according to Eq. (C.I9) 
(or its dyadic generalization, in the case of S •• ), 
and so this justifies our use of 3-vector and dyadic 
notation for them: a, n, and S. 

We now consider the change of w., defined in 
Eq. (C.3), under the transformation of Eq. (C.13). 
From the definition, 

(C.20) 

If we simi larly set 

(C.2 I) 

substitution from Eqs. (C. 13) and (C.I6) leads 
finally to the transformation law 

(C.22) 

Equivalen t to this is 

w· = wdO/ - 8(' - sinO f" 
- (1 - cosO) ({ x b', (C.23) 

where the superimposed dot means the intrinsic 
derivative in the oX'" direction, c.g., tJ = 0,,. oA". 
If (and only if) we restrict the orthogonal traus­
formation tensor A~, to one for which e and e 
everywhere vanish, which is to say Dab = 0, we 

(C.24) 

and 
(C.25) 

Upon substitution of the explicit form of 0 •• from 
Eq. (C. I6), it is found from equations analogous to 
Eq. (C.23) that the extraneous terms in Eqs. (C.24) 
and (C.25) can vanish in general if and only if 
0 ••.• = O. Combining this with our previous result, 
we can state: (0), N, and L transform properly as 
three-dimensional vector and dyadic fields, for those 
orthogonal transformations having the array O"b 
constant everywhere. 

We have then the following situation: given .;A', 
a further orthonormal set .h' may be chosen at 
every event. Three quite arbitrary auxiliary space­
like congruences are thus determined. From this 
auxiliary set, however, we usually allow only trans­
formations to other sets derived from it by choosing 
an arbitrary unit spacelike 3-vector t whose compo­
nents with respect to the spacelike unit vectors are the 
same at every event, and rotating the spacelike set at 
every event by the same angle 0 about the direction e. 
Any such transformation thus derives a new set 
of three auxiliary spacelike congruences fro m the 
first. We call such a new set of auxiliary orthogonal 
congruences 3-space rotated with respect to the 
original set. Under such 3-space rotation, a, 0, 5, 
w, N, and L transform in familiar three-dimensional 
orthogonal fashion, and [arm-invariant equations 
between these quantities can be written in the 
familiar language of the Oibbsian vector analysis. 

In such equations, I dcnotes the unit dyadic, 
with components I •• = Ii ••. By (tr S) we mean 
the contraction or trace, S: •. The dot notation for 
inner products is used, and a double dot product 
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of two dyadics is equivalent to the trace of their 
inner product. The cross product is defined in the 
usual right-handed way. When a )( operates on a 
dyadic, it operates on the nearest index when 
expressed in terms of components ; e.g. , 

(0)(5) •• '" , •• ,O·~ •. (C.26) 

The double cross product of two dyadics often 
provides a convenient brevity of notation. It is 
used only between symmetric dyadics so that no 
ambiguity of ordering can arise in its definition; viz., 

(C.27) 

The result is again a symmetric dyadic having the 
expansion 

Q:S ,", Q·S + S·Q - (tr S)Q - (tr Q)S 

+ [(tr S)(tr Q) - Q: Sj!. (C.28) 

We use the 3-vector symbol D for spatia l intrinsic 
derivation: thus .p .• becomes D.p, a gradient; V~ .• 
becomes D· V, a divergence; HV •.• - V •.• ) when 
multiplied by.··· becomes the curl, D)( V; etc. 
Another spatial differetitial operator, linearly related 
to D, is introduced in Sec. C5; denoted V, this 
operator is convenient in many of OUf equations, 
and is the triad-strangled operation of covariant 
differentiation in spatial subspaces (when such exist). 
The operations of gradient, divergence and curl with 
the V operator are defined in Sec. C5. 

4. Physical Interpretation of the Dyadic Quantities 

The identification of oA' with a physical motion 
imbues many of tbe components of the anholonomic 
affinity with immediate physical or kinematical 
significance. We first develop the interpretations by 
recalling some definitions met with in the usual 
tensorial description of the kinematics of a relativistic 
continuum. In a sense this procedure is logically 
inverted, but it has the advantage of quickly con­
necting quantities in the present notation with the 
familiar tensor quantities. A more basic approach 
will follow. 

Let a fluid motion be described by a velocity 
4-vector field A', with A,A' = -1. From the deriva­
tives A' .• one resolves canonical sets of first-order 
differe~tial quantities:\» the acceleration vector all 5 

A" .A·; the '(antisymmetric) angular velocity tensor 
0" == A, ,, . ] + a"A.]; and the (symmetric) rate­
of~strain tensor (f,. . = X CJ' ;. ) + aC"A r )_ From the 
angular-velocity tensor can be defined an equivalent 

• See, (or example, J. Ehlers and W. Kl!odt, in Grovi.tn,tion: 
An Introduction to Current Research, edited by L. Witten 
(John Wiley & Sons, Inc., New York, 1962). 

local angular-velocity vector, 0', by setting 

0' = t(_g)-I ...... O •• A •. 

This can be solved for 0,., 
nl'. = ( _ g) - 4«!11 ... . !t).. .. , 

(C.29) 

(C.30) 

which demonstrates the equivalence. All these 
canonical tensor quantities are projected into the 
local proper frame; that is, 

(C.3l) 

Now, we identify A' == .;A ' and take the proper 
components of the canonical tensors with respect 
to the local tetrad, using Eq. (B.3) to introduce 
affinity components. Clearly, by Eq. (C.3l), trans­
vection with ,A' itself will always give a zero result. 
For the acceleration vector, then, we have using 
Eq. (B.3) and Eq. (C.l), 

(C.32) 

so that our 3-veetor a is precisely the local proper 
acceleration of the 0)..11 congruence. Likewise from 
(C.2) 

(C.33) 

and from (C.lO) 

(C.34) 

which identifies the 3-vector 0 as the local angular 
velocity of the medium. Analyses by Synge,' Pirani," 
and others have made it clear that, like a, this n 
is an absolute entity: the angular velocity of the 
material mediunl with respect to Weyl's "compass 
of inertia." 

The rate-of-strain tensor (Til. gives six proper 
components, all spacelike, and using (C.4), 

" ... A· .A· = - r, .... = S •• , (C.35) 

so that 5 is the local, t hree-dimensional, rate-of­
strain dyadic. With this, we have found transcrip­
tions for all the canonical tensors and will turn to 
the interpretation of "', Eq. (C.3). 

Projecting the local time derivatives (i.e., the 
intrinsic derivatives in the oA' direction, for which 
we use the superimposed dot notstion throughout) 
of the spacelike tetrad vectors themselves, one has 
for the timelike components 

.XII oX" = -.X,. oX" = - .X,. all. = -a .. (C.36) 

from the orthogonality relations alone. And in the 
spatial dircctions. from Eq. (C.3) we have 

(C .37) 

10 F. A. E . Pirani, Hclv. Phys. Act.'t Suppl. IV, 198 (1956); 
Acta Phy •. Polon. 15, 389 (1956). 
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The vector", thus describes the orthogonal propaga­
tion of the spacelike auxiliary triads along the oX' 
1longruence; kinematically, '" is the local angular 
velocity of the a uxiliary orthonormal triad with 
respect to the compass of inertia. Conversely, (- "') 
is the angular velocity of a "stable-platform" rel­
ative to the triad. 

From Eqs. (C.36) and (C.37), we may express 
the condition for Fermi-Walker transport of the 
spacelike triad along a given line of the oX' con­
gruence simply by setting '" = 0 on that line. 
Putting '" = 0 everywhere would prescribe the 
introduction of a tetrad field such that the spacelike 
triad attached to each material point represents a 
local, inertially nonrotating reference frame. It is 
an advantage of the dyadic notation that this condi­
tion is a 3-vector equation, form invariant under 
3-space rotation. We show in Sec. C5 that it is 
always possible initially to introduce the tetrad field 
according to any such prescription for "'. 

Elucidation of t he kinematical significance of the 
quantities n , "', and 5 is alternatively obtained by 
considering an cquation for the propcr orthogonal 
separation, say p', of two closely adjacent members 
of the oX' congruence. In the local, proper frame 
pI' will appear as the displacement vector between 
two proximate material particles. I ts rate of change 
with local time is given by" 

p' = (oX~" + oX'a.) p' . (C.38) 

Projecting p' onto the te trad defines locally Cartesian 
spatia l coordinates T., or components of a local 
dispJacement 3-vector r, where 

T" = pI' .~/l ' (C .39) 

The local time dcrivative of these is found with the 
help of Eq. (C.38) and (C. ll) to be given by 

r. = 20."T· = [S., + .... (0· - ",·)]r'. (C AO) 

Equation (CAO) is valid to first order in the dis­
placements T •. These displacement components are 
a CaTtesian vector, in the (flat) tangent space at 
the origin r.. = 0: the Sd, n~ and We arc Cartesian 
components evaluated at T. = O. Remembering these 
limitations, we may still use dyadic notation : 

t + "')(C = 5·c + n)(C 

from which immediately 

t D )(t = 0 - ., 
and 

!CDt + tD) = 5. 

(CAl) 

(C.42) 

(CA3) 

These equations manifest the local kinematical 

significance of n, "', and 5 and basically provide 
interpretations for the canon ical tensors as well . 
Since Fermi- Walker transport of the basis vectors 
is accomplished by setting", = 0, t he interpretation 
of 0 as the local angular velocity of the material 
relative to the compass of inert ia is clear. In the 
general dyadic equations to be written later it is 
evident that a particularly convenient choice for 
'" is rather to propagate the tetrads so that 0 - ", = 0. 
This alternative is called corotating transport, or 
"body-fIxed axes," since as Eq. (C.42) shows, tbe 
local reference frame is thereby rotated with respect 
to the compass of inertia so as to follow the physical 
rotation of the neighboring members of the oX' 
congruence. Again, the condition for body-fixed axes 
is form invariant under 3-space rotation. 

Interpretation of the quantities L and N, which 
express characteristics of the auxiliary congruences, 
is somewhat less evident. In fact their significance, 
being more geometrical than physical, emerges most 
clearly in the special circumstance when the given 
timelike congruence comprises the orthogonal tra­
jectories of a family of 3-surfaces immersed in 
space-time. This is discussed in some detail in tbe 
next section. First, however, the relationship of L 
and N to the properties of the spacelike congruences 
is obtained. 

The first curvature vector of a curve of the 
congruence generated by .X' is defined by .X", .X· 
(a not summed), and its components in the local 
tetrad basis are 

(.X", .X'),X' = r.o> (a not summed). (CM) 

Referring to Eq. (CA) we see that the timelike 
component is given by the diagonal element of 5, 

r.o. = S.. (a not swnmed), (CA5) 

which determines the rate of convergence in the 
oX" direction of the timelike congruence curves 0).,,'" 

For T ~ b '" a we have 

1' •• , = .... N'. + L, (a not summed), (CA6) 

which involves L and only the olT-diagonal elements 
of N. If we were to perform a 3-space rotation to 
diagonalize N at a given event, the spacelike compo­
nents at that point of the first curvature vectors 
of the new set of auxilia ry congruences thus obtained 
would be expressed by L alone. In general, of course, 
such a transformation docs not diagonal;ze N else­
where and it reappears in Eq. (C.46) at other events. 

The geometrical meaning of the diagonal elements 
of N is more easily expressed in terms of the modified 
dyadic, N - H tr N) I. The ath diagonal element 
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of this dyadic gives the rate of "twist" around the 
.X· direction applied to the triads in propagating 
them in the .X· direction itself. In a word, thcn, 
one might refer to these as the "torsions" of the 
spacelike congruence net. 

5. Conditions on the Auxiliary Congruences. 
The V Operator. 

An orthonormal tetrad field aligned along a 
"given" congruence, generating three orthogonal 
but otherwise arbitrary auxiliary congruences, con­
stitutes a complex geometrical structure. We wish, 
in this section, to remark about specializations of 
this auxiliary structure, some of which may be 
imposed in general, others only when the preferred 
congruence has special properties. While this dis­
cussion is not at all complete, it should at least 
show that the necessary equations for investigating 
such points are at hand in the dyadic notation. 
We first briefly discuss some specializations which 
are always available, then summarize several special 
cases which may occur, and finally, introduce the 
useful vector differential operator, V, suggested by 
one such geometrical subcase. 

The pertinent equations are, in fact, Eqs. (C.22), 
(C.24), and (C.25); for when an aligned but other­
wise arbitrary tetrad field is initially introduced 
upon a given timclike congruence, the general 
orthogonal transformation 0 •• in these equations 
can often be selected to give a second, in some way 
special or canonical, tetrad field having the same 
alignment. The dyad ic notation then allows the 
further generation (with constant 0 •• ) of a family 
of tetrad fields 3-space rotated from this second one, 
as was expounded previously. 

The first example of this, encountered in the 
previous section, is the prescription of Fermi- Walker 
propagated axes everywhere, the condition (,) = 0. 
That this may be done in general is clear from inspec­
tion of Eq. (C.22), when we regard the W. as ar­
bitrarily given initial fields, set w. = 0, and solve 
for the three independent components of 6 •• every­
where. A choice of 0 •• on one spacelike 3-surface 
then suffices to determine a solution. We thus 
demonstrate by direct construction a transformation 
leading to a new tetrad field with the desired prop­
erty. Subsequent 3-space rotations (with 0 •• con­
stant everywhere) clearly will preserve this property. 

A second example is the imposition of body-fixed 
axes everywhere, n - (,) = 0, the justification of 
which follows in exactly similar fashion. 

Another important case is the imposition of the 
set of conditions N = 0, L = 0, (,) = ° on a single 

world line of the congruence. That this may be 
done follows again by construction of the required 
transformation. Given first fit .b, t., and w., the 
12 equations in (C.22), (C.24), and (C.25) can now 
be solved for the twelve partial derivatives of t he 
three scalar fields in 0 •• on the line. Wit h a choice 
of 0 •• at one point on the line it may by quadrature 
be su itably determined along and near the line to 
achieve any desired values of N, L, and (0). 

An essential point is that while this last can 
always be done along a line or at a point, it cannot 
be done on manifolds of higher dimensions unless 
further integrability conditions are satisfied. Such 
conditions, however, introduce relations among 
the other 12 components of r .. ,, (viz., a, 0, 5, 
referring to the timelike congruence) and so require 
the timelike congruence to have special properties. 
A typical situation occurs when one attempts si­
multaneously to impose Fermi-Walker propagation 
everywhere while also taking Nand L to vanish on 
a line : the result is a constraint on the timelike 
congruence along that line. 

We now proceed to summarize some similar cases 
in which partial degrees of integrability, or hol­
onomity, are imposed on the congruence structure 
throughout space-time. The conditions take the 
form of the global vanishing of certain components 
of the object of anholonomity. The various condi­
tions are not derived ab initio in the following; 
they are to be found for general spaces in Ref. 3. 
We are primarily interested here in specializing them 
to the case of a (3 + 1 )-dimensional metric space 
with orthonormal tetrad vectors and then trans­
scribing them into dyadic notation. 

We consider first the geometrical situation in 
which one given pair of the four congruences is 
2-forming. That is to say, the two congruences mesh 
together so as to form a (two-parameter) family of 
2-surfaces em bedded in the four-dimensional mani­
fold. The condition for the s congruence and the 
t congruence to be 2-forming is 

(r '" s, r '" t) . (C.47) 

(We emphasize again that these conditions are 
written for the case of orthonormal tetrads only.) 
For a given pair (s, t) the inequalities allow only 
two values for the index r, and so two independent 
conditions result. There are six possible ways of 
pairing the congruences, and if we were to ask that 
all congruence pairs be 2-forming, we would require 
exactly one-half of the 24 independent components 
of the object of anholonomity to vanish everywhere. 
In dyadic terms from Eqs. (C.9)-(C.1 2) the 12 condi-
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tions given by Eq. (C.47) for this completely 2-
forming case become: 

a = 0, (,) = 0, 

So. = 0 (a'" b), Noo = 0 (a not summed), (C.4S) 

so that, in addition to the vanishing of the two 
angular velocities, 5 must be diagonal and N off­
diagonal. The constraints on a and 5 are of partic­
ular significance, since they restrict the physical 
congruences oA' for which this situation may exist. 

We may consider, alternatively, the possibility 
that a given set of three congruences is 3-forming. 
This is here equivalent to the condition that the 
fourth congruence be 3-normal; that is, the unit 
vector generating this fourth congruence is every­
where proportional to the gradient of a scalar func­
tion, .y, and so orthogonal to the family of 3-dimen­
sional hypersurfaccs, >It = constant, which essentially 
define a holonomic coordinate in the space. The 
condition for the r congruence to be 3-normal is 

(8 ,.. r, t ,.. r), (C.49) 

which is very similar to (C.47) but diJIers in the 
effect of the inequalities. Here, when r is given, 
sand t are allowed three values each, but the 
antisymmetry on sand t reduces the number of 
independent, nontrivial conditions to three. If, in 
this case, we ask that all four congruences be 3-
normal, we again require the vanishing of 12 com­
ponents of the object of anbolonomity; clearly, in 
fact, the same 12 as for the case of complete 2-
forming. The dyadic conditions for complete 3-
normality, then, are already given by Eq. (CA8). 

A large class of conditions, less restrictive than 
the complete cases covered by (C.4S), could be 
considered. In accord with a dyadic approach how­
ever, which confers a special position exclusively 
on the timelike congruence, only those intermediate 
situations treating the three spacelike congruences 
impartially are of interest. There are four such sub­
cases; the constraints for them follow immediately 
from Eq. (CA7) and (CA9) and they need only 
to be listed : 

(1) All spacelike congruences are 2-forming with oA' . 

a - '" = 0, So. = 0 (a,.. b) . (C.50) 

(2) All pairs of spacelike congruences are 2-forming. 

Q=O, N .. =O (a not summed). (C .51) 

(3) All spacelike congruences are 3-normal. 

{l - (0) = 0, So. = 0 (a'" b), 

(4) The timelike congruence is 3-normal. 

a = O. (C.53) 

It is worth noting that thc 12 components of 
U'" which are not concerned in any of the constraint 
equations presented in Eqs. (C.47)-(C.53) are a, L, 
the diagonal elements of 5, and the off-diagonal 
elements of N. As we have brought out in previous 
discussions, these are precisely the 12 components 
of the first curvature vectors of the four congru­
ences. The entire vanishing of the object of an­
holonomity is secured, then, by the requirements 
that all four congruences be 3-normal and geodesic. 
As we remarked in Sec. B, this would imply the 
vanishing of the Riemann tensor and the introduc­
tion of holonomic Minkowski coordinates. 

In Case 4, Eq. (C.53), the separation of space 
and time is accomplished globally-space-time is a 
sandwich of spacelike 3-manifolds, each normal to 
the (everywhere nonrotating) timelike congruence. 
The Riemannian structure of space-time allows 
invariant measurements in anyone of these 3-mani­
folds; it is, consequently, a Riemannian 3-manifold 
with an induced intrinsic metric and a second funda­
mental form (just 5) describing its immersion in the 
4-space'-the mathematics of this emerge naturally 
in Sec. D2. Nand L now express exactly the nine 
components of the anbolonomic a.ffinity generated 
by an arbitrary triad field in a Riemannian 3-space. 
Even in the general case, this interpretation of N 
and L has much heuristic value, and completes our 
geometric discussion of these arrays. 

If we pursue this last interpretation by introduc­
ing a vector operator V to denote triad-strangled 
three-dimensional covariant differentiation as in 
Eq. (B.ll ), e.g., 

(C.54) 

we greatly simplify the notation in the dyadic dif­
ferential equations to be presented in Sec. D. We de­
note V the three-dimensional covariant differentiation 
operator, although of course this interpretation is 
only immediately accessible geometrically in Case (4) 
(as differentiation in immersed subspaces). Without 
inquiring further here into the geometries of quotient 
subspaces, we merely regard the V operator in the 
general case as a useful notation. From the defining 
Eq. (C.54) we may calculate and tabulate the 
following useful formulas, where V is an arbitrary 
vector field, and M an arbitl1lry symmetric dyadic 
field : 

N .. = 0 (a not summed). (C .52) VV = DV - [N - t(tr N) I - L x I] xV, (C.55) 
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V ·V = D·V - 2L·V, (C.56) strangled form as 

V xV = D xV - N·V - LxV, 

VxM = DxM - M· N - 2N·M - LxM 

+ L · M x 1 + !ttr N)M + (tr M)N 

+ (N: M) I - i(tr N)(tr M)I, 

(C.57) R,,,. = C .... + (~".JJ' J. - ~.J.JJ",) 

VxM - MxV = DxM - MxD - 3M·N 

- 3N·M - LxM + MxL + (trN)M 

+ 2(tr M)N + 2(N : M) 1 - (tr N)(tr M) I, 

V·M = D·M - 3L·M - N xM + (tr M)L. 

(C.5S) 

(C .59) 

(C.60) 

D. THE DYADIC PARTIAL DIFFERENTIAL 
EQUATIONS AND INTERPRETATION 

1. The Dyadic Components of the Riemann Tensor 

In this section we first introduce and discuss two 
alternate splittings of strangled components of the 
Riemann or curvature tensor into dyadic arrays. 

Accordingly as they contain two, one, or no zeros, 
the strangled components of the symmetrized Rie­
mann tensor in Eq. (B.S) may be gathered into four 
arrays with the property of covariance under 3-space 
rotation: 

Q",. = 38000b , 

Bo,. + E .. ~6tC = E~\S<><loc. 

(D.I) 

(D.2) 

(D.3) 

We thus describe the 20 components of the curva­
ture field of general relativity by three symmetric 
dyadics P, Q , B (the last is traceless) and a vector t. 
In Sec. D2, when we write all the dyadic partial 
differential equations, we interpret P in terms of 
the intrinsic curvature of the spacelike 3-manifolds 
of a normal congruence. In Sec. D3 we derive 
several results allowing physical interpretation of 
the differential equations; in particular we there 
interpret Q as giving the tidal acceleration between 
neighboring test particles. An interpretation of B 
and t also appears in Sec. D3-they determine the 
differential (tidal) precession between neighboring 
(inertially oriented) test particles. It should be 
noted that, like N, the dyadic B has a pseudochar­
Reter under 3~space inversion. 

The alternate splitting up of dyadic components 
of the Riemann tensor is suggested by considering 
the canoIlical resolution of this tensor, in four dimen­
sions, into three irreducible tensorial parts with the 
same algebraic symmetri.es. I t We write this in 

II J. G6Mniau and R. Debever, Bull. Acad. Roy. BeJg. Cl. 
Sci. 42, 114, 252,313, 608 (1956). 

(D.4) 

where 

(D .5) 

the strangled Ricci tensor is 

R,. = R~"'I' (D.6) 

and its scalar contraction is the curvature scalar 

(D .7) 

c .... is the conformal curvature tensor (strangled) 
of Weyl; it is antidouble-dual; all its contractions 
are zero; it in general exists for Riemannian geom­
etries in four or morc dimensions, where its vanish­
ing is the necessary and sufficient condition for the 
metric to be conformally Bat. In four dimensions 
C" •• has ten independent components; upon resolu­
tion into proper dyadic arrays. according as the 
Lorentz indices contain one or two zeros, we obtain 
two symmetric dyadics (traceless, so having five 
components each) A and again the B of Eq. (D.3): 

(D.9) 

The dyadic A, expressed in terms of the prevIOUS 
set, is one-hali the traceless sum of P and Q : 

A = U P + Q - t(tr P + tr Q) I]. (D.lO) 

To complete this alternate splitting, the ten 
components of the Ricci tensor may also be resolved 
into dyadic arrays. For physical ren.sons we prefer 
to introduce these from the strangled form of the 
Einstein tensor R" - tRg .. which, in Einstein 
theory, is identified with the negative of the non­
gravitational stress-momentum-energy tensor, T,. •. 
[We have already adopted a unit of length such 
that the velocity of light c = 1; now we adopt 
a unit of mass such that the Newtonian constant 
of gravitation 'Y is (4 .. )-'.] In dyadic form we have 
then a symmetric stress dyadic T, a momentum­
density vector t, and an energy-<iensity scalar p : 

(D. ll) 
p = -tRoo - tR. 

The vector t was introduced previously in Eq. 
(D.3) . The local proper system of a Buid is defined 
by the condition that oX' be an eigenvector of T., ": 

It J. L. Synge, Proc. London Math. Soc. 43
1 

376 (1937). 
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or simply 

t = o. 

(D.12) v; take this to be normal to a plane defined by 
otherwise arbitrary but orthogonal unit vectors w 
and u; and then it may be shown that the field 

(D.13) dyadics must be of the form 

In this proper system, p is the proper energy or 
rest-mass density. The condition (D.13) is invariant 
under 3-space rotation. It is of especial importance 
in formulating many relativistic problems where the 
preferred congruence is of both kinematical and 
dynamical significance. 

The dyadic T is, up to its trace, one-half the 
difference of P and Q, 

T = t[-P + Q - (tr Q) I), (D.14) 

and p is minus one-half the trace of P. We note 
finally that the curvature scalar R of Eq. (D.7) is 
given in terms of each set by 

!R = -tr T - p = tr P + tr Q. (D.15) 

We have theu two entirely equivalent sets of 
curvature dyadics-it is difficult to say which is 
to be preferred. In Einstein's theory the ten compo­
nents of the Einstein tensor, T, t, and P, express 
the true (or non-self-excited) sources of the total 
gravitational curvature, and the ten components of 
conformal curvature, A and B, express the expected 
ten components of a spin-2 gravitational field . From 
this point of view the second splitting is the more 
fundamental. Nevertheless the essential nonlinearity 
of Einsteinian theory appears both in the Bianchi 
Identities of Sec. D2, in 16 equations of which 
all these source and field terms are inextricably 
mixed, and again in the operational physical equa­
tions of test particle motion which are given in 
Sec. D3. In both of these, the more natural splitting 
of the Riemann tensor appears to be that first 
given, into thedyadics P, Q , B,and t, Eqs. (D.I)- (D.3). 

The various possible radiative characters of Ein­
steinian gravitational fields are expressed, in close 
analogy with those of Maxwell fields, in the alge­
braically special forms of C· .... The algebraic hier­
archy for this due to Petrov, Pirani, and Sachs" 
leads, as might be expected, to simple canonical 
forms for our A and B. 

Summarizing this briefly, for a Type II field, the 
conform tensor has a singly degenerate principal 
null direction, which, strangled in any local proper 
frame, defines a unit 3-vector of propagation, say 

13 A. Z. Petrov, Sci. Trans. Kazan State University 114, 
55 (1954) [Translation by M. J<arwcit: ABtron. Information, 
Trans. No. 29, Jet Propulsion Laboratory. Californi:t. Insti­
tute or Technology, Pasadena California (1963 )); F. A. E. 
Pi,ani, Phys. Rev. 105, 1089 (1957); R. K. Sachs, Z. Phy •. 
157,462 (1960). 

A = (ii - a)iiU + (ii + a)ww - 2iivv 

+ c(uw + wu) + b(vw + wv), 

B (c + c)fiu + (c - c)ww - 2CVV 

+ a(uw + wu) + b(uv + Vii). 

(D.16) 

(D .17) 

Here a, ii, c, c, and b are arbitrary scalars under 
a-rotations. u, v, ware taken to form a right-handed 
orthonormal triad. 

For a Type III algebraically special field the 
conform tensor has a doubly degenerate principal 
null direction- again denoting this by a unit v we 
find that 

A = a(ww - iiU) + c(uw + wu) 

+ b(vw + wv), (D .IS) 

B = c(uu - ww) + a(uw + wu) 

+ b(uv + Vii), (D.19) 

which results from Eqs. (D.16), (D.17) on setting 
ii = c = O. 

For a type-N algebraically special field the con­
form tensor has but one principal null direction, 
triply degenerate, and the canonical forms simplify 
further (b = a = 0) to 

A = c(uw + wu), 

B = c(iiU - ww). 

(D.20) 

(D .21) 

The quadrupole character of this extreme far zone 
radiative gravitational field is nicely shown by these 
last forms, in conjunction with the test particle 
equations to be given in Sec. D3. Roy and Rhada­
krishna 14. have obtained ~quivalent forms in a recent 
paper, together with elegant results for gravitational 
and electromagnetic-gravitational shock fronts . They 
characterize the type N field, Eqs. (D.20)-(D.21), 
by saying that the 3-space quadrics associated with 
A and B are equal hyperbolic cylinders, coaxial 
(the v direction!), with their other principal direc­
tions inclined at 45°. The scalar c characterizes the 
gravitational field strength seen by an observer 
whose world line is 01.'; by itself, a type N conform 
tensor has no nontrivial invariants. All of wh ich 
is nicely analogous to the case of a null electro­
magnetic field. 

14 S. R. Roy and L. Radhakrisbnn, Proc. Roy. Soc. (Lon­
don) A275, 245 (1963). 
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2. The Dyadic Partial Differential Equations 

We now write the four sets of differential relations 
which must hold between our dyadic fields in full 
generality, the application and analysis of which 
are the essence of this dyadic formalism for general 
relativistic physics. These are, respectively, (a) the 
Dillerential Identities-16 equations (one scalar 
three vector, one dyadic) arising from Eq. (B. 7) 
metric and curvature independent; (b) the Curva­
ture Equations- 20 equations (one vector, three 
dyadic, the first traceless) introducing the Riemann 
tensor components, from Eq. (B .8); (c) the Bianchi 
Identities- 20 equations (three vector, two dyadic, 
the /irst traceless) relating the derivatives of the 
Riemann components, from the integrability condi­
tions Eq. (B.13); and (d) tbe Commutation Form­
ulas for anholonomic space and time dillerentiation, 
special cases of Eq. (B.12). 

(a) Dillerential Identities 

V·O = a·O, (D .22) 

tv xa - (n+",xo) = -s·o + (trS)O, (D.23) 

V · N + V xL = -2L·N + (tr N)L 

-2S·0+2<.>xO (D.24) 

2L = (V + a)·[S'T - (trS) I]- S'xN' , (D.25) 

N - !(tr N) I = (V + a)·(O - ",)1 

+ tS,T x (V + a) - H'17 + a) x S' 

(D .26) 

To shorten Eqs. (D.25)- (D.26) we have used the 
notation S' == S - (0 - "') x I and N' == N -
Htr N)I - L x I. The superscript T denotes a trans­
posed dyadic. The trace of Eq. (D.26) may be 
written in addition: 

tr N + 2V' (0 - "') = 2N: S - (tr N)(tr S) 

- 2a·(0 - "') - 4L·(0 - ",). (D.27) 

The /irst two of these equations are remarkably 
simple, curvature-independent, general identities 
satisfied by the proper kinematic observables of 
any timelike congruence. The third, Eq. (D.24), 
expresses integrability conditions on the spatial 
parts, Land N, of the anholonomic affinity. The 
remaining three relate the time derivatives of L and 
N to the properties of the preferred congruence. 

(b) Curvature Equations 

V'S - V (trS)+ VxO=20xa- 2t, (D.28) 

HVxS - SxV) - !(VO + OV) 

= aO + Oa - a·OI - B, (D.29) 

;('17 xN - N xV) - HVL + LV) 

= - N·N + Htr N)N - LL - [Htr N)' 

- tN: N - tL·L] 1 + E - Htr E)I, 

S +",xS - Sx", - HVa + a'l7) 

= -s·s + aa - 00 + (0·0) 1 - Q. 

(D.30) 

(D.3 J) 

The traces 01 Eqs. (D .30) and (D.31) may be written 
in addition: 

2V·L = -t(tr N)' + !N: N - L·L + tr E, (D .32) 

V·a - trS = S: S - a·a - 20·0 +tr Q. (D.33) 

Equation (D.30) may be referred to as the gen­
eralized equation of Gauss (c.f. Ref. 3, p. 278 and 
Ref. 4, p. 146) . It contains only the spatial parts 
of the anholonomic affinity, Land N, and the 
dyadic E, defined as 

E == -(P + ts~s + 00 +",0 + 0",) . (D.34) 

In our case (4), when 0 = 0, the preferred con­
gruence is 3-space normal, and Eq. (D.30) then com­
prises the six curvature equations for an imbedded 
Riemannian 3-space. The dyadic E reduces to 

E = -P - ts ~ S (0 = 0), (D.35) 

and is precisely the strangled Einstein 3-tensor for 
this imbedded space. The form explicitly reveals 
the dependence of the metric properties of the 
subspace on the four-dimensional curvature compo­
nents P (which we have accordingly dubbed the 
induced curvature dyadic), and on the second funda­
mental form S, the rate-ol-strain of the timelike 
congruence. Upon taking the covariant divergence 
of Eq. (D.35), the dyadic equations may be used to 
show furth er that 

V·E = 0 (0 = 0), (D.36) 

a vector equation expressing the three independent 
Bianchi Identities for a Riemannian 3-space. Fi­
nally, the scalar curvature of the subspace, - 2 tr E, 
is related to the spatial anholonomic affinity by 
Eq. (D.32). 

Equations (D.28 and D.29) may together be 
referred to as the generalized equations of Codazzi 
(cf. Rei. 3, p. 278 and Ref. 4, p. 146) inasmuch 
as, again when 0 = 0, they are the usual eight 
partial dillerential equations lor the second funda­
mental form of the imbedded 3-space. A special 
case of Eq. (D.28) in tensor form has been used by 
Rayner" in discussing Born-type rigid motions 
(S = 0) in general relativity, (c.f. Ref. 2). 

16 C. B. Rayner, Compt.. Rend. 248, 929 (l959 ). 
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Equation (D.31) is essentially a kinematic relation 
for the preferred congruence; we return to its 
physical interpretation in Sec. D3. Its trace, Eq. 
(D.33), reduces for incoherent matter (T = 0, t = 0, 
a = 0) to an equation whose tensor equivalent is 
found in Raychaudhuri's work." 

The quantities Land N do not appear explicitly 
in eighteen of the thirty-six equations, (D.22) to 
(D.33), althought they still play an implicit role 
in the "covariant" derivative, V. It is often con­
venient to collect this particular set of equations 
in two nonsymmetric dyadic equations as follows: 

V a - (5 + '" x 5 - 5 x",) + (il + '" x 0 ) x I 

= S·S - OxS - SxO-aa 

+ on - (0·0) 1 + Q , (D.37) 
and 

V O + SxV 

= -2an + (a,o) 1 + B + txl. (D.38) 

(c) Bianchi Equations 
These follow from Eq. (B.13), but more directly 

can be obtained in dyadic form by differentiation 
of Eqs. (D.22)- (D.33), using the commutation form­
ulas to be given in the following subsection. 

V . Q - V (tr Q) - 2(t + '" x I) 

= - SxB - 30 ·B - Oxl + 3S·1 

+ (tr S)I + a · [P - Q - (tr P - tr a ) I], 

V ·B-Vxl 

= S xP + 20· Q + o·p - (tr P)O, 

v·p = - SxB - 30 ·B 

- 30 xl + 5·1 - (tr S)I, 

V x a - a x V - 2(6 + '" x B - B x",) 

= (P + a ) x a - a x (P + a ) - I x 5 + 5 x t 

+ 30t + 310 - 20· tl - 0 x B + B x n 

(D.39) 

(D.40) 

(D.4I) 

- 3S·B - 3B·5 + 4(tr S)B + 25: BI , (DA2) 

-V xB + B xV - Vt - tV + 2V·tl 

- 2(P + '" x P - P x",) = 2a x B - 2B x a 

+ 2ta + 2at - 4a·t l - 0 xP + P x 0 

- p·S - s·p + 2(trS)P - 25~ Q . (D.43) 

The trace of Eq. (D.43) is of independent interest: 

The scalar Eq. (D.44) may be joined with a 
vector equation which is the difference of (D.39) 
and (D.4I), to give four familiar equations for the 
stress dyadic T, momentum density vector t and 
energy density p: 

V·t + [p + (tr S)p] = T:S - 2a ·t, 

V · T - [t + '" x t + (tr 5)1] 

= S·t + n xt - T'a + pa. 

(D.45) 

(D.46) 

These are the "contracted Bianchi Identities" in 
dyadic form, commonly interpreted as conservation 
laws for energy and momentum. 

(d) Commutation Formulas 
A large variety of these may readily be inferred 

from Eq. (B.12). As was remarked, it is an in­
convenience that neither the D nor V operator 
commutes with itself, or with time differentiation. 
We will give here only three which are of frequent 
occurrence in manipulating the intrinsic derivative 
operator D; </> and V are arbitrary scalar and vector 
fields, respectively. 

(D</>)" - D (,p) = a,p - S·D</> 

+ (n - "') xD</> , 

D xD</> = 20,p + N·D</> + L xD</>, 

D·(D xV) = 2n· Y + N: DV + L·D xV. 

(D.47) 

(D.48) 

(D.49) 

It is convenient however to give a quite complete 
tabulation of such formulas for the 3-space covariant 
operator V; here M is an arbitrary symmetric dyadic. 
For the t ime-space commutation relations we have : 

(V </>)" - V (,p) = a,p - 5*· V</> , 

(VV)" - V ( ) = aY - S* ·VV 

(D.50) 

- [S*T X (V + a) + (V + a)·(n - ",)1] xV, (D.51) 

(V x M)" - V x (M) = a x M - S* x V M 

+ [(V + a) xS*]· M + M·[(V + a) xS*] 

+ [(V + a) xS* - (V + a)·(n - ",)1] 
·[M - (tr M) I] - [(V + a) xS*] : MI. (D.52) 

The analogous commutators for C-i:1· V)', (V x V)', 
and (V ·M)· follow directly from Eqs. (D.51) and 
(D.52) by contraction and antisymmetrization, and 
so need not be exhibited. We have for convenience 
again introduced the nonsymmetric dyadic 5* and 
its transpose S*T: 

2V ·t -trP = - S:P+S:Q+(trS)(trP) s*=s-(n-",)xl,S*T=S+(n-",)xl. 

- (tr S)(tr Q) - 4a ·t . (D.44) (D.53) 

II A. Raycbaudburi, Phys. Rev. 98, 1123 (1955 ). The commutation relations for spacelike direc-
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tions are: 
v x (V",) ~ 20 · {I<!> l. 

V· (V xV) ~ 2n·{V + S*·VI , 
V x (VV) 

~ - ExV + 20·{IV - !S*x (l xv)l, 

V . (V x M) ~ - E x M 

+ 20· (M + ! S*·[M - l(tr M) I]I, 

V' [V x (1 xV)] 

(D.54) 

(D.55) 

(D .56) 

(D.57) 

~ - Ex (lxV)+20·{lxV+ ! S*· ( lxV) I · (D .58) 

These general relations appear quite complicated. 
Again, however, when n ~ 0 and the timelike 
congruence is 3-space normal, we discover simple, 
perspicuous equations. Equations (D.54) and (D.55) 
become the familiar vector identities ; the rest reduce 
to dyadic forms of the Ricci identities in a Rie­
mannian 3-space, with the Einstein dyadic E acting 
for the curvature tensor. 

3. Physical Interpretations 

Let us consider further the relative separation r 
of two closely adjacent particles of the oA' congru­
ence, Eq. (C.41). This is a local Cartesian vector 
equation, correct to first order in r; 5, 0, and (,,) 
are to be evaluated on one line of the congruence. 
Taking N and L to vanish on the line was tacitly 
necessary for interpretation of Eq. (CAO), for this 
condition implies that the spatial triad system is 
taken locally Cartesian and flat, and we in fact 
required this in order to write Eqs. (C.41)- (CA3), 
where the displacement r is a vector. We may thus 
say that Eq. (CAl) is not just pointwise valid, 
but rather is valid to first order in a fla t metric 
3-space carried along with the local observer. The 
observer is accelerating, and since we do not special­
ize '" along the world line, his reference triad is 
arbitrarily rotating. 

Differentiating Eq. (CAl) with respect to time . ' 
and substituting S from Eq. (D.31) and a from 
Eq. (D. 23), we can eliminate all such quantities 
relating to the Whole congruence in favor of the 
local kinematic observables of one part icle-observer 
(or of one line of the congruence with its reference 
tetrad), viz., a and -"'. These are respectively the 
vectorial reading of a linear accelerometer and the 
vector angular velocity of a (gyroscopically sta­
bilized, or untorqued) "stable-platform." 

We find as a result an equation for the observed 
spatial variation of a: 

a, '" a + r · Va ~ a(l - a·r) + i' + 2.. xt 

+ ",x (",xr) +';' xr + Q·r. (D.59) 

This is a quasi-Newtonian equation for a" the 
accelerometer reading at the adjacent point r , in 
terms of the accelerometer reading a at the origin 
of spatial coordinates and the rela tive acceleration f. 
It is entirely written in local, proper or "operational" 
t erms, and is immediately useful for the analysis 
of experiments. The usual centrifugal, Coriolis, and 
angular acceleration terms will be recognized . A 
special relativistic clock rate correction factor 
(1 - a·r/ c')-where c' ~ 1 in our units-is but 
another manifestation of the "red shift" predicted 
by special relativity for accelerating frames and 
recently verified in local terrestrial experiments using 
the MOssbauer effect (compare Ref. 5, p. 411) . 

The term Q. r is the general relati vistic term 
expressing the tidal effect of t he curvature tensor on 
the relative acceleration. When Q is written in terms 
of our second set of dyadics this term becomes 

Q·r ~ [A + T + !(p - 2trT) I] ·r. (D .60) 

In this form the contributions of the "source" and 
"field" parts of the Riemann tensor are separately 
revealed: for source-free regions one has just A·r. 
If the test particles are free (a ~ a, ~ 0), Equation 
(D.59) reduces to the equation of geodesic deviation 
of Synge.' If on the other hand they are parts of 
a stress system obeying Hooke's law and the ab­
solute accelerations a, a, are related to the stresses 

. ' one obtams the dynamical equations of Weber." 
The dyadic partial differential equa tions, such as 
those for Va and V O, Eqs. (D.37) and (D.38) 
provide a generally valid instrument, expressed i~ 
an operational language, for the treatment of 
simil,ar problems on the motion of macroscopic, 
continUOUS "test" bodies. 

A simila r equation may be found for the stable­
platform angular velocity - W 11 at r, in terms of 
that at the origin, - "'. From Eqs. (D.28), (D.29), 
(D.25), and (D.26) and again (C.41) , and setting 
N ~ 0 and L ~ 0, we obtain 

- "', '" - '" + r'V(-",) ~ (-",)(1 - a·r) 

+ ax (t+",xr) - S·r +txr. (D.61 ) 

H ere all terms leading to a difference of -"', and 
-(0) are nonclassical, of special or general relativistic 
origin. We again find a clock rate correction factor. 
The second special relativistic term is the differential 
Thomas precession. These two terms combined can 
be derived from the usual Thomas precession form­
ula, in the differential limit, if care is taken to 
express a ll precession rates in terms of local proper 

H J. Weber, General Relativity and Gravilational Waves 
(Interscience Publishers, Inc., New York, 1961), Chap. 8. 
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times. In the last two terms we again note separate 
contributions from the field and source parts of the 
Riemann tensor: a Hspin" term - B'f , arising from 
the conformal tensor, and an "orbital" term t x r, 
from the Einstein tensor. For geodesic observers, 
only these gencral relativistic terms will remain; 
they may be denoted the differential Fokker preces­
sion,lS 

Equations (D.59) and (D.61) show how in prin­
ciple the fourteen Riemann components Q , B, and 
t may be experimentally determined from local 
dilTerential kinematical measurements near, and on, 
one arbitrarily given timelike world line. Ai; was 
remarked previously, the remaining six components, 
in the induced curvature dyadic P, are in principle 
determinable from local spatial surveying in a triad 
system, Eq. (D.30); this means that their geometric 
effects will be second order in the spatial displace­
ment components r •. An experimental approach to 
the measurement of P would no doubt instead 
involve kinematical experiments on Q , B, and t as 
above, but made by two or morc point-observers 
in rapid relative motion. These complications will 
not arise in source-free regions, however: for express­
ing P by 

P = A - T + t(tr T - 2p) I (D.62) 

and recalling Eq. (D .GO), we clearly have in this 
case P = Q = A. 

As a final illustration we obtain an equation for 
the quasi-Newtonian tlgravitational field" of a non­
rotating (n = 0) static distribution of matter with 
proper energy density p and stress dyadic T. The 
matter is represented by a congruence oX' defined 
by the condition t = 0, and everywhere nomotating 
(0) = 0) auxiliary triads are introduced . A static 
distribution is defined operationally by the condition 
t hat in this tetrad system the local time derivative 
of every kinematic observable must vanish . We, of 
course, already have n = .;, = 0, but specifically 
impose the further conditions Ii = a and S = 0, 
the latter being required to ensure that all relative 
displacements r are time independent. 

When all these conditions (0 = '" = t = Ii = S = 0) 
are invoked, Eqs. (D.25) and (D.26) show that 
t = N = 0, and the other dyadic equations then 
directly yield the same result for the local time 
derivative of every remaining quantity. For instance, 
the scalar Bianchi identity Eq. (D.45) has the 
immediate consequence. p = O. 

vVe now imagine a population of proper Kewtonian 

II A. D. Fokker, Proc. Roy. Acad. (Amsterdam) 23, 729 
(1920 ). 

observers, each of whom prefers to ascribe his 
kinematic observations not to his own absolute 
acceleration a, but rather to a "gravitational field 
of force" with intensity F = -a. The "gravitational 
field equation" is then just Eq. (D.33) which, under 
the imposed conditions, may be written 

"i7·F = - 4""(PM - ~ tr T) + ~ F·F, (D .63) 

where we have put - F for a; substituted for tr Q 

its equivalent, p - tl' T; restored dimensional 
factors ; and defined a propel' mass density, PM == pic'. 

When 0 = a it follows from Eq. (D.23) that 
"i7 x a = 0, and this, together with Ii = 0, is suffi­
cient to permit expressing F as the gradient of a 
time-independent scalar: 

F = - "i7</>, '" = O. 
Equation (D.63) wi ll then take the form 

"i7'</> = 4""(PM - ~tr T) - ~ ("i7</»'. 

(D.64) 

(D.65) 

For the prescribed conditions this is an exact equa­
tion reducing to Poisson's eq uation in the non­
relativistic approximation. If we also rewrite Eq. 
(D.37) in these terms and for these conditions, we 
find the following expressions for the tidal accelera­
tion dyadic Q : 

1 
Q = -"i7F + , FF 

c 

= "i7"i7</> + ~ ("i7</»("i7</» . (D.66) 

N ol.e added in proof: In a private communication, 
Dr. F. A. E. Pirani has very kindly called our atten­
tion to the "method of projection" of Carlo Cat­
taneo." We were completely unaware of this work, 
whose relation to the present formulation sbould 
be noted. Our operator "i7 , denoted by us the opera­
tor of "spatial covariant differentiation," is precisely 
the covariant operator of II transverse differentiation" 
of Cattaneo, strangled. Those of ow' equations such 
as (D.37) and (D.3S) not explicitly involving N 
and L can of course be inunediately "unstrangled" 
by multiplication with .XI', ,X·, etc., to give covariant 
equations not depending on a choice of auxiliary 
congruences; such equations are thus derivable by 
the method of projection. On the other hand, our 
equations (D .24), (D.25), (D.2G), and (D.30) ex­
plicitly contain N and L, and seem to be much less 
accessible in covariant language, while vital for the 
completeness of the total set. 

If See, for example, C. Cattaneo, Compt. Rcud. 248, 197 
(1959); 1. Cattaneo-Gaaparini, Compt. Rend. 252, 3722 
( 1061). ' 
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The scattering wa.vefunction for a Dirac particle in a central potential is written in terms of a 
matrix acting on a plane-wave sp inor whose momentum direction p a.nd polarization direction are the 
assigned directions for the asymptotic incident plane wave. The matrix involves four fun ctions, inde­
pendent of polarization directJon, which multiply the matrices ], a·(p - f), rt·(p + f), and p·f·fI. 
Differential relations for these four functions are directly obtained and usymptotic relations are 
given. In particular, the (unction multiplying rt ·(p + t) is ll.8ymptotically zero, so the potential 
scattering (ormulation is identical with that given previously (or the Coulomb potential. The Bcat,.. 
tering wavefunction is a. solu tion of the general differential relations subject to appropriate boundary 
conditions. For the Coulomb potential, these differential relations simplify, and an iterative solution 
is developed based on a Green's fUDction technique with the Sommerfeld- Maue approximation as 
the zero-order solution. 

INTRODUCTION 

THE scattering wavefunction for a Dirac 
particle in a central potential is that eigen­

function of the Hamiltonian which has the asymp­
totic behavior of a plane wave plus an outgoing 
spherical wave. The usual method of constructing 
the scattering wavefunction is to find simultaneous 
eigenfunctions of the Hamiltonian, the Dirac 
operator K = f3(d' L + 1) whose eigenvalues charac­
terize both the total angular momentum and the 
parity, and the z component of the angular mo­
mentum. The scattering wavefunction is then 
expanded in terms of an infinite series of these 
angular momentum eigenfunctions. The expansion 
coefficients are chosen to provide the proper asymp­
totic behavior. This infinite series expansion, though 
exact, has the disadvantage of being unwieldy 
for purposes of calculation and does not lend itself 
easily to approximation procedures. Consequently, 
it is desirablc to express the scattering wavefunc­
tion in a different form. 

For the special case of a Coulomb potential, 
the infirute series expansion has been reorgaruzed 
into the form of a matrix acting on a plane-wave 
spinor of arbitrary polarization direction.' " The 
momentum direction p and the assigned polariza­
tion direction of the plane-wave spinor are the 
corresponding directions associated with the asymp­
totic incident plane wave. The matrix can be written 
in terms of th.ree functions, independent of polariza­
tion direction, multiplying the matrices 1, ", (:fj - f) 
and PAP ·d. These three functions are given in 

.. Contribution No. 1519. Work was performed in the 
Ames Laborntory of the U. S. Atomic Energy Commission. 

• A. DeloIT, Nuel. Pby •. 13, 136 (1959). 
t W. R. Johnson and R. T. Deck, J. Math. Pbys. J, 

319 (1962). 

terms of an infinite series which may be summed 
to zero order in the interaction strength to give the 
Sommerfeld-Maue approximation. For large T, a 
correction to higher order in the interaction strength 
may also be given in terms of a finite number of 
functions.' In addition to the case of the Coulomb 
potential, the scattering solution of the Biedenharn 
symmetric Dirac-Coulomb Hamiltoruan'" has also 
been reorganized' into the form of a matrix acting 
on a plane-wave spinor, and the matrix has exactly 
the same form as the one for the Dirac-Coulomb 
case. 

In the present paper, it is shown that the scatter­
ing solution for a general central potential may be 
reorganized into the form of a matrix acting on a 
plane wave spinor of arbitrary polarization direc­
tion. For this general case, the matrix is written in 
terms of four functions, independent of polariza­
tion direction, mUltiplying the matrices 1, "'(:fj- P), 
" , (p + f), and PAf -d. Once this fact is established, 
it is shown that the assumption of this form leads 
to differential relations among the four functions. 
The exact solution is then a matter of solving these 
partial differential equations subject to the ap­
propriate boundary conditions. The advantage of 
casting the problem into this form is that approxi­
mation procedures may be developed directly from 
the differential equations. Also, certain asymptotic 
relations among the four functions can be directly 
determined by invoking the boundary conditions. 

S D. M. Fradkin, T. A. Weber, and C. L. Hammer, ADn. 
Phys. (N. Y.) 27, 338 (1964). In the following, this paper 
will be rcCerred to as FWJ:I . 

4 L. C. Biedenharn, Bull. Am. Phys. Soc. 7, 314 (1962). 
'L. C. Biedenharn and N. V. V. J. Swamy, Phys. Rev . 

133, B1353 (1964) . 
• D. M. Fradkin, Phy •. Rev. 135, BlOB5 (196<1). 
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Restricting the discussion of the geueral equa.­
tions to the case of the Coulomh potential, it is 
shown that the function multiplying the matrix 
Q' (fi + f) is identically zero. Also, the whole 
prohlcm of ohtaining the scattering solution re­
duces to fmding the solution of a single second­
order partial differential equation. A solution of 
this equatiou to zero order in the square of the 
interaction strength yields the Sommerfeld- Maue 
approximation. The Green's function based on this 
zero-order solut ion is then developed. In this way, 
the prohlem of solving the differential equation 
sUhject to appropriate boundary conditions is 
transformed into a prohlem of solving an integral 
equation. This provides an iteration procedure for 
expandulg the exact solution in powers of the 
square of the interaction strength for all values of 
the dynamical Born parameter. For large r, the 
approximation obtained from the first iteration is 
equivalent to that previously obtained in FWH. 

THE GENERAL FORM OF THE WAVEFUNCTION 

The Hamiltonian for a Dirac particle in a central 
potential is given by 

11 = -ia ' V + fl + X V(r ). (1.1) 

Here, units arc used for which h = m = C = I, 
and the notation in FWH is followed. In particular, 
X is the interaction strength parameter and VCr) 
is the central potential. In this section, it will be 
proved that the scattering solution ", which satisfies 

H",(E, r) = E",(E, r) 

may be written in the form 

'" = (G + iAMa · (fi - f) 

(1.2) 

+ iXNa·(fi + f) + iLPAf·dJ U(f>). (1.3) 

where G, M, N, and L are functions indepcndent 
of the polarization direction, and U (fi) is a plane­
wave spinor whose momentum direction p and 
polarization direction are the directions associated 
with the asymptotic incident plane wave. 

It is known' that the scatterulg solution for a 
Dirac particle in a central potential is given in 
terms of an angular momentum eigenfunction 
expansion by 

",(E, r) = 4.-(./(2Ep)J' 

X L i""cme;o ' C(I(k) , t, i;" - m, m) 
.... .t •• 

times Y;,.~· (fi);!r.(r, E). (104) 

1 See, for example, M. E. Rose, RelativilJtic Electron Theory 
(John Wiley & Sons, Inc., New York, 1961), p. 207. 

Here l(k) = (kl + t(s. - I ), j = Ikl - to k = ±t, 
±2, .. . , s. = ±1 for k ~ 0, " is a half integer, 
and the summation extends over all k, m = ±!, 
and I' such that II' - ml ~ t(k). Also, P is the di­
rection of the asymptotic momentum, p = (E' - 1]', 
C is the Clebsch- Gordor. coefficient, 6. is the 
difference between the phase shift for the potential 
VCr) and zero potential, Cm are arbitrary constants 
linlited only by the condition L c:cm = I, and 
Y is the usual spherical harmonic. The angular 
momentum eigenfunction ;!r.(r, E ) satisfies 

(H - E)",:(r, E) = (K + k),y. (r, E) = 0, (1.5) 

where K is the Dirac operator fled' L + 1). It has 
the form 

"'Z(r , E) = [g.(E, r)x:(f) ]. (1.6) 

if.(E, r)x~.(f) 

Here, 

xZ(f) = L C(l(k) , !, i; I' - T, T) Y:,:,' (f )x', (1.7) 
T -.t: t 

g. (E, r), f .(E, r) are solutions of the appropriate 
radial equations for the given central potential, 
and x' are the two component spin-up, spin-down 
functions. 

In analogy to the treatment of Jobnsonand Deck,' 
a coordinate system is chosen so that the polar • 
axis is oriented along the direction of the asymptotic 
momentum vector p. This choice conveniently 
giVes 

Y;'.~ · (f» = o •.• (21(k) + 1)/(4 .. -J]I. (1.8) 

Evaluating the Clebsch-Gordon coefficients and 
performing the sums over m and 1', one finds that 
the scattering solution has the form 

",(E, r ) = [(b, + Ob,)v ]. (1.9) 
(b , + Ob.)w 

Here, 

0= [0 -e-"j = i(sin Or'd,pA"{J, 
e;· 0 . 

(1.10) 

b, = L P.g. Ikl P".,(cos 0), 

ba = .L: PA:Sk g .l:P~ (lIl(COS 8) , 

b, = -i(E + I )/(E - I) JI L p./.lkl P ,,_,,(cos 0) , 

b. = i[(E + I )/(E - I)J' L p,s.t.P: H,(cos 0) , 

P. = (./(2Ep)]li""c;o ., 

P:",(cos 0) = (s in O)(d/ d cos O)P",,(cos 0) . 
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v = (~~J 
[
E - I JI( CI) 
E + I -C_I' 

d·n 
W = --=-.L..... V = 

E+I 

The argument of the Legendre polynomial P IS 

cos 9 = p.p. 
The two component column matrices v and w 

are the upper and lower components of the plane 
wave spinor of arbitrary polarization direction 
(corresponding to the arbitrary nature of c.). Thus, 

U(fi) = I(E + 1)/ (2E)]1(:), (1.11) 

where 

(cr ·p + (3 - E)U(fi) = o. (l.l2) 

Consequently, the general expression for the scatter­
ing solution >/I given by Eq. (1.9) can be written 
in the form 

>/I = EI[2(E + l lr1llb, + ib,(sin Or'd·PAP](1 + (3) 

+ lb, + ib.(sin Or'HAPl(I - (3)} U(fi). (1.13) 

This establishes the fact that for a central po­
tential, the scattering solution has the form of an 
operator acting on a plane-wave spinor of arbitrary 
polarization. This operator is composed of the four 
Dirac matrices 1, {3, d·fAP, and {3d·PAP multiplied 
by functions which are irulependent of polarization 
direction. Alternatively, one can replace (3 by 
E - "'p when acting on U(fi), and consider then 
the operator in terms of the Dirac matrices 1, 
d'PAP, "'(fi + f), and ".(p - f) with multiplying 
functions that are also polarization independent. 

DIFFERENTIAL RELATIONS 

Consider a scattering solution of the form given 
in Eq. (1.3), namely 

>/I(E, r) = D(E, r, p) U(fi) , (2.1) 

where 

D(E, r , p) IG + i'Mcr·(fi - f) + iV/a'(p + P) 

+ iLfiAf· d]. (2 .2) 

The differential relations among G, M, N, and L 
(functions that are independent of polarization 
direction) can be obtained directly by the following 
technique. 

Since the scattering solution is an eigenfunction 
of the Hamiltonian, given in Eq. (1.1), it must 
satisfy the relation 

(H - E)D(E, r , p)U(fi) = O. (2.3) 

As a consequence, it follows that 

Tr [-yAH - E)'D(E, r,p)P.(E,pl ] = 0, (2.4) 

where l' A is anyone of the sixteen independent 
Dirac matrices, and P .(E, p) is the free-particle 
positive energy projection operator given by 

P.(E, p) = (2E)- '(cr ' P + (3 + E). (2.5) 

In other words, the coefficients of the sixteen Dirac 
matrices appearing in the expression 

(H - E)D(E, r, p)P .(E, p) 

are all equal to zero. This process yields sixteen 
equations, of which only eight are independent 
since p. connects the coefficients of {3 with those 
for aop + E. The vector matrices, e.g., «, may 
be conveniently resolved in the independent di­
rections P, p, and r ",p. Also, it is convenient to use 
a spherical coordinate system 

x = r s in (J cos cP, 

y = T sin 0 sin tP. 

z = r cos 0, 

where, as before, the polar direction is p so that 

cos 0 = p.p '" a. (2.6) 

It is found that the eight independent equations 
are: 

aG/ aq, = aM/ aq, = aN / aq, = aL/aq, = 0, (2.7) 

I- (l - a)(a / ar) + (l - a')r-'(a/ aa) + ip(1 - a) 

- (2/ r) ]M + 1(1 + a)(a/ar) + (I - a')r- ' (a / aa) 

+ ip(J + a) + (2/ r)]N + VG = 0, (2.8) 

I(alar) + (1 - a)r-'(alaa) - ip]M + [(alar) 

- (1 + a)r- '(a/ aa) + ip]N - VL = 0, (2.9) 

I-(alar) - (1 - a)r-'(alaa) + ip]G 

+ 1(1 - a)(a / ar) - (1 - a'V'(a/aa) - ip(l - a) 

+ (1 + a)r- ']L + 12X(XV - 2E)]N = 0, (2.1 0) 

1(1 + a)(a / ar) + (J - a')r- '(alaa) 

+ ip(1 + a) + (I - a)r- ']L 

+ I(alar) - (I + a)r-'(alaa) + ip]G 

+ 12A(X V - 2E)]M = O. (2 .11) 

Substituting G and L from Eqs. (2.8) and (2.9) 
into Eqs. (2.10) and (2.11), one obtains the coupled 
second-order partial differential equations coo-
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taining only M and N: 

-f(a/aa)(1 - a)M + [r'(a'/ar') + (3 - flr(a/ar) 

+ (a/aa)( ! - a)(a/aa)(1 + a) + (I - f )(1 + ipr) 

+ (pr)' + (XrV)' - 2vpr(rV)]N = 0, (2.12) 

f (a/aa)(1 + a)N + [r'(a'/ar') + (3 - flr(a/ar) 

+ (a/aa)(1 + a)(a/aa)(l - a) + (l - f)(l - ipr) 

+ (pr)' + (XrV)' - 2vpr(rV)]M = 0 , 

where 

f = [r(d/dr) In rV], 

v = 'AE/p, the Born parameter. 

(2 .13) 

(2. 14) 

In these and subsequent equations, all the differential 
operators act on everything to their right in a 
particular term. The sole exception to this con­
vention is the function f which is a function of r 
only and not a differential. operator. 

It is apparent that by operating on Eq. (2.12) 
by (a/aa)(1 + a) and using Eq. (2.13), one can 
obtain a fourth-order partial differential equation 
for M alone. Similarly, by operating on Eq. (2.13) 
by (a/aa)(1 - a), a fourth-order partial differential 
equation for N can be obtained. 

The first-order partial differential relations 
simplify somewhat in terms of the parabolic co­
ordinate system associated with the nonrelativistic 
problem, namely, 

~, = ipr(1 + a), ~, = ipr(l - a). (2. 15) 

In this coordinate system, Eqs. (2.8)-(2.11) can 
be written 

[-~,(a/a~,) + H, - I]M 

+ [~,(am,) + H, + I]N + t(rV)G = 0, (2. 16) 

[a/a~,) - l]M + [a/a~,) + !IN 

- (rV)(~, + ~,)-'L = 0, (2.17) 

[-(am,) + t]G + 2[~,(a/a~,) -!t, + IJ (~, + ~,)-'L 
+ 2[X'(rV)(~, + ~,)-' + ivJN = 0, (2 .18) 

[(a/a~,) + !]G + 2[~ , (a/a~,) + H, + II(e, + ~,)-'L 
+ 2[X'(r V)(~, + ~,)-' + ivJM = O. (2 .19) 

Also, the coupled second-order equations, Eqs. 
(2.12) and (2.13), become: 

-f[(a/a~ , ) - (a/a~,)IM~, + ~,) - 'M 

+ (~,(a'/a~D + ~,(a'/a~;) 
+ [2 - n,(~, + ~,)-'](a/a~ , ) 

+ [I - fM~, + ~,)-' ] (a/a~,) + Hl - f) + iv(rV) 

- H~, + ~,) - (ArV)' + fIC<, + ~,)-' IN = 0, 
(2.20) 

f[(am,) - (O/a~,)]~,(~, + ~,)-'N 
+ (~,(a';ar.) + ~,(a'/ag) 
+ [I - f~, (~, + ~.)-'I(aM,) 
+ [2 - f<,(~, + ~,)- '](a/a~,) - W - f) + iv(r V) 

- H~, + ~,) + [(Xr V)' - f1 (~, + ~,)- ' 1M = O. 
(2.21) 

ASYMPTOTIC RELATIONS 

The scattering solution has the asymptotic 
behavior of a plane wave plus an outgoing spherical 
wave. Thus, 

lim ", (E, r) = e""""'U(fi) 

+ r-'e""··· ' :n.(E, r, p)U(p). (3. 1) 

where D. and O. are the plane-wave and spherical­
wave phase faetors, respectively, and the asymptotic 
matrix operator :n.(E, r, p) has the form 

:n.(E, r, p) = [G. + ·,).M.a·(f; - f) 

+ iXN.a·(f; + f) + iL.PAf·dJ. (3.2) 

The functions G" M" N" and L. are obtained 
from the asymptotic form of G, M, N, and L, 
respectively. 

When operating on the plane wave spinor U(p) 
of definite polarization, the matrices associated with 
M, N, and L cannot produce the same plane-wave 
spinor. This follows from the fact that the only 
matrix operators, independent of polarization di­
rection, that have this property are the identity 
and (a ·p + fJ). Consequently, since it is assumed 
that the asymptotic plane wave is characterized 
by U(p) with definite assigned polarization, only 
the function G can contribute to the asymptotic 
plane wave. 

Asymptotically, the outgoing spherical wave 
itself must be proportional to a plane-wave spinor 
propagating in the f direction. Thus it follows that 

(pa·f + fJ - E):n.(E, r, p)U(f;) = O. (3.3) 

This equation implies certain relations among the 
asymptotic functions G" M" N" and L •. Byargu­
ments si.milar to those given in the preceding section, 
the coefficients of the sixtecn Dirac matrices appear­
ing in the expression 

(pa·f + {3 - E):n.(E , r, p)P .(E, p) 
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are all equal to zero. Of the resulting sixteen equa­
tions, only two are independent. These asymptotic 
relations are 

N. = 0, 

a, + 2ivM, + (1 + alL, = 0, 

where again v = XE/ p, a = cos 8 = T·p. 

(3.4) 

Since N, is zero, the asymptotic matrix operator is 

:n,(E, r, p) = [a, + iXM ... ·(p - T) + iL.p,f ·dJ. 
(3 .5) 

This is the same form as given in FWH, so the 
potential scattering formulation for a general 
central potential-cross sections for single, double, 
and triple scattering, asymmetry functions, and 
change of polarization direction- may be taken 
over completely from that reference. 

Specifically, the relation of N. and N is 

lim [re- q 
.. •

I
., N) = N. = O. (3.6) 

It is of interest to inquire under what conditions 
N itself is identically zero (for all r). If one assumes 
that N is zero, then from Eq. (2.12) it is found that 

f(ajaa)(l - a)M = 0, (3 .7) 

where f is [r(d/ dr) In rVJ. Consequently, if rV is 
not constant, i.e. , for potentials other than the 
Coulomb one, the assumption that N equals zero 
implies that M = (1 - a)-'h(r), where her) is 
some function of r only. Substituting this form in 
Eqs. (2.13) and (2.8), one obtains the relations: 

[r'(d' /dr') + (3 - fJr(d/dr) + (I - ipr)(J - fJ 

+ (pr)' + (Xr V)' - 2vpr(r V) Jh(,) = 0, (3 .8) 

a = (V) - '[ (d/dr) + r-' - ipJh(r). (3.9) 

But a cannot be a function of r alone, as implied 
by Eq. (3.9), since its asymptotic form must provide 
a plane-wave contribution exp i(p· r + 8,) which 
has angular dependence. Thus, for any central 
potential other than the Coulomb one, N cannot 
be identically zero. 

REDUCTION TO THE COULOMB CASE 

The discussion will now be restricted to the case 
of a Coulomh potential. Thus, V = -1/r and 
f = r [(d/dr) In rVJ = O. The sign of the potential 
V has been chosen negative so that positive inter­
action strength X corresponds to attractive scatter­
ing. The function N may now be chosen to be 
identically zero, and Eq. (2.12) is satisfied without 
imposing any restrictions on the angular dependence 

of M. The remaining independent relations among 
a, M, and L [Eqs. (2.8), (2.9), and (2.13)J become 

a = e;"[-( I - o)"(a/ ar) 

+ (I - a')(a/aa) - 2)e- ;"M, (4. 1) 

L = -e;"[r(a/ar) + (J - a)(a/aa)Je- ;"M, (4.2) 

(e(r, a) + (X/r)'} [r(1 - a)J1M = 0, (4 .3) 

where e(r, a) is the self-adjoint differential operator 

e(r, a) = V'[(a/ar)r'(ajar) + (a/aa)(1 - a')(a/ aa) 

- !(l - 0)-' - 2ipr(! + iv)J + p'}. (4.4) 

Thus, the problem of finding the scattering solution 
reduces to solving a single second-order partial­
differential equation for M only, subject to the 
appropriate boundary conditions. 

With the understanding that the operand is 
independent of the aximuthal angle q" the operator 
e(r, a) can be written 

e(r, a) = [\7' - [2r'(1 - aW' 
- 2ip(t + iv)r- ' + p'l, (4 .5) 

where \7' is the Laplacian operator. Thus Eq. (4.3) 
is a Schrodinger equation, but the "potentialJJ is 
such that it is separable only in spherical 
coordinates. & 

In terms of the parabolic coordinates 1;, 
ipr(1 + a), !;, = ipr(1 - a), the differential re­
lations for a, M, and L are: 

a = [I;, - 2 - 2t,(a/ at,»)M, (4.6) 

L = (t, + !;,)[! - a/a!;,)JM, (4.7) 

[1;, (a'/atD + Ma'/ag) + (a/a!;,) + 2(a/al;,) 

- H!;, + 1;,) - (t + iv) + X'(t, + !;,)-')M = O. 
(4.8) 

It is seen that the function M is not separable in 
parabolic coordinates because of the term in x'. 
However, as a zero-order approximation, the term 
in X' can be neglected. The resulting solution, 
characterized by M o, that satisfies the scattering 
boundary conditions is the single eigenfunction 

M o(!;" !;,) 

= -tr(J - iv)e" "e"'-"''' ,F,(J + iv, 2, t,). (4.9) 

Using Eqs. (4.6) and (4.7), one obtains the auxiliary 
results 

L o(J;" !;,) = o. (4.11) 
8 L. P. Eisenhart, Pbys. Rev. 74, 87 (1948). 
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This zero-order approximation is the well known 
Sommerfeld- Maue approximation to the Dirac­
Coulomb problem. In the preceding equations. 
,F, is the regular confluent hypergeometric func­
tion and the normalization for M 0 has been chosen 
so the asymptotic plane wave derivable from Go 
corresponds to unit incident flux. 

THE COULOMB GREEN'S FUNCTION 

The partial differential equation [Eq. (4.3)J for 
[r(1 - a)JIM(r) together with the boundary con­
dition that asymptotically M(r ) behaves like a 
plane wave plus an outgoing spherical wave. can 
be replaced by the equivalent integral equation 

[r(1 - a) JIM (r) = [r(1 - a) JIM oCr) 

- X' J G(r. r ')(r')-'lr'(1 - a' )JIM (r' ) dr'. (5.1) 

Here. AI oCr) is that solution (Eq. 4.9) of the homo­
geneous equation 0 (1', a)[r(1 - a)JIMo(r) = 0 
which asymptotically behaves like a plane wave 
plus an outgoing spherical wave. The Green's 
function G(r, r'), which like M (r) is independent 
of the azimuthal angle q" must satisfy the partial 
differential equation 

OCr. alGer . r ') = (2.T'r-' o(r - r')o(a - a'). (5 .2) 

It must also satisfy the boundary conditions of 
regularity at r = 0 and asymptotic behavior of 
an outgoing spherical wave at r --> m. 

In this formulation, the differential operator 
(J(r, a) rather than OCr, a)["(1 - a)JI is considered 
since the former is self-adjoint while the latter is 
not. In the construction of a Green's function, 
eigenfunctions of the relevant operator and also 
of the adjoint operator are required. Thus, the 
simplification of considering a self-adjoint operator 
is that only one set of eigenfunctions has to be used. 

Since the inhomogeneous term of the integral 
equation involves the factor (Vr')', it is most 
convenient to develope the Green's function in 
terms of spherical coordinates. For this purpose, 
one considers the solutions of the differential equation 

OCr. a)Q(r . a) = O. (5.3) 

which are separable in spherical coordinates. These 
eigenfunctions have the form 

Q,(r. a) = r- '01. (r)«.(a). (5.4) 

where the angular function «.(a) and the radial 
function O1. (r) satisfy the equations 

[(a/ aa)(1 - a')(a/ aa) - HI - a)-' 

- i + k' J« . (a) = O. (5.5) 

[(a'/ ar') + p' + 2ip( - t - iv)r- ' 

+ (t - k')r -' J01.(r) = O. (5.6) 

The regular solution of the separated angular 
equation is 

«,(a) = 1(1 - a)/(2k)JI (d/ da) I? (a) + P._,(a) ]. 

k = J. 2. ...• (5.7) 

where p. is the Legendre polynomial of order k. 
These solutions possess the orthogonality and 
completeness relations: 

[, « .(a)«, .(a) ria = 0 •. , . . (5.8) 

L: «.(a) «.(a' ) = o(a - a' ) . - 1 S a. a' S 1. (5.9) .-, 
The differential equation for the radial function 

O1. (r) is just the Whittaker equation in which the 
independent variable is 2ipr. The solution that is 
regular at the origin is the Whittaker function' 

O1. (r) = M _1 _; •.• (2pre"") 

X ,F, (~ + 1 + iv. 2k + 1. 2pre" " ) . (5 .10) 

The solution that asymptotically behaves like 
an outgoing spherical wave is the other Whittaker 
function 

O1.(r) W IH •.• (2pre- · ' ' '). 

Ir(k - iv)r' (2pre-" ")' - 'e'" 

X 1," e- 't'- ''-' (2pre-; ' " + I)· .. • dl . (5.11 ) 

This has the asymptotic form 

I· W (2 - "I') - (2 - " " )1"';" lffi 1-+ '- • . 1: pre - pre e. (5.12) 

The Wronskian of these two solutions of the radial 
equation is 

1M _H •.• (x)](d/ dx) [W! +i,. ,(xe- ' ' ) J 

- [W!H •. , (xe- " )](d/ dx) [M -!- " .• (x) J 

= e'''!-kJ r(2k + 1)/ r(k - iv) . 

where x = 2pre· ... n . 

(5.13) 

The Green's function G(r, r') is now constructed 
by weighting the terms of the angular delta func­
tion with radial functions satisfying the boundary 

• The notation for the Whitta.kcr functions that is adopted 
here follows L. J. Slater, Confluent Hypergeometric Functions 
(Cambridge University Press, Cambridge, England, 1960). 
The propertics of these function~ quoted here a.re developed 
in th a.t reference . 
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conditions and having a discontinuity in slope at 
r = r',lO Thus, the Green's function is given by 

G(r, r ') = L c,(rr')- ' a,(a)a,(a') ,- , 

j
M -1-;, .,(2pre; . ") W I + ; ,. ,(2pr'e -; ''') 

X for T < r' 

W (2 -;''')M (2 ' ; ''') ;+; •. * pre -i- .. . . A: pr e 
for T > r'. 

(5.14) 

The constant c, is determined by the condition 

J (J(T, alGer , r') dr = I , (5.15) 

which follows from Eq. (5.2). By integrating over 
the infinitesimal region T' - E < r < r' + E .for 
which the Green's function has a discontinuous 
slope, and using the Wronskian relation and the 
completeness of the a's, one finds that 

(5 .16) 

Now that the Green's function has been de­
termined, the function Mo(r') given in Eq. (4.9) 
can be substituted for M(r') in the integral of 
Eq. (5.1) in order to obtain the first order of an 
iterative expansion in X 2 • For this purpose, it is 
convenient to express Mo(r') in terms of spherical 
coordinates instead of in terms of parabolic co­
ordinates. By referring to FWH, it is found that 
M o(r) i3 given by the expansion 

. 
[r(1 - a)]IMo(r) = e;"'e""(2p)-' L (kl p)1 

H 

times trek - iv)/r(2k + 1) ]r-' M _1_;,.,(2p,..i · ")a,(a). 
(5.17) 

ID This technique is discussed by P. M. Morse and B. 
Feshback, Methods of Thtoret1'cal Physics (McGraw-Hill Book 
Company, Inc., New York, 1953), Vol. I, p. 825 ft. 

Consequently, 

J G(r , r')(r')-' [r'(1 - a ') IIMo(r') dr ' 
. 

= -Hp)-Ie'·" .. ·" L (k)l( - 1)' 

where 

,- , 
x trek - iv)/ r (2k + I )]'T-'a,(a) 

X [W, .. , .,(2pre- ;·")I, (k, V; 2pT) 

+ M _H •. ,(2pTe;·") I ,(k , V; 2pr)J, (5. 18) 

I (k 2) I, r2P' -tll [ - 'M ( . ' /2 )]' d , ,v; pr = .~~ 10 e y -1-;'" ye y, 

(5. 19) 

(5 .20) 

For applications to potential scattering, the 
asymptotic value for large r is of interest. In this 
case, l, (k, V; "') = 0 and the definite integral 
defining l, (k, V; "') can be evaluated" in terms of 
known functions. This result is 

l,(k,v; "') = (-I)'e-;'''e-''r(2k)r(2k + 1) 

X trek + I + iv)r(k - ivJr' 

X [i" + .p ,(k + 1 + iv) - .p,(k - iv)], (5.2 1) 

where .p, is the derivative of the logarithm of the 
gamma function. The X· contribution to M (r) 
for asymptotic r obtained in this fashion by use 
of the Green's function is in complete agreement 
with the Taylor's expansion of the exact solution 
developed in FWH. 

II D . M. Fradkin, Ph.D. thesis, Iowa State University, 
Ames. Iowa, 1963 (unpublished). 
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Complex Lorentz Group with a Real Metric: Group Structure* 

A. 0. BARUT 

Physi~ Department, University of Colorado. and National Burea'u oj Sta.1ldards, Boulder, Colorado 
(Received 3 March 1964 ; final manuscript received 21 May 1964) 

In the attempts to conncct the Lorentz group and the internal symmetry group of fundamental 
particles, a IG-pararnctcr connected, noncompact group of rank 4 is studied in detail. The subgroup 
structure. Lie algebra. and its complex extension (which is A, in Carum's notalion),littie groups, the 
inhomogeneous groups, and the group invariants are discussed. 

I. INTRODUCTION 

I N previous notesl
.
2 we have discussed the ways 

in which the quantum numbers of the real in­
homogeneous Lorentz group (mass, spin) appear 
to be coupled to the internal quantum numbers, 
and the desirability of considering larger groups 
which contain the real Lorentz group as well as 
other internnl quantum nwnbers. In this connection 
we study in this paper the mathematical properties 
of the complex Lorentz group with a real metric. 
We are interested mainly in the real form of the 
group. The complex extension of this group, as 
pointed out in the Appendix, is SU,. However, as 
is known, the complex extension of a Lie group 
does not determine its various real forms, and, to 
our knowledge, the real form of the complex Lorentz 
group has not been discussed in the literature. 
Furthermore, the detailed relations obtained here, 
will be used when this group is considered as a 
possible exact symmetry group of elementary 
particle interactions.:I 

ll. THE GROUP 

The group under study is the complex Lorentz 
group with a real metric: the set of complex trans­
formations A in a four-dimensional space satisfying 
the condition' 

A'GA ~ G, 

where G is the metric matrix 

+1 

G 
-I 

- I 

(II.l) 

-1 

• Supported ill pa.rt by the U. S. Air Force Office of Scien­
tific Research and the National Science Founda.tion. 

I A. 0 . Enrot, Nuovo Cimento 32,234 (1964). 
I A. O. Barut, Phys. Rev. 135, B839 {19642.i}n Proc~edinf18 

of the Coral Gables Conference on Sllmmdry (w. H. Freeman 
and Company, San Francisco, 1964). 

• The superscripts t, ., and T stand for Hermitian conju­
gate, complex conjugate, and transpolSC of a ma.trix, re­
spect.ively. 

The transformations act on " space of complex 
4-vcctors z" with an invariant norm 

Izl' == z·z. ~ 'z'I' - :z'I' - Iz'l - Iz'I' (II.2) 

which is always real. In contrast to this, the complex 
Lorentz group L used ill the analytic continuation 
of mass shell amplitudes' has the invariant metric 

2 o· '" 2' a' z=z-z-z-z 

and satisfies the equation 

LTGL = G. 

(II.3) 

(II .4) 

The group (11.1) is intended to connect the space­
time and internal quantum numbers of elementary 
particles. Whereas the group (II.4) is isomorphic to 
a direct product of two 2-by-2 uninlodular groups, 
the structure of the group (11.1) is much more 
cornplex.6 

First we discuss the tensor calculus within the 
group and the definition of dotted and undotted, 
upper and lower indices. 

Together with A we must also consider the 
transformations 

All those representations satisfy the same group 
property A'GA = G. 

We denote the indices of A as follows: 

z,.' = A/z .. 

It follows from (11.1) that A and A' -' , and A* and 
A T- ' are equivalent : 

A 

A* 

(II .5) 

(11.6) 

4 Sec, for example R. Jost in 7'heorelical PhysU& in the 
fOth Century, edited by M. Fierz and V. Weisskopf (Inter­
science Publishers, Inc., New York, 1960). 

6 For a discussion of this 12-rarameter complex Lorentz 
group (IIA ) (plus 8 parameters 0 tra.nslations) from the point 
of view of in ternal quantum numbers, see A. 0. Barut, in 
Symposiul1~ on Lorentz Group (UniverSity of Colorado Press, 
Boulder, Colorado, 1064). 

1652 
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But A and A* are not. There is no fixed matrix C 
such that 

A = CA*C; 

in mathematical language, there is no inner auto­
morphism of this form. We denote the tensors 
transforming under A* by dotted indices 

The invariant farnl can now be written as 

where <PI, tP2 and q,3 arc real parameters, connects 
continuously I, P, T, and PT.' 

Together with A, Ae i
' belongs also to the group. 

We can therefore write 

(III.3) 
det A. = l. 

In other words, A has a one-dimensioIlal (Abelian) 
invariant subgroup. We show that A. is simple. 
The group is, however, not simply connected, be-

(II .7) cause the path e" cannot be shrunk to zero. 

or 

where 

which is equivalent to (IU). The elements of G 
have always mixed indices: 

(11.5') 

with 

A/ = O,.pAT - 'p#g#i, (11.6') 

gp~g#' = 0/; g",aOl. = 0,.'. 

We have then the indices as foUows: 

A : A".· transforming z,., 

A* : A/ 
" 

z,., 

A t -. : AI'-. 
" 

z' • 
At

- . :""", 
" 

z' . 

1II. GROUP PROPERTIES 

A. Connectedness 

The A group is connected, that is, aU group 
elements can be reached by continuously varying 
the parameters of the group. From the defining 
equation (IU) we get 

det A = e'· (111.1) 

which is continuous. In particular it connects the 
four pieces of the real Lorentz group: I, P, T and 
PT. For example, the following element of A 

eO.' 0 0 0 

0 e,'c • • -f>,) 0 0 
(III.2) 

0 0 cos <p, sin ¢:I 

0 0 -sin r/J3 cos r/J3 

B. Infinitesimal Generators and Subgroups 

If we write 

A = e" 

we obtain for infinitesimal w 

wta = Ow 

or 

or 

WA:O = WOI:*' 

W"I;* = - WH o 

(11I.4) 

(II 1.5) 

(111.6) 

The infinitesimal generators are either Hermitian 
or skew Hermitian. There arc 16 parameters in w. 

We can choose the 16 infinitesimal generators as 
follows: 

1. Wit = -wJ.; 

Real matrices must be antisymmetric; pure 
imaginary ones symmetric. We take 

g) , R'J. = (~g g~), R3 = (~ g 
o 0 0 - I 0 0 - I 

and 

(:: :: :~ ') . 1 . u, 
and 

, ') , , , , 
o , 

C, = (' • ,J c, - (' , . J. C, (' , , J 
2 . w.., = w.~ 

Real matrices are now symmetric and pure 

• The com~lex Lorentz 3roup ~II.4) connects only the 
pieces I and T together an Pan T together (see Ref. 4). 
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TABLE I. The commutation relations. 

R. R. R. L. L. L. M. M. M. U. U. u. C. C. C. C 

R. 0 R. -R. 0 L. -L. 0 M. -/lf l A U. -u. -u. u. 0 0 
R. 0 R. - L. 0 L. -Ma 0 M. -u. B U. 0 -u. u. 0 
R. 0 L. -L. 0 M. -M. 0 -u. U. D -u. 0 u. 0 
L. 0 -R. R, a U. -u. 0 -!If. M. 0 0 M. -MI 
L, 0 -R. U. b -u. -M. 0 M. M. 0 0 -M. 
L. 0 -u. -u. c -M. -M. 0 0 M. 0 -M. 
M. 0 -R. R. 0 L. -L, 0 0 -L. L, 
M. 0 -R. L. 0 -L. -I.., 0 0 L, 
M. 0 L. L. 0 0 -L. 0 L. 
U. 0 -R. -R, n. -no 0 0 u, 0 R. 0 n. -no 0 u. 0 n. 0 -R. 0 
C. 0 0 0 0 
C. 0 0 0 
C, 0 0 
C 0 

a - 2(C. - C) b - 2(C, - C) c - 2(C. - C) 
= 2(C. - C.), B - 2(C, - C.), D = 2(C. - C.) A 

imaginary ones are antisymmetric. We choose 

and 

M. = (J";). 

We take 

- (_~ ; 0 0) - Go 0 -, 0) 
M, - 0 , AI, - ; 

o 

(

; • 0 

C = 0 

o 

0) 

There are four mutually commuting diagonal 
generators C, C,' Ca, Ca. The group is of rank 4. 
The generator C commutes with all other generators; 
it belongs to the one-dimensional invariant Abelian 
subgroup. The remaining 15 generators form also a 
Lie algebra under the operation of commutation. 

The three generators R., R" R, represent a rota­
tion group, R, and L, (i = 1. 2. 3) span the real 
Lorentz group, and the six generators R" M, span 
a particular subgroup of complex Lorentz trans­
formations which is isomorphic to the real Lorentz 
group. None of these subgroups is an invariant 
subgroup. 

Consider the subgroup of A of the form 

We have then 

/. , 

Thus B is the 3 X 3 ullitary group U,. In A. we 
can choose a = 1, then det B = 1. Hence, the 
subgroup 

is the enlarged (to four dimensions) SUa group. 
The infillitesimal generators R" U, and the two 
traceless combinations of C, span SUa. The com­
mutation relations are shown in Table I and the 
subgroup structure schematically in Fig. l. 

The complex Lie algebra of A. and that of SU, 
are identical (see Appendix I). The complex Lie 
algebra can be brought easily into the Cartan's 
form,' and the roots can be determined by forming 
the combinations R, ± iU, and L, ± iM,.' ·· 

From structure constants it can be shown that 
A + is semisimple. 8 

L 

u, -----'S:, 
---

FIG.!. Intersections of the subgroups. 
--:c::---=-

1 See G. Racah, "Group Theory and Spectroscopy," Insti-
tute (or Advanced Study Lecture Notes (1951) (reprinted 
CERN 61-3)i. W. Pauli, "Continuous Groups in Quantum 
Mechanics," Lecture Notes CERN-3 1; A. Salam, in Theo­
retical Physics (Internation~ Atomic Energy Agency. Vienna., 
1963). 

• See a. much enla.rged version of this paper-University 
of Colorado preprint (unpublishcd)-in which other formE 
of the generators and tbe invariants are given. 
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IV. INHOMOGENEOUS GROUP AND INVARIANTS 

We now consider inhomogeneous infinitesimal 
transformations of the form 

z~ = z,. + (a/ + i{3/)z, + a,. + ib ,.. , (IV.I) 

where a". is real antisymmetric and /3,.., real sym­
metric: 

/3" = /3". (IV.2) 

The group property implies the following relations 
for the composition of the parameters of two in­
finitesimal transformations: 

(IV.3) 

and 

(IV.3') 

We write the representations of these infinitesimal 
transformations in the form 

U = I - la"M" + 1ti/3" N" + ia'k, + ib'h" 

where M,., is an antisymmetric set of real matrices 
and N I" is a symmetric set of pure imaginary 
matrices. The connection of these generators to 
those discussed in previous sections is the following : 

o L , -L, L, 

M,., = 
o 

Xoo M, 

N p , = X" 

a, a, 
o a, 

o 
- M , M, 

U, U, 

X" U, 

-M". , (IV.4) 

= N,,.. ( IV.5) 

From the group property of the representations, 
U = U'U", and the Eqs. (V.2) and (V.3), we obtain 
the following commutation relations: 

[M,." Mf/, ] = -g .• M,., - g"" M." 

+ gl'.M, /> + g.,JI!f,." 

IN,., N .. J 

+ g,.M " + g"JIIl, .. 

1M,., N .. I = -g,.N" + g" N .. 

(IV.6) 

which agree with the previous form of the com­
mutators of the homogeneous group, and 

and 

1M,., h.1 

IN,., k.1 -i(g"h, + g .. h,) , 

IN,., h.1 = i (g"k, + g .. k,) , 

Ik .. k,l = Ih" h, l = Ik .. h,l = o. 

( IV.7) 

(IV.8) 

In terms of these new generators the invariant of 
the homogeneous group is given by 

p' = t (M"M" - N,.N") . (IV.g) 

Now we can evaluate the invariants of the in­
homogeneous group. From the first two equations 
we get 

1M, .. k' l = IJIIl,., h'l = 0, 

but k' and h' do not commute with N". From the 
last two equations we obtain 

IN,., k' + h' l = o. ( IV .lO) 

Hence k' + h' is the first invariant of the inhomo­
geous group as might be expected from the invariant 
norm discussed in Sec. II. 

The other two invariants of the inhomogeneous 
group are given by' 

C, = (k' + h')N: - N ,.(k'k' + h' h') 

+ M .,(k'h' - h'k') (IV. 11) 
and 

C, = (k' + h') {(M"k' + N"h')(M"k, + N"h,) 

+ (M " h' - N"k' )(M"h, - N"k,) I 
- t{M,.(k' h' - k'h') - N,. (k'k ' + h'h') }' 

- Hk' + h') ' (M"M" + N " N"). ( IV.Il') 

V. LITTLE GROUPS 

The concept of "little group" arises in the rep­
resentation theory of the inhomogeneous group." 
The little group of a "momentum" vector p = k + ih 
is defined as the subgroup of the transformations 
Ap which leave p invariant : 

A,p = p . (V.I) 

If we write, infinitesimally, Ap = 1 + W p , we have 

(V.2) 

II This has been found independently by Dr. Y. Murai 
(private communication). 

10 E. P. Wigner, Ann. Math. 40, 149 ( 1939). 
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TABLE II. Commutation relations for the little 
group for AI,' :c: 0.-

a b c d e 1/, U, I 

a 0 0 0 0 d b -c -d 
b 0 0 0 c -a -d c 
c 0 0 -b -d a -b 
d 0 -a c b a 
e 0 0 0 0 
1/, 0 I -U, 
u, 0 1/, 
A 0 

• The generator AI _ C + c, commut.ca with aU the above eight and 
fotD18 a ooe-dimenAional invariant. 8ubgroup. Tbe otber four mutually 
commutiol_cenerat.otl are a .. La + RI, b .. L, - R" c - All + U" d .. 
M, - UI . Furthennoro" .. C . + Ct.f .. (C. - CI)/2. The a;enerat.on R •• 
U .,f!orm a rotation croup. 

It is then easy to identify the generators of the little 
group. Because the norm p' = k' + h' = M: is 
invariant, the little groups may be classified accord­
illg to the values of this invariant: 

(1) M: > ° : p can be brought to the form 
(z', 0, 0, 0), and, consequently, by (V.2) the little 
group is the group U, consisting of the infinitesimal 
generators R, U, and C. 

(2) M: < ° : p ean be brought to the form 
(0, 0, 0, z'), and the little group consists of the 
generators RII VII L21 L3) A121 !vI31 0 11 0 21 and O. 

It is to be noted that the complex extension of 
Cartan's form for these two little groups is the same. 

(3) M: = ° : the standard form of p is now 
a(I, 0, 0, 1). The little group is now again a nine­
parameter group, bu t is nolV of rank 5 illstead of 3 
as ill the two previous cases. It consists of the 
infinitesimal generators: Rlt VII CII C2 (i.e., the 
group U,), L , - R" R, + L" M, + U., M. - U, 
and M, - C + C,. 

The commutation relations of this group is shown 
in Table II. 

We also introduce the little "groups" with respect 
to the real part of p, the actual linear momentum k, 
i.e., transformations which leave k illvariant: 

A.(k + ih) = (k + ih'). (V.3) 

These transformations have the usual little groups 
of the real illhomogeneous group, i.e., part of the 
set M" in (IV.4) and the whole of N" in (IV.5). 
For k2 > 0, we have the generators Rand N IA ,; 

for k' = 0, the set L" L" R" and N". The trans­
formations (V.3) do not form a Lie group unless 
ill the limit L = ° in the case of k' > 0, and in 
the limit L, = R, = R, = ° in the case k' = 0. 
In these limits the little "groups" are of rank 4. 

APPENDIX I: A. GROUP AND SU, 

The infinitesimal generators w of the unitary 
group ill four dimensions, U' U = I, satisfy the 
re1ation ("It = -w, or wI" .. = -w .... . The 16 generators 
ean he chosen, therefore, in the notation of Sec. III. B, 
to be 

R, U, C, -tM = M', iL = L', and C. 

Because of the factors i in M and L, the commutation 
relations of these generators, and hence the real 
Lie algebra, are quite different. However, as far 
as the complex Lie algebra, e.g., Cartan's form, 
is concerned, we can form exactly the same linear 
com billations with complex coefficients replacillg 
M = tM' and L = -iL' everywhere. Thus the 
complcx extensions of the Lie algebras of the two 
groups A and U. (or A. and SU.) coillcide. TWa is 
an example of the known fact that to a given com­
plex Lie algebra there correspond, in general, more 
than one real Lie algebra." 

II L. Pontra.yagin, Topological Group8 (Princeton Univer­
sity Press, Princeton, New Jersey, 1958), p. 265. 
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Algebra of Dirac Bilinears 

n.PENNEY 

&ienliftc Laboralory, Ford .Motor Company, DeaTborn, M ichiaan 
(Received 9 June, 1964) 

All of the possib le quadratic relations a.mong the Dirac bilinear cQvariants which one may construct 
using both the usuru bisp iuor and its charge-conjugate are given. Many interesting purely algebraic 
results are found (or a general Dirac fie ld. 

I. INTRODUCTION 

T HE tensor bilinears which one may construct 
from the Dirac -y matrices and the Dirac bi­

spinor "" are well known.' Such bilinears are the 
ingredients for constructing interaction Lagrangians, 
for example. The bilinears also occur in any analysis 
of the hydrodynamics of the electron field,' or, 
indeed, in any physical theory of the spinor particles. 
Yet it is not generally recognized that the bilinear 
quantities are not algebraically indcpendent. 

Some of the relations, quadrilincar in "", which 
occur among the bilinears have been found by 
Pauli,' and by Kofink.' These relations have been 
used in the Vigier' theory of elcmentary particles. 
A very limited use of the Pauli- Kofink relations 
has also occurred in an attempted' geometric theory 
of neutrinos. 

It is the author's belief that any relations exist­
ing among the Dirac bilinears are of importance for 
physical understanding of the Dirac field, and for 
tills reason, a completely exhaustive study of such 
relations has been made. In the present paper, we 
present all possible quadrilinear combinations of 
tbe usual Dirac bilinears, and of those bilinears one 
may construct with the use of the charge-conjugate 
field. We will not attempt any physical interpreta­
tion which may follow from such relations, but 
merely point out that any proposed neutrino theory 
of light or geometric theory of neutrinos must use 
the given relations to some extent. 

We will usc Minkowski coordinates as is usual, 
and our notation will be that used by Roman' ill 

ills book. 

II. USUAL BILINEARS 

The Dirac equation may be written as 

-y,a,"" = -K"" 
I P. Roma.n, Theory of Elementary Particles (1nterscicncc 

Publishers, loc., New York, 1961), 2nd cd., p. J 12. 
I L. de Broglie, Vigier Theory oj Elemenlary Particle8 

(EI~vicr Pu~lishing Compa.ny, New York, 1963 ). 
J W. Paull, Ann. lust. Henri Poincarll6, 109 (1936 ). 
• W. Kofink, Ann. Physik 30, 91 (1937); 37, 421 (1940). 
~ A. lnomuta, Dull. Am. Phys. Soc. 9, 86 (1964). 

with 

'Y}I"'(. + "(;'1,. = 2c5}1.' 

The adjoint spinor ;r, is defined by 

;r, a ",,--y, 

as usual. The tensor bilinears one may construct 
are 

s= ;r,.;" 

V, = in,"", 
P = in,"", 

A, = in,-Y,"", 

where 'Y& is 'Yl'Y~lY3'Y. and *T,.. is the dual tensor 
which may also be expressed by 

As Pauli' and !{ofink' showed, there exist certain 
algebraic relations among these bilincars. Fo r 
example, we have that 

III. CHARGE-CONJUGATE BlLlNEARS 

As is well known, the charge-conjugate bispinor, 
defined by 

,pc == C$T, -"I: = C-1",(,.C, 

obeys the Dirac equation. Using this new bi­
spinor, we may construct new bilinears. For example 
we may construct 

s'» == ;r,c"". 
which would be a new scalar. Or we could construct 

a new vector. 
In general, we denote a bilinear constructed 

with ;r,c and"" by the superscript (1); a bilinear 
using ;r" ""C by the superscript (2). A bilinear which 

1657 
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TABLE I. A list of all quadratic relntioDB among the Dirac bilineare. 

V, A , T" *T,. . V~l) V~2) Tit) 

" 
T ( 2) 

" 
*T!!) *T!!) 

V, -(8' + P') 0 PA, iSA~ 0 0 iSV~1) -iSV!" PV!1l -PV!') 

A, 0 8' + p t PV, iSV,. 0 0 PV!1) PV!2) -iSV!l) iSV!21 

T., PA, PV, V"V" - A"A" - iSPo"" -iSV!1) iSV~2) 

+8'0", 
-T,.. iSA" iSV" -iSPo"" • - PV!I) PV!21 

V~I) 0 0 -iSV!1) - PV!I) 0 2(8' + P') 0 -2iSV" 0 -2iSA , 

-2PA, -2PV,. 
V~I) 0 0 £SV!2) PV!2) 2(8' + P' ) 0 2iSV" 0 -2iSA" 0 

T(l) .. iSV! l) PV!1) 

TU ) .. -iSV!2) PV!21 

*T!!) PV!t) -iSV!~) , 

·7';!) -PV!') iSV!') 

uses ,V, ",C will be denoted by a superscript (e) . 
By simple calculation, we easily see t hat 

SOl = 8 m = p el) = p m = A!II = A!2 ) = 0, 

and that the bilinears using both ",C and ",C are 
the same, except for a sign, as the original bilinears. 
We thus have only 6 new bilinears, viz ., 

v ( 1) . , v (2) . , 
TOJ .. , ,], (2) .. , 

· T~~) I *'1'!!' . 
In all, therefore, we have 12 bilinear quantities. 

Two of these are scalars, and we thus have 10 bi­
linear vectors or antisymmetric tensors to combine. 
These are therefore at most 55 quadrilinear ex­
pressions obtainable by tensor contraction. 

IV. QUADRATIC RELATIONS 

We have calculated all of the possible combina­
tions of the bilinears and give our results in Table I. 
Insofar as was possible, the relations have been 
subjected to internal consistency checks. Thus, 
any errors in the table could only consist of sign 

-2PA, +2PV, 

0 2iSV ,. V!t) V!I) I 0 

-2PA,. 
-2iSV,. 0 I V(2 ) V U ) 0 . , 
-2PA ... 

0 -2iSA,. 0 

+2PV. 

-2PV" 0 0 

-2iSA" 

errors, which have been eliminated as nearly as 
possible. 

In constructing the charge-conjugate quantities, 
we have made a choice for the e matrix (which is 
not unique) which must be noted. If we use the 
spinorial representation, the defining equation for e 
gives the result 

a*a = 1, 

and we have taken the value a = + 1. 
We also must point out that neither V;" nor 

V;" has the reality conditions of a velocity vector 
in Minkowski space, but the combinations 

V!I) + V;2 ) I iCV!' ) _V!:lI) 

do have. That is, the spatial components are 
Hermitian, with the time component anti-Hermitian. 
Similar remarks apply to the tensors T;!', T;!'. 

Of particular interest on the table are those 
entities which vanish. We see that V!Il, V;:t) are 
null vectors which are orthogonal to both V, and 
A,. Similarly, both T;!' and T;:' are null tensors . 

Some of the physical consequences of these 
purely algebraic relations will be reported in a 
later paper. 
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The existence of a class of conserved tensors T ... o. ·· . oJ, .. . ~ .. and the existence of a class of coo­
served tensor densitie8 V.I'.cr •.. .• J, .. ,6 .. is exhibited for the electromagnetic field. They are differ­
ential generalizations of the energy momentum tensor in the senae that they are bilinea.r in E and B, 
contain n + m derivatives and are symmetric, trace free and divergenceless on their J.UI pair of indices. 
Corresponding conserved quantities for the two-component neutrino fie ld, linear gravita.tional field 
and indeed for aU massless (ree fields are also exhibi ted. 

INTRODUCTION 

RECENTLY, Lipkin has established a new con­
servation law for the electromagnetic field.' 

He showed the existence of a third-rank tensor 
density Z ... which is a bilinear function of E and B 
containing one derivative and which is conserved in 
the sense that Z,: .• = 0, where the comma denotes 
differentiation and thus for bounded fields 

implies that both T .. and its generalization are 
trace free on the 1'> pair of indices. The proof that 
T,. ........ J .... ~ .. is divergence free on J,tll, is a trivial 
extension of the proof that TI'> is divergence free 
and is obtained by using Maxwell's equations in 
the form 

F .. • .• = 0; (6) 

to show that 

:t J Z, •• dx' = O. (I) T' •• , ...• .•....••. , - t(l?" . ... . . .. 0 ~F· • .... 6." .~ .. 

In this article, a class of conserved tensors and a 
class of conserved tensor densities is exhibited. Dr. 
Lipkin's expression is simply related to one of the 
conserved tensor densities. 

TENSOR CONSERVATION LAWS 

The Maxwell energy momentum tensor T, . can be 
written 

(2) 

where F •. ' = iF·' •••• , is the dual of the electro­
magnetic field strengths F ... The identity' 

A~B' , - A .. ·B'.' = ;g,.(A •• B") (3) 

implies that TI'> is symmetric in 1'>. If the energy 
momentum tensor is generalized to 

T" .... ··· ... 6 . ···" .. = -!(F ........ , . ..... F· •. 6 ,···6 .. 

+ F .......... ·F' •. , ... . , . '), (4) 

then the same identity implies that its generalization 
is also symmetric in 1'>. The identity 

(5) 

• PrescDt Address: University of Nebraska, Lincoln, 
Nebraska. 

'D. M. Lipkin~ J . M ath. Phys. 5, 698 (1964 ). 
I Where A"', Jj'" are antlsymmetric tensors, and g... is 

the fla.t-.space metric. 

and then by using Maxwell's equations in the 
equivalent form 

= F .. ~ .• • + F ... .. • + F· . .... • (8) 

to show that 

T" ... , ..... ~ " . ... " .. ... +t(F ....... ....... F"· .. 1," .~ .. 

+ F' .... , ...• ~F ... . , •. .. ,!); (9) 

but this expression is zero by the identity Eq. (5). 
The indices a, ... a.; f3, ... f3m are essentially 
spectators and this allows one to generalize the 
energy momentum tensor in a simple and perhaps 
trivial manner. In general these new conserved 
quantities cannot be expressed as derivatives of the 
energy momentum tensor and they are thus in this 
sense independent of it. When a current J' is present 
then 

T~ ... , ... ".8, ... {J .. . " = t(J .... . .. ·" .. F· .. {J, •.. 8 .. 

+ J •. , •.. .•• F' •.• , ...• .) . (10) 

MASSLESS FREE FIELDS 

In the Pauli- Fierz formulation of massless free 
fields, a field of spin s is represented by the completely 

1659 
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symmetric spinOI' <PA. A ••.. A •• with 28 indices, and the 
field equations are 

Combining the generalizations made in Eq. (16) and 
Eq. (17), one obtains the conserved tensor densities 

(11 ) i(<I> • •.•••• •.•• •. .•• iJ ci>4>n •... 8 .. . , •... ,_ - H .c.). (18) 

where aMj is the derivative operator in spinor form . 
The current of the two-component neutrino field is 
<1>.<1> 8 + H.c. where <1>. is the field strength and H .c. 
denotes the H ermitian conjugate. It is obvious that 
Eq. (ll ) implies that the current is conserved. The 
expression for the current of the two-component 
neutrino may be generalized to give a conservation 
law for any Pauli- Fierz field. Consider 

cPA •. . . A .. q," .... B •• + H .c. (12) 

It is a completely symmetric and a completely trace­
free tensor of rank 28 which is divergenceless on all 
indices. In particular the expression in Eq. (12) is 
for the electromagnetic field just the Maxwell energy 
momentum tensor. 

The expression for the current for the two-com­
ponent neutrino can also be generalized to give 
derivative conservation laws. Consider 

<1> •••••••••• <1> •• , •••• , _ + H.c. (13) 

It is a t ensor of rank of n+m+ 1 which is divergence­
less on the tensor index corresponding to the pair 
of spin indices A, E. Both generalizations can be 
performed simultaneously to yield the derivative 
conservation law exhibited in Eq. (14) for a field of 
spin 8. 

<1> ......... . ..... _<1> •• ••• •• •• , •••• ,_ + H.c. (14) 

For the case of the electromagnetic field, the expres­
sion in Eq. (14) and the expression in Eq. (4) are 
identical. 

There is a second class of conservation laws for the 
two-component neutrino. The energy momentum 
tensor of the two-component neutrino 

(15) 

is a lso conserved. The expression in Eq. (15) is again 
simply generalized to the arbitrary Pauli- Fierz field 
of spin 8 

i (<I> ••..• A •• aci>4>" •... 8 .. - H.c.). (16) 

It can also be generalized by adding spectator 
derivatives to yield 

CONSERVED TENSOR DENSITIES 

The tensor equivalcnt of Eq. (18) IS for the 
electromagnetic field 

v" ."', .. . o.., .... fj'" = F,.", ...... o."F" •. fJ. ·· ·I .. 
- F,. .•.... :.r.... .. .•.. (19) 

This tensor density can be seen to be symmetric in 
I' and" by means of the identity in Eq. (3). It is 
more convenient for this purpose to write the identity 
in Eq. (3) in the form 

A~B'~ + A.-:B·, = tg •. (A.~B··) . (20) 

v,. ~ .. , ..... J •... ,8 .. is traceless in the JlII pair of indices 
because of the identity 

(21) 

The proof that V .... ..... , ... . ,_ is divergenceless in 
1'" and hence represents a conserved quantity has 
exactly the same steps as were performed in Eqs. (6) 
through (9) except now the identity in Eq. (21) is 
used in place of identity in Eq. (5). 

A particularly interesting conserved tensor density 
is V.. . which can be shown to be trace free and 
divergenceless on all three indices. V ... is essentially 
the conserved tensor density discovered by Dr. 
Lipkin, except that it can be easily shown to be 
divergeneeless on all indices, a fact not mentioned 
by him. It is interesting that all the conserved 
tensor expressions and all of the conserved tensor 
density expressions are, like the Maxwell energy 
momentum tensor, invariant under duality rotations. 

Note added in proof: The existence of an infinite 
number of conserved quantities for a free field fol­
lows from the fact that the number of quanta as­
sociated with each mode of a free field is constant 
in time. 
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