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The crossing relations of two-body scattering amplitudes for reactions involving particles with
spin are derived for the helicity amplitudes of Jacob and Wick. From the crossing relations, the
differential cross section and polarization of the direct channel are related to the analytic continua-
tion of the crossed channel helicity amplitude. The differential cross section is then expressed in
terms of the crossed channel partial waves, and rules are given for treating the exchange of fixed
angular momentum poles and Regge poles for two-body processes involving particles with higher spin.

I. INTRODUCTION

HIE crossing relations relate the scattering am-

plitude for the direct process of some two-
particle scattering process to the analytic continua-
tion of the scattering amplitude for the crossed
process. It is the concern of this communication
to relate the c.m. helicity amplitude for processes
with spin to the analytic continuation of the c.m.
helicity' amplitude for the “crossed process.” The
statement of crossing for the helicity amplitudes is
useful for practical applications of the dispersion
theory of strong interactions and has been worked
out for processes such as =N and NN scattering’
in detail.

The crossing relations were known in quantum
field theory as the substitution rule and follow from
the principle of analytic continuation in the linear
momenta, which is assumed in the S matrix theory.*"*

* Supported in part by the U. S. Atomic Energy Commis-
sion under Contract A. T. (45-1)1388, Program B.

1 This problem has also been studied by G. C. Wick and
T. L. Treuman of the Brookhaven National Laboratory. They
have reached conclusions similar to ours [Ann. Phys. (N.Y.)
26, 322 (1964)].

2 M. L. Goldberger, M. T. Grisaru, S. W. MacDowell, and
D. Y. Wong, Phys. Rev. 120, 2250 (1960) for the NN problem,
and G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
ibid. 106, 1377 (1957) for the =N problem.

3 H. P. Stapp, Phys. Rev. 125, 2139 (1962).

“ G, F. Chew, S Matriz Theory of Strong Inleractions
(W. A. Benjamin, Inc., New York, 1962).

It is the latter point of view which we consider here.
In Sec. I, the crossing relations are given for the
invariant spinor functions (M functions) introduced
by Stapp.® And from the crossing relations for the
M functions, the crossing relations for the c.m.
helicity amplitudes are derived. The crossing rela-
tions are given in terms of the crossing matrices,
which are rotations (unitary matrices in spin space).
The details concerning the angles of rotation are
given in an Appendix.

In See. III, two theorems are proven from the
crossing relations relating the polarization and dif-
ferential eross section to the e.m. helicity amplitude
for the “crossed process.”

In Sec. IV, the cross section for a two-body
reaction is related to the partial wave helicity
amplitudes of the ‘“‘crossed reaction,” and simple
rules are given for the calculation of the cross
section due to the exchange of a fixed angular
momentum pole or a Regge pole for processes
involving particles with spin.

II. CROSSING MATRICES

We begin with a discussion of the kinematic
preliminaries. Let the mass, spin, and momentum
of the particles in the two-particle process be denoted
by m;, s;, and k;, where 7 = 1, 2, 3, 4; we will denote
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s, ks m, Se ke m.
F1a. 1. Two-body scattering
diagram.
s, k. m, s, k, m,

the helicities of the particles by lower-case Greek
letters when the need arises. There are three physical
processes related by analytic continuation of the
linear momenta.

(1) 1+2—3 4 4,

(ii) 14 3—2+ 4,
and

(iii) 1+4—-2+4 3.

All of the momenta are taken to be into the
scattering diagram Fig. 1, and conservation of 4-
momentum reads

ki + ks + ks + k, = 0. (I1.1)
We define the usual invariants by
8= (ky + k)* = (ky + kJ)°,
t= (ki + ks)* = (ks + k), (11.2)

and
u=(k+ k) = (ke + ka)z-
Each of the momenta has the property®
4
ki=m! and s+ t4+u= > mi
f=1
In the s channel, particles 1 and 2 with momenta
k, and k, are incoming, particles 3 and 4 with
momenta —k; and —k, are outgoing (Fig. 2). The
physical region for the invariant variables is
8 2 max [(m, + m,)", (my + m,)?],
t S tmln(s)n

U < UpialS),

(11.3)

since the masses are unequal the minimum mo-
mentum transfers {.;, and u,;, are not zero.®

S, _kl m, s, -k, m,
FiGg. 2. Direct channel (s-
channel process).

5, kl m, S, k, m,

& The metric here is such that A - B = A°B° — A . B,
where A = (A4° A) and B = (B°, B) are 4-vectors.

.* We will have no need to know the precise value of the
minimum momentum transfers. The minimum momentum
transfers tmin and umi, are defined by forward and backward
scattering.
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s, -k, m, s, -k, m,

Fic. 3. Crossed channel (¢-
channel process).

kl m’

In the ¢ channel, particle 1 and antiparticle 3 with
momenta k;, and ks are incoming, antiparticle 2
and particle 4 with momenta —k, and —k, are
outgoing (Fig. 3). The physical region for the in-
variant variables is

8 S smin(t)v
u S umin(‘)-
t > max [(m, + msy)*, (my + my)?].

There is another channel, the » channel, where
the physical region for the invariants is defined by

(11.4)

8 S smin(u)v
t S tﬂin(u)!
u > max [(m, + m,)’, (my + my)’].
In the following, the s channel will be referred
to as the direct channel and the { and u channels
will be referred to as crossed channels. The S matrix
for the s channel is written as
N — ka; 1" — K| (S = 1) [N, ky; uka)
= —i(2m)'d(k, + ks + ks + k)H',  (11.6)
where A, u, A/, and u’ are the helicities of particles
1, 2, 3, and 4, respectively. The c.m. differential

cross section per unit c.m. solid angle is related to
the H amplitude by

(11.5)

k'
d% “k 5 PRI ( < 9] 8 (I1.7)
where
& = H/4rs. (11.8)

(=K', k') and (—k, k) are the final and initial c.m.
momenta (Fig. 4).
Under the homogeneous proper Lorentz Group,

Fi1c.4. Beattering process in
s-channel c. m.
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the helicity amplitude transforms according to
HIK] = 9"[A(—k)] @ D"[A(—k:)|H[AT(A)K]
X 9"[A'(k)] ® D"[4'R));  (11.9)

K represents collectively the incoming and outgoing
momenta.” Elements of the proper homogeneous
Lorentz group are denoted A(A), where A are
the corresponding elements of the two-by-two uni-
modular group. The helicity indices are suppressed
and matrix notation is used. The unitary matrices
D" are the well-known representations of the unitary
unimodular group. The unitary matrices A (k) are
known as the Wigner rotations in the literature and
are defined by

A(k) = B7'(k)AB(A™'k),
and the matrix B(k) is defined by
AlB(R)Jk, = F,
where k, = (m, 0).
In the notation of Ref. 7,

8w = oy - y[EatBlal g

(11.10)

m
U = exp (—§iyo;) exp (—}ifa,) exp (3iyos), (11.12)

the angles ¢, 6 are the azimuthal and polar angles
of the vector k, and o, are the usual Pauli matrices
g, = (UO: d)'

Besides invariance under proper Lorentz trans-
formations, invariance under space reflection and
time reversal are assumed throughout. Isotopic spin
crossing will not be considered in this paper.*®

It is useful to define another amplitude the in-
variant spinor funetion (M function®”) by

MIK] = D"[B(—k,)] ® D"[B(—k;)]H[K]
| X 9"([B'(k)] ® 9"([B'(k)]
with the transformation property
M([K] = 9"[A] ® D"[AIM[AT'(AK]
X D"A"1® D"[A"l.  (IL.14)
In the spin-} case for example, Eq. (I1.14) becomes’

(I1.13)

7 A. O. Barut, 1. J. Muzinich, and D. N. Williams, Phys.
Rev. 130, 442 $1963). Equation (11.9) can also be written as
in Eq. (2.1) of Barut ef al., where an index transforming
cording to D* corresponds to an outgoing particle or an in-
coming antiparticle. An index transforming according to
D** corresponds to an incoming particle or an outgoing
antiparticle.

® For a detailed treatment of isotopic spin crossing. See,
for example, L. L. Foldy and R. F. Peierls, Phys. Rev. 130,
1585 (1963).

? The conventions on the spinor indices of M are the same
as in Ref. 7. The dotted index transforms according to
At (incoming particle or outgoing antiparticle) and the un-
dotted index transforms according to A (incoming anti-
particle or outgoing particle).
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M 4K = ASAYM 5 [ATA)K],  (I1.15)

when the spinor indices are displayed explicitly.’

Aside from having simple transformation prop-
erties, the M functions are expected to be free of
kinematical singularities and are the natural objects
to consider for analytic properties. The matrix
(k*o,/m]* in Eq. (I1.11) can be written as

o, ' [E+m] [k“—m]*

[?’3] = [ 2 ] + k-d T , (I1.16)
and we see that the above matrix is analytical
except at the kinematical branch points of the square
root factors, k° = ==m. The factors [(k° & m)/2m]}
are precisely the factors that enter from the use
of Dirac helicity spinors in the evaluation of the
matrix element H[K], and multiplication by B(k)
Eq. (I1.11) removes these factors.

Note added in proof: Once the square roots in
Eq. (IL.16) are defined, the analytic continuation of
(k*s,/m]* and H[K] is defined.

In particular, for spin-} spin-0 elastic scattering,
the M function is

MIK] = [ky-o/m — ky-o/m]A
— [ks-o/mé-(ky — kkia/m
— o-(ks — kJ)B, (11.17)

where 4 and B are the usual scalar amplitudes,®
and the spin-} particle has initial momenta %k, and
final momentum —k;, the spin-0 particle has initial
momentum k; and final momentum —k,. The
matrices ¢, are (g, —d). The M function appears
in the unitarity condition without kinematical sin-
gularities or projections and is the natural object
to consider for analytic properties.®

We now assume that the M function can be
analytically continued from one set of real energy
momenta describing a physical process to another
set of real energy momenta, but with some different
signs.” We assume that the physical sheet is such
that are no natural boundaries and that this con-
tinuation is possible. The analytically continued
four momentum with its sign reversed contributes
oppositely to the energy-momentum conservation
law, and if the object associated with this energy-
momentum 4-vector was formerly a particle in the
final (initial) state of a physical process, we in-
terpret the analytically continued M function as

% The assumption of the crossing properties for the M
functions is not unique. One could make the same assump-
tion for the helicity amplitudes. However, if one assumes
that the M functions are completely free from singularities
except those required by the unitarity condition, then it is
useful to assume that they have crossing properties also.
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describing a physical process in which there is an
antiparticle in the initial (final) state. This is the
only statement of analyticity we will need in the
following.

The crossing relations for the M functions follow
from the assumption about analyticity. In particular
let M., .q.a.[—ks, —ka; ks, ki) be the M function
describing the physical process associated with the
s channel (direct channel), and let M., .4,4.[— K,
ka; —kis, k] be the M function describing the
physical process associated with the ¢ channel
(crossed channel) (Fig. 3). The crossing relation is
simply

M:ua.:t':.é;[—k-h _ka; kz. k).]
e M:.c.:a.&.[-kh —ks; ks, ki)

We desire the crossing relations for the c.m.
helicity amplitudes; therefore, we use Eq. (I1.13)
to relate the M function to the helicity amplitude
and Eq. (IL.9) (Lorentz invariance) to relate the
general frame helicity amplitude to the c.m. helicity
amplitude.

The Lorentz transformation A that takes one
from the c.m. in the ¢ channel to a general frame
is parameterized in the following way.'’

A = A@B, ©) = cosh x/2 + B-ésinh }x,

(I1.18)

k +k = —(k +k,) = §t'sinh x,
ky + k3 = — (k2 + k) = £ cosh x. (I1.19)
For the helicity convention we have
A=A, 0, —¥) = R¥,0, —V¥)
X [cosh §x + oy sinh 3x],  (11.20)
where
RW, 0, —¥) = exp (—9)Ve,/2
X exp (—17)®g,/2 exp V¥o,/2, (11.207)

and (¥, ©) are the azimuthal and polar angles of
the vector k, + k;. From Eqgs. (I1.9) and (I1.13)
with 4 given by Eq. (I1.20) we obtain

M'[K"”] = ©"[AB(k})] ® D"[AB(})]

X H'[AT(A)K"" D" [B'(k)A"]

® D" [B'(k)A'], (11.21)
where K’ represents the set of momenta | —k,, ks;
—ks, k,}, and A™'(A)K” = K’, which represents
the set of momenta [k, k}; ki, k{}. Since A is the
transformation from the general frame to the c.m.,

1% The formulas on the Lorentz transformation from the
c. m. to a general frame which are included here for com-
pleteness are contained in G. C. Wick, Ann, Phys. (N. Y.)
18, 65 (1962).
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the set K’ is merely the ¢c.m. momenta, and H' is
the helicity amplitude evaluated in the c.m. of the
t channel. Next we analytically continue in the set
K" the expression (I1.21) to the physical region
for the s channel, Eq. (II.18) (direct channel).
(Note A is also continued since it is a function of
the momenta.) Furthermore, we use Eq. (I1.13) to
relate M to the helicity amplitude for the s channel
and we obtain:

H'[K] = D"[A(=k)] ® D" [A(—ki)]

X H'[AT'(A)K]D"[A' (k)] ® D"[A'(ky)]. (11.22)

Equation (I1.22) requires some explanations. The
set of momenta{—k,, —ks; ko, k,} are represented
by K and are the physical momenta for the s-
channel scattering, and

A(k) = B~ (k)AB(A™'k), (11.23)

where k = —ky, —ks, ks, or k,. Hence, the matrices
A(k) are merely Wigner rotations for the Lorentz
transformation A. However, when the continuation
to the direct channel is made, i.e., going from the
real set K" to the real set K, the variable ¢{ which
was timelike before the continuation now becomes
spacelike, and the vector k, 4+ ks which specified
the Lorentz transformation A becomes the momen-
tum transfer k, — k; for the s channel. We are
dealing with a complex Lorentz transformation in
the crossing relation Eq. (I1.22), and 4 (k) Eq. (11.23)
is the Wigner rotation for the complex Lorentz
transformation. The Lorentz transformation A be-
comes complex since { can be negative in the physical
region for the s channel, and the quantity (t)}
which plays the role of the mass in the Lorentz
transformation A, is now complex. We obtain this
complex Lorentz transformation solely from the
continuation of Eq. (I1.21) to obtain M* and H".

To obtain our final result we will take the result
for H'(K) and evaluate in the c.m. of the s channel
—(ky + ki) = (k, + k;) = 0. Without loss of
generality we can take the direction of the Lorentz
transformation A [Eqgs. (IL1.19) and (I1.20)] to be
along the 3 direction [we will consider scattering
in the (1, 3) plane]. In the Appendix it will be shown
that the Wigner rotations A (k) corresponding to the
complex Lorentz transformation are unitary and are
rotations about the 2 direction (transverse to the
scattering plane) through real angles. The final result
for the crossing matrices is

H'[K] = d"*(w,) & d"(ws)

X H'[ATA)Kd" (—w,) @ d"(—w,), (I1.24)
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where the matrices d'(w) are the familiar reduced
rotation matrices and w; (7 = 1, 2, 3, 4) are the
real angles of rotation for each of the particles. The
angles of rotation will be constructed explicitly in
the Appendix. The fact that the angles of rotation
are real and the d'(w) are unitary is at first glance
surprising and requires detailed derivation. The
matrices d’(w) can be inverted easily [d'(w)]™" =
d’'(—w) and the inverse crossing relations can be
found.

III. DIFFERENTIAL CROSS SECTION
AND POLARIZATION

Next we prove two theorems from the crossing
relation Eq. (I1.24) regarding the unpolarized dif-
ferential cross section and the polarization of one
of the final particles in a two-body process.

The unpolarized differential cross section per unit
momentum transfer is for the s channel

do 1 1
dt — 16xk’s (28, + 1)(2s, +

iy Tr (' [K)H'(K)),
(IIL.1)

where ¢ is the momentum transfer which is evaluated
in the e.m. for the s channel, and ¢t = m} + m} —
2Kk + 2K’ -k.

Using the crossing relation Eq. (I1.24) and (111.1)
we obtain

do 1 1

dt ~ 16xk’s (25, + 1)(2s; + 1)
X Tr {H'[AT(AKH' [AT(A)K]'}. (111

The unitary crossing matrices d’(w) disappear when
the spins are averaged and summed. Therefore, we

have

Theorem (7). The unpolarized differential cross
section of the direct channel is the spin average
and sum of the product H'H", where H' is the
analytic continuation of the c.m. helicity amplitude
of the crossed channel.

The polarization of one of the final particles can
also be related to the helicity amplitudes of the
crossed channel. The polarization'' P is defined as
the expectation value of the total angular momentum
of the particle in its rest frame. Following Jacob
and Wick we can relate the polarization'® to the
direct channel helicity amplitudes in the following

11 For the %eneral theory of polarization in scattering
processes see, for example, H. P. Stapp, Phys. Rev. 103,
425 (1956); . Spitzer and 1. P. Stapp, thid. 100, 540 (1958);
M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).

12 One can also use in place of H in Eqs. (II1.2) and
(II1.4) the amplitude ¢ defined by Eq. (I1.7).
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way by standard methods

zdﬂ' 1

167s 30 P = @ + Dss + D)

X Tr {(D(U)H'[K))' =D"(U)H'[K]}, (II1.2)

where s; is the spin of the final particle whose
polarization is being studied; U = U(y, 0, —v¢)
[Eq. (I1.12)], where 6 and ¢ are the polar and
azimuthal angles of this final particle. £ is the
spin operator (angular momentum of particle in the
rest frame). In terms of the rest frame state vectors
we have

(x)ﬂ |3l! A) e 8;(8; + 1) Is!v h)l
z:s |3h 7\) St x Isfl R)

In writing the indices explicitly, Eq. (ITL.2) takes
the form

2 do' 1

s 3o ¥ = G+ De + 1)

X (87, A E |s;, MYDV,(U)H,[K], (IIL.4)

only the relevant indices are displayed explicitly,
all other indices are summed. Without loss of gen-
erality, we can take ¢ = 0 and consider the scatter-
ing in the (1, 3) plane (F'ig. 4.) In a parity-conserving
theory we need only study the transverse component
of the polarization which is in the 2 direction or
(k xk’) direction; (k and k) are the initial and
final c¢.m. momenta. In this case, U reduces to
exp (— 70Z,) which commutes with Z,, and Eq.
(ITI1.2) reduces to

2 do o 1
1Br's0a® = Mg D@, +

dQ
X Tr {H''[K]Z H'[K]}, (I11.5)

where 71, is a unit vector in the transverse direction
(2 direction), and 2, is the transverse component
of the spin.

Next we use the crossing matrices to relate the
helicity amplitude H'[K] to the helicity amplitude
of the cross channel Eq. (I1.24), and since the
crossing matrices are rotations about the transverse
direction they dissappear in the trace Eq. (III.5)
(rotations about the transverse direction commute
with Z,); therefore, we obtain

o do . 1
6rsge? = MGy T Dem + 1
¥ Tr {H"[A"I(A)K}EIH'[AFI(A)K]]. (I11.6)

We have the Theorem (iz). The transverse polariza-
tion of a final particle of the direct channel is trace

(I11.3)

2 (DU H LK)
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4
ql
| 3 Fra. 5. Scattering process
TR T in ¢ channel ¢. m.
2

-q

of the product H'*Z,H*, where H' is the analytic
continuation of the c.m. helicity amplitude of the
cross channel.

IV. CROSS CHANNEL PARTIAL-WAVE ANALYSIS

In this section, the differential cross section is
related to the partial waves of the crossed channel.
The analysis of the differential cross seetion in terms
of crossed channel partial waves is not a new idea
and has been considered elsewhere,'® and the discus-
sion here is included for completeness. In particular,
only a finite number of partial waves and Regge
poles is retained in the crossed channel partial
wave amplitude.

The c.m. helicity amplitude in terms of the ¢
channel partial waves 7(¢) is written for unequal
mass kinematics following Jacob and Wick:

1
@550, Q) = 50 2,7 + 1), us(R)T, 2z,

1 ¢
= 20" Hi, 2z (IV.1)
where ¢’ and ¢ are the final and initial c.m. momenta
for the ¢ channel, A and u are the helicities of particles
1 and 4, and X and @ are the helicities of anti-
particles 3 and 2 (Fig. 5) and

R = R'(a, B, —a)
= exp (—iaJ;) exp (—i8.J,) exp (ias).

The quantities 8 and « are the polar angles of q’
and the direction of the incident beam q is taken
along the 3 direction.

Of course, we cannot continue the partial wave
expansion to the physical region of the direct
channel Eq. (IL.3). The partial wave expansion
converges only in the Lehmann elipse for the crossed
channel. However, we will keep only a finite number
of partial waves in Eq. (IV.1) and approximate the

. 1 A. Martin and M. Gourdin (unpublished), have con-
sidered the analysis of the cross section in terms of the
partial wave amplitudes of the crossed channel from the
point of view of assuming that the spin sum can be analyti-
cally continued. Also P. K. DeCelles, L. Durand, and R. B.
Marr, Phys. Rev. 126, 1882 (1962) have considered the
cross section in the single quantum exchange process. The

consider the problem from the point of view of the analysis

of the vertex functions in the brick wall frame and give the
multiple decomposition of the vertex functions.
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amplitude with a finite number of poles; the question
of convergence does not arise in this approximation
although the approximation may not be too good.
This approximation amounts to considering the
exchange of a finite numberof quanta, and Eq. (IV.1)
becomes a sum over a finite number of partial waves.
The simplest situation we can encounter is the one
quantum exchange approximation. If the particles
1 and 3 (2 and 4) have the same quantum numbers
as some system (elementary particle or resonance)
with angular momentum J, M (—J < M < J)
we can approximate the Jth partial wave amplitude

by a single pole'*
r ;-F 5

J
Bn, = g L]
Taxs = 7= 10T

where £, is the mass of the system, I' its width,
the quantities T'yz and T,; are the partial widths,
which are related to the coupling of the system to
particles 2 and 4 and 1 and 3. We have assumed
that the residue of the pole can be factored.

In determining the number of independent matrix
elements and partial widths, we must consider the
restrictions implied by angular momentum, space

(IV.2)

reflection invariance P, and time-reversal in-

variance 7'

P Tii-n.—x—ﬁ(t) = ﬂ,mmna(—l)"“'-"—"Tf,,;,-;(l)
(IV.3)

T: T{E.iu(") = Ti’uu(‘). (IV4)

where the 7, s are the phase factors denoting the
intrinsic parities of the objects involved. For the
partial widths which are proportional to the matrix
element of the system X(J, M) coupled to the
initial and final particles we have, under space-
reflection invariance,

T =(J, M), X|T|(J, M); uB)
=((J, M); X| PT'TP |(J, M); u),
= (=177 T pegmamam, (IV.5)
and
Mg = (=17 7" Tosmamns;

the quantities J — s, — s and J — s, — 8 are
always integers. Consideration of the total angular
momentum J of the system leads us to the further

restrictions
—J<A—=A<ZJ and —-J<pu—ag<J; (IV.6)

of course, [\ < s, [X < s, [a] < 8, and [u] < s

14 Equation (IV.2) is the Breit-Wigner form of the partial-
wave amplitude. This approximation is probably not good
for ¢ much different from ¢,.
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Time-reversal invariance which implies a symmetric
S matrix does not give us any further restrictions
on the partial widths.

Once J" (spin parity) is given for the stable or
unstable system, the number of independent partial
widths will be restricted by Eqs. (IV.5) and (IV.6).
Of course, the detailed dependence of the partial
widths on £ is a question that can only be answered
by dynamics. However, the differential cross section
is an easy matter to calculate in the one quantum
exchange approximation, once the partial widths
are given. Using Eq. (IV.2) in Eq. (IV.1) we have

1 D5, (ROl

P = (IV.7)

2q¢qt t—t +ir
where ¢ > max [(m, + ms)*, (m, + m,)°,
'S Buiuj U S Uilay (IV.8)
and
s = mi + mji = 2[(¢" + mD) ¢ + md)' + g’ cosf)
(IV.9)

in the {-channel e.m. The angle « can be set equal
to zero without loss of generality.

We now analytically continue Eq. (IV.7) to the
physical region of the direet channel Eq. (I1.3) and
use Eq. (III.1) [Theorem (i)] to obtain for the
direct-channel differential cross section:

de = F(s, t) )
dt — 16sk* |t — ¢, + iiT]*" (IV.10)
where
F(sl t) - 1

(28, + 1)(2s: + 1)
X 3 hosral’ 11050

Note that the crossing matrices do not complicate
the spin sums in view of Eq. (III.1) [Theorem (i)]
the s dependence is displayed explicitly in the
reduced rotation matrix d”(8). The widths have been
redefined yaz = (/) sz, vz = (£'/¢)) Lo

We conclude this section with the ecalculation
of the contribution of Regge poles of the ¢ channel
to the differential cross section of the direet channel.
The problem of caleulating the contribution of Regge
poles of the crossed channel has been considered
elsewhere.' Here the full (not asymptotic) con-
tribution will be obtained.

* G, F. Chew and 8. C. Frautschi, Phys. Rev. Letters 7,
394 (1961); G. F. Chew, 8. C. Frautschi, and S. Ma.ndelst,a.m
Phys. Rev. 126, 1202 (1962); V. N. Gribov and I. Ya Pome-
ranchuk, Phys Rev. Letters 8, 343, 412 (1962).
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The reggeization of two particle amplitudes has

been considered in detail by the recent work of
Gell-Mann et al.'® They have introduced partial
wave amplitudes of well-defined parity.
Ti’::\a = Tirs,)\; == ﬂim(_l).‘"'"T;—a.han- (Iv-ll)
Here v = 0 for integral J and } for half integral J.
A given trajectory will belong to either 4 or — in
a parity conserving theory. The concepts of sense
and nonsense channels and compensating trajec-
tories has been considered in detail by these authors.
The concept of nonsense channels refers to channels
in which J can become less than the difference of
the helicities A — A or p — [

In order to find the contribution of a Regge pole
of the ¢t channel to the cross section of the direct
channel we need the contribution to the helicity
amplitude of the ¢ channel to use in Eq. (IILI1).
The helicity amplitude for one Regge pole is written
for the azimuthal angle equal to zero:

X Bt 1
" 4(g¢)! sin ma, ES(DEL()

X dsd aolr — B(—1" 4 edits2(®)], (IV.12)

where the residue of the Regge pole has been
factored'” into the coupling parameters £ £, a.
is the position of the Regge pole, the subscript ==
on « and ¢ indicates that the pole is associated with
either T77* or 77", and ¢ is the signature of the
trajectory.

The d functions in Eq. (IV.12) are not the ordinary
reduced rotation matrices. In the evaluation of the
d functions in terms of Legendere functions P, of
Appendix A of Ref. 11 (Jacob and Wick) the P
functions should be replaced by ®, = — (tan ax/x)-
Q-o-:. The Q functions are the familiar Legendre
functions of the second kind.

Using Eq. (II1.1) we obtain for the unpolarized
differential cross section

do _ " (2a + 1)“ i
3 = 168 \ainway J © @e18s s (IV.13)

¢ip.kﬂ =

Gribov Zh E rim. i Teor. Fiz. 41, 667, 1962 (1961)
E)nghsfl viet Phys —JETP 14, 478, 1395 (1962)].
J. Muzinich Phys. Rev. 130, 1571

the NN “;xmblem
962), er, Phys "Rev. Letters 10, 202 (1963),
a.gner, Phys. Rev (to be 2publluhed)

Gell- snn m The r? International
Conference on High-Energy hy.m:s CERN (Scientific In-
formative Service, Geneva 23, Switzerland). For the =N prob-
lem: V. Singh, Phys. Rev. 129 1889 (1962), M. Gell-Mann,
F. Zacharaisen, and S. C. Fra.utschl, . 126, 2204 (1962)

16 M. Gell-Mann, M. L. Goldberger, F.E. ]:ow, E. Marx,
and F. Zachariasen, Elemen Particles of Conventmna.l
Field Theory as Regge Poles III, especially Appendix B
Massachusetts Institute of Technulogy 1963 (unpu lwhed)

17 M. Gell-Mann, Phys. Rev. Letters 8, 263 (1962). See
also the work Gribov and Pomeranchuk, Ref. 15.
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where
1
(25, + D(2s; + 1)

X l;:ﬂ dids gl — B(=D1 + ediZ —a(®)?

Flay,s,t) =

X |6kl (IV.14)

and
Oi= /s, = {/qW.

If we have a finite number N of Regge poles,
we obtain

(_i_a_ _ Ts 2“.' + I
FThe Ieak’{z dinae; L@
2, + 1 2, + 1 .
+ 2 Re E S Glay, a;; s, z)}, (IV.15)
where
1
Gla:, a;;8, 1) =

(25, + 1)(2s, + 1)
X 20 @5 amum — B(—=1)* + edis ez

AMpd
X (A5 umsglr — B(—1)"" + eid5 u—a(B)]*
X Sstalfisti)*, (IV.16)
the indices 2 and j (7, j = 1, 2, --- , N) label the
Regge pole parameters the == subscript for the
parity is included in the labels 7 and j.

Another important question is the number of
independent coupling paramaters {,; for a given
channel that has the quantum numbers of some
given trajectory. This problem has been dealt with
for the #N and NN channels'® and is being studied
for the N3N channel (N, is the J = § isospin § pion
nucleon isobar).

The discussion in this seetion which is applicable
for the boson-type Regge trajectories can easily be
extended to the fermion trajectories.

V. CONCLUSIONS

From the crossing relations for the helicity
amplitudes of two-body processes with higher spin,
the cross section and polarization of the direct
channel were related in a simple manner to the
analytic continuation of the c.m. helicity amplitude
for the crossed reaction. The ecrossing relations are
simple in the helicity language and one does not
have to go to the intermediate step of relating the
helicity amplitudes to scalar amplitudes to complete
the crossing. The scalar amplitudes are useful for
discussing analytic properties in the invariants which

MUZINICH

was not our concern here. It might be added that
the discussion in the last section concerning the
Regge poles will be greatly complicated if there are
cuts in the angular-momentum plane as suggested
by Mandelstam."®

ACKNOWLEDGEMENT

It is a pleasure to thank Dr. G. C. Wick for
hospitality at the Brookhaven National Laboratory
during the summer of 1963 where the final stages
of this work were completed.

APPENDIX: THE ANGLES OF ROTATION

The angle of rotation for the Wigner rotation
Eqs. (I1.10) and (I1.23) can be computed by direct
evaluation of the three matrices in Eqgs. (I1.10) and
(I1.23). This is most easily accomplished by using
the representation of the matrices A (p), A, and B(p)
on 4-vectors A[A(p)], A[A], and A[B(p)]. We take
the Lorentz transformation along the 3 direction
and Eq. (I1.23) becomes

AlA(®)] = A[B™'(p")]A[A]A[B(p)],
= AT'[B(p)]A[A]A[B(p)], (AD)
where
P = AlAlp.
1 0 0 0
A[A] = 0 1 0 0 '
0 0 coshy sinhy
0 0 sinhyx coshy
cosp 0 sinp 0
0 1 0 0
A[B(p)] =
. —sinp 0 cosp 0
0 0 0 1
1 0 0 0
x 0 1 0 0 ' (A17)
0 0 coshe sinhe
0 0 sinhe coshe

and p, = m cosh o, [p| = m sinh ¢. Here x is the
usual Lorentz transformation parameter and p and
p’ are the polar angles of the vectors p and p'.
After combining the three matrices in Eq. (A.1)
we find

18 5, Mandelstam, University of Birmingham (unpub-
lished).
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cosw 0 sinw 0]

1 0 0
AlA(p)] = 0 ; (A2)

—sinw 0 cosw 0O

0 0 0 1

where

cos w = ¢os p cos p’ + cosh x sin psin p’ (A3)

or alternatively
cosh x = cosh ¢ cosh ¢’ -+ cos w sinh ¢ sinh ¢’. (A.3%)

The axis of the Wigner rotation is transverse to
the direction of the Lorentz transformation and the
plane of the vectors p and p’, the (1, 3) plane. The
angle of rotation is the angle between p and p’ as
seen from the rest system of the particle. The paper
of Wick" contains other references and the geo-
metrical interpretation of the angle.

If we give the vectors p and p’ some azimuthal
angles ¥ and ¢/, a Lorentz transformation along
the three direction does not change the transverse
components therefore ¥y = ¢/, and the Wigner
rotation Eq. (A.2) will become

AlA(p)] = Alexp (—1)¢Js exp (—i)wt, exp 1yJ;]
= Alexp (—)A-Jw] (A4)

instead of A[A(p)] = Alexp (—17)J.w] in Eq. (A.2).
Here 7 is a unit vector transverse to the plane
of p and p'.

i = —1sin ¢ 4+ 2 cos ¢, (A4")

where 1 and 2 are unit vectors in the 1 and 2 direc-
tions. Thus, the only change that nonzero aximuthal
angle can produce in the crossing relation Eqgs. (I1.23)
and (II.24) and polarization etc., is a redefinition
of transverse from the 2 direction to the fi direction.
And the crossing matrices in Eq. (II.24) would
become D'(Y, w, —y) instead of d"(w). We will set
¥ =0.

We now wish to find the angle w for each of the
particles in the scattering diagram Fig. 1 for the
complex Lorentz transformation Eq. (I1.20), when
we continue to the physical region of the direct
channel Eq. (I1.3). We will take the Lorentz trans-
formation along the direction

6 = & — k")/t sinh x, (A5)
which we take as the three direction, and
ki — k3 = ¢ cosh x, (A6)

of course, k and k' will have some angles 6 and ¢
with respect to § and the cosine of the c.m. scat-
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tering angle for the direct process is
co8 Oy = cos (0’ - 0).

The vector k — k' is the space part of the momentum
transfer and k] — k; is the time component of the
momentum transfer for the s channel. Using Eq.

(A.3) the angle of rotation can be written
m’ cosh x = p’p”° — |p| [p’| cosw, (A7)

and similarly for each of the particles we have for
the transformation A in Eq. (I11.20) from Eq. (A7):

m; cosh x = k{°k] — gk cos w,,
ms cosh x =
m; cosh x =

m: cosh x =

ki’ky — q'k cos w,,
KK + gk ¢08 w,
kS + 'k’ cos wy,

(A8)

where the ki ¢ = 1, 2, 3, 4 are evaluated in the c.m.
of the s channel and k!° are evaluated in the c.m.
of the ¢ channel. Similarly, g, ¢/, and k, k&’ are the
c¢.m. momenta for the ¢{ and s channels. A paper
by Kibble' contains useful formulas for the rel-
ativistic kinematics of two-body reactions; however
we list also the following formulas.

2

st mi—m _ttmi—m

U] 70
kl 23 ' kl e 2;; '
ko=s+m§—m3 o _ L+ m — m
2 28; ] 2 2:; '

s+ mi; — mi L+ mi — m;

o _ 190 (
B=ERT W= T 9
ko_s-{-mf—-m; k,o_t+mf—m§

4 = 23; L 4 = 2? '

=
]

(6 — (my + m2)))s — (my — m5)))/26,
K= [(s = (ms + m)*)(s — (ms — m)?)]/2s",
g = [(t — (my — ma))(t — (m, — ma)?)])}/284,
¢ = [t = (ma + m))(t — (my — m))]}/288.

For the complex Lorentz transformation A Eq.
(11.20), we will show that cos w is real and |cos w| < 1
in the physical region for the direct channel. Note
that &} and kj are given by Eq. (A.9) in the formula
for cosh x in Eq. (A.6).

Using Eqs. (A8), (A6), and (A9) we obtain for
cos w,, for example,

Bl — md — md] + 2mk
k([ — (m, + ma)zl[t — (my — ms)z])!

COS w, = (A10)

14 T, W. B. Kibble, Phys. Rev. 117, 1159 (1960).
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Evaluating ¢ in the physical region for the direct
channel Eq. (IL.3) ¢ < fnia(s) < (my — my)* we
see that the numerator is real and the argument
of the square root is real and positive. Expressing
¢t in terms of c.m. quantities for the direct channel
we obtain
. k'kiz — kak
Y [(kks — kk'2)? —

where

, All
mim;|* o

2= c08S Oy (—15251)

and
4[(kk; — kk'2)* — mim3]
= [t = (my, — my)’)[t — (my — my)?] > 0.

It is easier at this stage to work with the square
of Eq. (A11)
o = (k3k'2)" + (kak)® — 2kikskk’z ]
V(kKS)? + kK2 — 2kikskk'z — mim}
(A12)
Using (k))* = mi{ + k* and (k3)* = mi + K we
see that

B’k 2+ KK+ mik* 2’ + m3k® — 2k kakk'z

2 —
OO = T R L KK+ mik+ mik’ — 2k kokk z
(A13)
which clearly satisfies
1> cos’w, >0, (Al4)
and thus cos w, in Eq. (A11) satisfies
—1<cosaw < 1. (A14)

A similar demonstration can be carried out for the
other angles. Thus cos w is the cosine of a real angle,
The sine of the angle is given by sinw = (1 — cos® w)?
where the sine of the square root is taken to be
positive for —1 < cos w < 1. The angle is given
by exp tw = cos w + ¢ sin w. There is still an arbi-
trary multiple of 27 that can be added to the angle
with the above definition. However, the most that
this multiple of 2= can contribute to the amplitude
is a factor of a minus sign with no observable effect.
Let us apply the crossing relation Eq. (11.24)
with angles given by Eqgs. (A8) and (A9) to express
the =N helicity amplitudes in terms of the analytic
continuation of the Frazer—Fulco amplitudes.*

20 W, R. Frazer and J. R. Fulco, Phys. Rev. 117, 1609
(1960).
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Applying Eq. (I1.24) and Eq. (A8) we obtain

Aa = Z @} () Hydh(—w)), (A15)
where
coswy = —(2E sin 36, )dm® — 1)},
and
cosw, = (2E sin 36, )(@dm* — )71, (A16)

Particles 1 and 3 are the fermions. F is the final
and initial energy of the nucleon in the #N c.m. ¢ is
the momentum transfer for the =N channel; ¢t =
—2k*(1 — cos 64). In this case the angles w, and
w3 are supplementary w, + «; = . The amplitude
H;., is the N helicity amplitude, and H,., is the
analytic continuation of the helicity amplitude
(Frazer—Fulco amplitude) here u = helicity of
antinucleon, x* = helicity of nucleon.

After expansion of Eq. (A15) and collection of

terms we find
H,, =sinwH,, — cosw,H'_,

H._ = cosw,H., + sinw,H' _.

(A17)

If we express the H;., and H;., in terms of the usual
scaler amplitudes A and B for N scattering and
eliminate A and B we find the same relation as above,
Eq. (A17) where

cosw, = (2E sin 36,)@dm* — §)7}
and
sinw, = (1 — cos® w)}
= (2m cos 30, )(@dm* — )7L

We can see the rotational character of the crossing
matrices by using vector notation in the following

manner
[H'H] r |:sin w, —cosw;}l:gi.]. (A18")
H,_ cOS w, sin w, e
The crossing relations have also been considered
by Barut®'; however, the crossing relations for the
special frame (c.m.) helicity amplitudes are not

worked out.

2 A, O. Barut, Phys. Rev. 130, 436 (1962).
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Some general features are investigated of the dependence of the asymptotic behavior of Feynman
integrals upon factors in the numerator of the integrand resulting from particles with spin. These
results are used to analyze the high-energy behavior of ladder diagrams for spin-} nucleons interacting
with neutral vector mesons. The leading contribution is shown to consist of terms corresponding to a
reggeised nucleon together with certain other terms. The expected cancellation of these other terms
by terms associated with a well-defined class of crossed diagrams is verified in detail for the sixth-
order case. Finally, other significant diagrams, different from the ladders and their associated crossed
diagrams, are investigated and it is shown that they only provide higher-order corrections to the

trajectory of the reggeised nucleon.

1. INTRODUCTION

'HE possibility that an interaction with neutral

vector mesons has the effect of turning the
elementary particle pole associated with a spin-%
nucleon into a Regge pole has been discussed by
Gell-Mann, Goldberger, Low, Zachariasen, and col-
laborators'. A great part of their analysis was con-
cerned with the behavior of perturbation theory
integrals, a method of investigation which, though
not rigorous, has had a fruitful heuristic influence
on relativistic theories and which they refer to as
a “laboratory’ in which to test the plausibility of
such notions.

The literature developing the theory of the high-
energy behavior of Feynman integrals®™® has so far
been concerned with the simpler case of spinless
particles. In Sec. 2 we investigate the effect of extra
factors in the numerator of the Feynman integrand
such as occur in the case of particles with spin.
Some simple examples illustrate typical effects which
are given the names of singularity and displacement
contributions. This section provides some of the basic
‘““apparatus” for the Feynman integral ‘‘laboratory.”

These ideas are applied in Sec. 3 to analyze the

* The research reported in this document has been spon-
sored in part by the Air Force Office of Scientific Research,
OAR, under Grant No. AF EOAR 63-79 with the European
Office of Aerospace Research, United States Air Force.

1 M. Gell-Mann and M. L. Goldberger Phys. Rev. Letters
9 275 (1962); M. Gell-Mann, M. L. Goldberger, F. E. Low,

F. Zachariasen, Phys. Letters 4, 265 (1963); M. Gell-
Ma.nn, M. L. Goldberger, F. E. Low, o) Marx, and F. Zacha-
riasen, Phys. Rev. 133, B 145 (1964), referred to as C; M,
Gell-Mann, M. L. Goldberger F. E. Low, V. Singh, "and
F. Zacharigsen, ibid. 133, B 161 (1964).

2 J. C. Polkinghorne, J. Math. Phys. 4, 503, 1393 (1963).

3 P. G. Federbush and M. T. Grisaru, Ann. Phys (N.Y.)
22, 263 299 (1963).

LG Halliday, Nuovo Cimento 30, 177 (1963).
‘G Tiktopoulos, Phys. Rev. 131, 480, 2373 (1963).
8 J. D. Bjorken and T. T. Wu, Phys Rev. 130, 2566(1963)

T. L. Trueman and T. Yao, ibid. 132, 2741 (1963),
Polkinghorne, J. Math. Phys. 5, 431 (1964)

asymptotic behavior of ladder diagrams for spin-}
nucleons in interaction with neutral spin-1 mesons.
The behavior turns out to be somewhat more com-
plicated than was indicated in C but finally it
reduces to the term required for the reggeization
of the nucleon plus other terms, in general involving
higher powers of In ¢, which are associated with an
effect called a cancellation contribution.

These unwanted cancellation contributions will
also occur, but with opposite sign, in a series of
diagrams obtained from the ladders by crossing
meson lines. It is also necessary to verify that these
crossed diagrams do not provide any further un-
wanted and uncanceled terms. This is done in
Sec. 4 for the sixth-order diagrams, both for In® ¢
and In® ¢ terms, and this completes the Reggeization
program to order ¢°. It is highly plausible that
this continues to hold in higher orders but a notation
sufficiently succinet to deal successfully with the
complications of the general case has not yet been
devised.

N-particle intermediate states lead in a spinless
theory to Regge poles tending to [ = —N 4+ 1.
If in a theory N — 1 of these particles can have
spin 1 it is natural to suppose that the well-known
translation effect of spin’ will produce an effect
associated with a Regge pole tending to I = 0.
Thus, it is clear that not only the ladders and the
corresponding crossed diagrams must be considered
in order to investigate reggeization. In Sec. 5 other
significant diagrams are considered. The simple case
of N = 3 is discussed, although similar considera-
tions would hold for higher values of N. It is shown
that these diagrams just correspond to a g* term in
the trajectory function of the reggeized nucleon.
It is important to verify that this is the case for

7Ya. I. Azimov, Phys. Letters 3, 195 (1963).
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Fi1a. 1. The basic diagram, labeling Feynman parameters
and momenta.

if these terms corresponded to a separate Regge pole,
then the corresponding zero power of In ¢ in its
expansion would be absent and this would have the
effect of restoring the Born approximation and
spoiling the reggeization result.

2, ASYMPTOTIC BEHAVIOR OF
FEYNMAN INTEGRALS

The presence of factors in the numerator of a
Feynman integral may affect the asymptotic be-
havior in three ways.

(i) Explicit powers of ¢, the asymptotic variable,
may appear. They may arise from external momenta
present in the original numerator or they may arise
from displacements of the origin of the internal
momenta which are necessary for symmetric
integration.®

This effect is crucial for the possibility of Reggeiza-
tion. A Feynman integral with numerator unity can
at most produce asymptotic behavior of the form
™ In™ t. In order to get a Regge pole associated
with I = 0 we need a factor of ¢ from the numerator
to convert this asymptotic form into In" ¢ The
occurrence of such factors in theories of particles
with spin is just the translation info Feynman
integral terms of the familiar effect of spin producing
a shift to the right in the angular momentum plane.”

(ii) The presence of internal momentum factors
in the numerator produces terms with a decreased
power of the denominator after symmetric integra-
tion has been performed. If this power is equal to,
or less than, the length of the minimal d-lines**® then
enhanced asymptotic behavior is obtained.

This effect proves unimportant for reggeization
for it only occurs for terms lacking the crucial ¢
factor.

(iii) The presence of internal momentum factors
in the numerator may enlarge the class of singular
configurations which exist. These singular configura-
tions were first discussed by Tiktopoulos® for the

8 For an account of symmetric integration see Appendix
A5 of J. M. Jauch and F. Rohrlich, Theory of Photons and

Electrons (Addison-Wesley Publishing Company, Inc., Read-
ing, Massachusetts, 1956).
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case of a ¢" interaction. He pointed out that if two
lines could be added to a d line to form a triangular
loop then scaling this enlarged set of lines would also
enhance the asymptotic behavior. Thus is because
the power of € in the numerator after symmetric
integration has been performed is 2 less than the
power of D in the denominator. Thus, although the
addition of two extra lines adds a factor p° in the
numerator (where p is the scaling parameter), this
is canceled by an extra factor of p® in the de-
nominator, since C' and D both vanish like p because
the o’s round the closed triangular loop are propor-
tonal to p.

The presence of a factor k,-k; in the numerator,
where k; and k; are the momenta around the 7th
and jth loops respectively, produces after symmetric
integration a term with an additional factor

[4djAl.;/C, (2.1)

where A is the matrix of the quadratic form in the
loop momenta. If the ¢’s round the kth loop are
scaled by p then both numerator and denominator
in (2.1) vanish like p unless = = j = k in which case
only C vanishes. In this latter case, therefore, a
singular configuration would occur if three lines could
be added to a d line to close the kth loop.

It will be useful to illustrate the operation of
these effects by some simple examples. We shall
consider integrals whose denominator corresponds
to Fig. 1 with all the particles spinless and see the
effect of various factors in the numerator:

(a) (K + m*). This cancels the propagator of
the line whole parameter is 8,, making the first
loop triangular and giving a singular configuration.
Then the leading asymptotic behavior is ¢ In® ¢.

If we had not noticed this cancellation, but gone
straight ahead with symmetric integration we should
have obtained the leading result in a different way
as the sum of two terms. One of these terms cor-
responds precisely to the effect (iii). The other arises
from the effect (i) due to displacement terms in k.
These latter include a term with the additional factor

2p,ps ‘aﬂzﬂscz/czv (2.2)

where C, is the C function for the second loop.
The presence of ajaes in (2.2) means that the
natural asymptotic behavior ¢ In” ¢ associated with
the denominator is depressed to ¢~* times some power
of In ¢. However, the lost power of ¢ is recouped
by the presence in (2.2) of 2p,-ps ~ it The net
result is a term asymptotic like ¢™' In® ¢, the extra
power of the logarithm being due to the C,C™* factor
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in (2.2). The precise calculation of terms of this
type is greatly facilitated by the Mellin transform
method.® A brief account of this method is given in
the Appendix together with its application to (2.2).

These two ways of producing the ™" In® ¢ behavior
in this case are illustrative of general effects which
we shall encounter many times and which will
therefore require names. A term produced by the
effect (i) will be called a displacement contribution
and a term produced by (iii) will be called a sin-
gularity contribution.

(b) (k, — k,)* + m®. This cancels the propagator
of the line corresponding to a,, reducing the diagram
to the product of two vertex parts whose exact
asymptotic behavior is ¢°.

If symmetric integration is performed without
noticing the cancellation the ¢* term is obtained as
a displacement contribution. The — 2k, - k, term gives
a contribution to the numerator which is

_2p| 'pg 'a;a;OICQ/Cz- (2-3)

The a-dependent factors in (2.3) give an asymptotic
behavior of ¢™' which is converted by the 2p,-p,
factor into ¢°. It is also possible to verify that the
t' In’ ¢, ete., terms cancel among themselves.

These examples show that it is often an economical
way of calculating to group together numerator
factors in such a way that they just cancel certain
propagators in the denominator. The resulting effect
upon asymptotic behavior can then often be read
off immediately without the need for detailed ecal-
culation. This trick proves particularly useful in
Reggeization problems and we shall call the terms
with enhanced asymptotic behavior obtained in this
way cancellation conirtbutions. They contain, of
course, sums of displacement and singularity con-
tributions.

3. LADDER DIAGRAMS

In this section we consider the ladder diagrams,
of the form of Fig. 2, for the interaction of spin-}
nucleons with neutral spin-1 mesons with coupling
constant g. The external mesons may also be spin 1
or they may, for example, be pseudoscalar mesons.
We denote their interaction vertex by I. If they
are spin 1, the special gauge for T' given in C must
be chosen. If they are pseudoscalar mesons then
I'is just Ys-

The numerator of the Feynman integral is of
the form
Yal=1¥(P: — k) + mIT[—iv(@ — k) + m]

X vs[—tv(p — kuer — ki) + m]

X Ya o+ Ll=ty(pr — k) + mly., (3.1)
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FiG. 2. The 2nth-order ladder diagram.

evaluated between free-field nucleon spinors, with

p=nmp+p =p+ pi (3.2)

The k; are the loop momenta which are to be inte-
grated over. In order to find the high-energy behavior
associated with such a diagram it is necessary to
perform certain manipulations to turn the effect of
the ¥ matrices into the formation of scalar products
of momenta. It is convenient to have a succinct
notation to denote the momentum in a given line
of the diagram. We shall use the capital letter of
the Feynman parameter associated with the line.
The procedure for manipulating (3.1) is suggested
by that discussed in C, although we must keep many
more terms. We first move to the right the term
1yA, so that the 7yp, which it contains, both ex-
plicitly and also implicity in the —ivyk, term by
displacement, acts on u(p,) to give —m. The #yp,
also implicitly present in 7yk, is easily seen to be
negligeable since it appears multiplied by «,
At the same time we move 7vA,., to the left. Each
anticommutator with a 4 factor corresponding to
a meson vertex (other than a I') has the effect of
pulling 7yA, further back to the left, or ivA,,,
further back to the right, so that this manipulation
is lengthy. When it is completed we have a sum
of many terms. These terms fall into four groups:

Oy

(1) Those containing no scalar products of A4,
or A,,, with other momenta. Neither p, nor p,
appear explicitly in these terms.

(ii) Terms involving the scalar product of A,
with another momentum, X, but not involving a
scalar product of A4,,,. Only p, appears explicitly
in these terms. Similarly there are terms with the
role of A, and A,,, interchanged which only involve
P2 explicitly.

(i) A term with 4,-A4,,,. This is the only term
considered in C.

(iv) Terms involving the scalar product of A4,
with a momentum X and the scalar product of A,,,
with a momentum X’. The line carrying the momen-
tum X must lie to the left of the line carrying the
momentum X’ reading along the nucleon line in
Fig. 2.

In addition to the scalar products explicitly men-
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tioned in (i)—(iv), there are in each term (v X" +m)
factors associated with each nucleon line other than
Ay, Anyy, X, and X'. The sign is determined by the
anticommutations necessary to form the term and
is readily determined by inspection. There are also
the two external meson vertex factors I' which are
always manipulated to the extreme right and left,
respectively. Finally, there may be pairs of internal
meson vertex factors v, --- v,. They must occur
to the left (right) of X(X’) in (ii) and (iv) and eannot
occur in (iii). If these latter factors are present it
is necessary to reduce the terms further by moving
the implicit factors of #yp, (¢yp.), arising in internal
lines by displacement, to the right (left) of these
~ matrices.

We must now consider how the scalar products
formed in this way affect the asymptotic behavior:

(a) There may be an explicit factor p,-p, ~ 4t
This comes solely from (iii).

(b) A factor p,-k; can produce a factor of ¢ by
displacement. In considering the effect of a factor
we write down just the extra terms which would
appear in the Mellin transform due to the presence
of the factor (see the Appendix). In this case they are

n+l CI R e Lo S U

Ay iy

PrP2,y (3.3)
where C,...;, is the C funetion of the loops I, - - - l,.
We are only concerned with the In" ¢ and higher
terms in 2(n + 1)th order. The presence of the a’s
in (3.3) depresses the natural asymptotic contribu-
tion and means that the term is only important if
associated with other factors which have a com-
pensatingly enhancing effect.

Factors of p,-k, produce similar effects but the
combination of both types of factor leads to a
different result.

(e) A factor of (p,-k.)(p.-k;) can produce signif-
icant terms in two ways. It yields a singularity
contribution

%(Pl 'Pz)[cl---.'-l Wiy 'C,;”...,.]C—l, (34)

if 7+ < j, and a similar expression if j < 2. The
presence of the o's in (3.4) means that the term
is unimportant (unless enhanced by other factors)
if 7 # j. If © = j there are no o’s and we obtain

%(pl 'p'))[Cl---i—!'C.H---,.]C-'l, (35)
which gives In""" { asymptotic behavior.
The displacement contribution gives
(")”1(]31 'pz)z' [Creceimiayay <o ﬂ’-.u]
X ey =+ arCi-ﬁl"'n]'Cha' (3.6)

C. POLKINGHORNE

The terms we are considering arise only from (iv),
in which case 7 < j. If 7 = j then the term is

(=) pp)ay o+ @ [Crovnicr Ciyna]C72, (3.7)

whose a-dependent factors give a multiple pole of
the Mellin transform at 8 = —2 of identical strue-
ture to that given at 8 = —1 by the term (3.5).
If n is even the asymptotic variable is wu, while
if n is odd the asymptotic variable is ¢. Also p,-p.~
3t ~ —3u. We thus see that the contributions of
(3.5) and (3.7) exactly cancel for all n, since the
Mellin transform is with respect to —i(—u).

If 2 < j then higher powers of some a's appear
in (3.6) and the contribution is only significant
if it is enhanced by other factors.

(d) A factor of k;-k; ( < j) yields a singularity
contribution

2‘IC1...‘_1'G',+; = (I,C',.H,..."IC_‘, (38)

which to be significant needs both a ¢ and an en-
hancement from other factors. The corresponding
displacement contribution is

(—)"”(p,-p-_,){IC,...,-_l-aH,
X e “'ai'Ci+l---n]C_2+iHj}- (3.9

The first of the two terms in (3.9) yields by itself
an asymptotic behavior (In ¢)’"*"". If such a term
could be combined with, say, a p,-p, factor it
would lead to a ¢(In £)*"*~" behavior., However, it is
not difficult to see that this can never happen owing
to the structure of the numerator of ladder diagrams.
The terms we are considering arises from the im-
plicit presence of p, in k; and p, in k; due to dis-
placement. In the original numerator #y-k; terms
appear always to the right of 7y-k; terms if 7 < j.
In our preseription for reducing the denominator,
the necessary scalar product can only result from
the ‘pulling back’ of the implicit ¢y-p, and 7y -p,
terms by anticommutators with the meson vertices.
The only scalar products that can be formed in this
way can in fact never be combined with factors
that do any thing more than enhance the power
of the logarithm. The first significant term of this
type arises from the k,-ks; factor in (iii) for the
tenth-order diagram which can in fact be enhanced
to give a In' ¢ behavior.

The second term in (3.9) can be combined with
a further p,-p. factor because the implicit 7yp,
appears to the left of the implicit 4yp, factor in
the numerator. However, the additional «’s present
in the second term mean that it can at most give
a power of In ¢ when so combined and this is such

an+l]



ASYMPTOTIC BEHAVIOR OF FEYNMAN

that it would only be significant if there were
enhancement due to further factors.
A factor of k{ yields a singularity contribution

2- [C,....-_.'Ci+1....]C_! (3.10)
and a displacement contribution
2=)"(py Py @[CroviizyCisy..)C72 (3.11)

Unlike (3.5) and (3.7) these do not cancel.

In (3.10) and (3.11) the extra significant scaling
round the 7th loop makes them capable of combining
with other factors to give an enhancement. For
example with p,-p, they give a behavior of In**" ¢
and with p, -k, they give a behavior of In" ¢ provided
17 n.

The results obtained in (a)—(d) may be summarised
as follows. Only the p,-p, factor produces a con-
tribution which is significant by itself. All other
factors need further enhancement before they be-
come significant. The only factors capable of en-
hancing them are k? factors.

The next step in the analysis of ladder diagrams
is to note that all the enhancement due to k7 factors
can be expressed in the form of cancellation con-
tributions. This then leads to the expectation that
these contributions are cancelled by similar con-
tributions from diagrams with crossed lines.

The argument leading to the cancellation con-
tributions is sufficiently illustrated by considering
the example of the sixth-order ladder diagram (n=3).
This also provides a specific example of how the
general discussion of (a)-(d) works out in practice.

The numerator can be manipulated into the form

-8 — k) (@2 + k)T [—iv(p + k) + m]
X [yl — ki + ko) + m][—iv(p — k) + m]T
e S(Px'kJ(Pa'k:)r[—iT(p + k) + m]I'

+ 8(pi-ka)(po k) T[—dy(p — ki) + m]T + «--,
(3.12)

where all the omitted terms are trivially not signif-
icant. By the argument of (c¢), the second and third
terms of (3.12) are not significant. In the first term
of (3.12) we may use the manipulation given in C
to rewrite the expression between I factors as

(P + k)* + m’)[—iv(p — k) + m]
=+ [_'7:7(?’ + k) + m][(p — kl)z + mnl
+ [—iv(p + k2) + m][—ivp — m]

X [—iy(p — k) + m]. (3.13)
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F1c. 3. The reduced diagrams associated with the sixth-order
ladder diagram.

The ki and k3 terms which are capable of giving
enhancement are now isolated in a form where they
are transparently associated with cancellation con-
tributions.

Thus, apart from the desired term

+8(1py) - T[—1v(@ + k) + m]
X [Bvp + m][—iv(p — k) + m]T, (3.14)

all significant contributions are given by cancellation
contributions which can be associated with the
reduced diagrams of Fig. 3. In each of these diagrams
there is a triangular loop which has two meson lines
attached to one of its vertices. Similar terms would
occur in the reduction of the diagram Fig. 4 and
its reflection, in which the corresponding two meson
lines are attached to the canceled nucleon lines in
the reversed order. However, the occurrence of an
extra anticommutation gives a change of sign which
produces a cancellation between the sixth-order
ladder and these crossed diagrams. This is discussed
in detail in the next section.

4. CROSSED DIAGRAMS

The analysis of crossed diagrams is considerably
more complicated than that of ladder diagrams.
In this paper we only attempt to give a complete
discussion of the sixth-order diagram of Fig. 4.
The coefficient of ¢ in the denominator associated
with this diagram is

ch, (4.1)

where

G = aza; — B.Bi. (4.2)

If there were no numerator factors this would give
a leading asymptotic behavior of {' with a correction
term of order ¢** In® . We shall find that the signif-
icant contributions in our problem arise from factors

F1c. 4. One of the crossed
diagrams associated with the
sixth-order ladder diagram,
labeling Feynman parameters
and loop momenta.
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in the numerator which contain an «,, which de-
presses the leading contribution, and a ¢, which
makes the correction term significant.

In the reduction of the Feynman integral cor-
responding to Fig. 4 we follow the same procedure
used in Sec. 3, that is to say we move 2y4, to the
right and 7yA; to the left. This is not, however,
quite the most appropriate procedure. The displace-
ment contributions of the two loop momenta are

ky ~ a,C.C"'p, — GC™'py, (4.3)
ks ~ ay(a, + .82)0-'?1 == chlpz, (4.4)

where C, and C, are the C functions of the two
loops and

H = (aa + BZ)CI = .Bz(az + 32)

The G in (4.3) makes the Zyp, implicit in vk,
negligible but the #yp, implicit in 7yk,; cannot be
neglected and must be moved over to the right.
However, we find it convenient to use the same
reduction procedure as in Sec. 3, to facilitate com-
parison, and then consider the extra terms arising
from moving this ¢yp, factor separately.

No significant terms can arise from singularity
contributions. The «, in (4.1) is associated with a
five-line loop; scaling @ already involves putting
all the parameters round the second loop equal to
zero and is in any case only relevant to the correction
term, which needs a ¢ to be significant whilst
singularity contributions can only be associated
with a .

When displacement contributions are considered
the following terms lead to In® ¢ contributions:

(4.5)

@1°p2) (P2-kr), (2P2) - P2k,
(01°p2) (ki k), (pa-ka) - (Pa-kn), (4.6)
@ pa) ks, (Proka) (pa-ka);

while the following terms lead to In® ¢ contributions:
@2F1) - (p2-ka),  (P2-Ki)-(pa-ki),
(@a2-ka) (ki -ks),  (2-ki) -k, (4.7

(pz ‘k:) & (kl 'kz) .

Equations (4.6) and (4.7) list the only significant
terms which actually arise in the reduction. It is
important to notice that the appearance of G in
(4.3) means that terms involving (p,-k,) or ki are
never significant.

The terms that arise in the reduction may be
classified as follows:

(i) A term

J. C. POLEINGHORNE

8P — ki) -(pa + k)T [—iy(—k, + p) + m]
X [iv(—k: + k2 + p) + m]
X [_iT(-kl + k, + Pz) o m]I",

corresponding to (iii) in Sec. 3. This can be manipu-
lated into the form

8(17& = kl)‘(pz + k)T[—iv(=k, + p) + m]T
X {[(—k + k2 + p.) + m"]
- 2?3‘(_}91 + ki +p)) + -,

where all the omitted terms are not significant.
The first term in the curly brackets cancels one of
the cancellation contributions in (3.13); the other
is canceled by a similar term in the reflected dia-
gram. The second term in the curly brackets must
be cancelled by other terms associated with Fig. 4.
These arise from the second class of contributions
we consider.

(4.8)

(4.9)

(ii) Two of the terms corresponding to (iv) of
Sec. 3 are

16[(}’1 — k) (ks + ky + p)]-[(p. + ko)
X (—ky + k: + p)IT[—iv(=k, + p) + m]I', (4.10)

and
—16[(@, — k) -(—k, + k. + - (p: + k)
X (=ki + k. + p)IT[—3v(—k, + p) + m]I'. (4.11)

These two terms together cancel the significant
contributions from the second term of (4.7). To see
this it is necessary to note that the significant
contribution from (p,-p,)-k; is equal to twice that
from (p,-k.)-(p2-ks); the significant contribution
from (p,-k,) - (p.-k,) equals that from (p, - pz) - (k, - k.);
and the significant contribution from (p,-k,)-k? is
twice that from (p,-k.) - (k, - k.).

(iii) There are two other terms corresponding to
(iv) of Sec. 3 but they both have a factor

@ = k)-(—k + p),
which makes them negligible.

(4.12)

Finally, there are the terms corresponding to
(i) and (ii) in Sec. 3. The only significant contribu-
tions are those associated with the #yp, implicit in
tvk,. When these are collected together they are
found to cancel identically.

This completes the verification of reggeization
in sixth order. The same patfern is expected to
repeat itself in higher order. For example, in eighth
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Fi1G. 5. The crossed diagrams associated with eighth-order
ladder diagram.

order the crossed diagrams of Fig. 5 must be con-
sidered. However, the number of terms to be taken
account of rises sharply with the order and a succinct
and powerful notation has not yet been found to
handle them.

5. OTHER DIAGRAMS

The diagram of Fig. 6 has a leading asymptotic
contribution

. I'az(s) In (—2)/@@yp + Mm)]T, (5.1)
with
a(s) = 9("”2’;7‘5"‘) f daa; ders dory
m™ 0

5(‘11 +ayta; —1)- [-?:'Yj?alofz + mC(a)]
X D(a; s) » 5:2)

where C and D are associated with the contracted
diagram Fig. 7. Although a diagram of the type
of Fig. 6 would for spinless particles be associated
with a Regge pole tending to [ = —2 this effect
is translated to [ = 0 by the presence of two spin-1
particles in the intermediate state.”

If (5.1) is regarded as a term in an expansion of
a set of exponentials in powers of In ¢ and In (—i)
then the corresponding zero-order term is just the
Born approximation. This Born-approximation term
has already been used as the zero-order term in
the reggeization program described in C. Thus,
if this program is to succeed it is essential that
a,(s) may be considered as a g* term in the expansion

_—

F16. 6. Another significant diagram.
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of the trajectory function associated with the
Reggeized nucleon, the g* term being the a(s) given
in C and considered here in Sec. 3 and 4, and that
these terms should not correspond to a separate
Regge pole. In order that this should be so it is
necessary to exhibit the correct o(s)*'a.(s)"* terms
in the expansion of [a(s) 4+ a,(s)]™*"*, which itsclf
arises from the expansion of (f)*!®(*=:()) The
purpose of this section is to outline a proof that
this is so for the cases (a) n, = 0, ny = 2; (b) n, = 1,
n, = 1, respectively.

The correct term for case (a) is obtained from
the diagram Fig. 8. The manipulation follows that
used for the ladder diagrams but there are now
two factors of #zyp, to move to the right and two
factors of 7yp, to move to the left. A term involving
(py+p.)” may be formed, which is what is needed
to cancel the ¢ factor associated with the de-

Fia. 7. A contracted diagram as-
sociated with Fig. 6.

Fi1g. 8. The diagram which gives
the iteration of the significant
contribution of Fig. 6.

nominator. It is important to realise that the diagram
of Fig. 9 is not significant because in its contribution
the two factors of 7yp, combine to give p] without
forming a (p,-p.)® term.

The coefficient of (p,-p.)’ has a numerator con-
taining the terms

T[—iv(p + k) + m]liv(p — ks + ko) + m]
X [—iv(p — &by + ks) + ml[iv(p — ka + ks) + m]

X [—#v(p — ki) + m]T. (5.3)
If we write
p_kl +k4= (p_k|+k3) ‘—ka+k4' (5.4)

P—kit k=@ —k +ki)+ ki — ks

then it is possible to extract from (5.3) a term
T[—y(p + k) + mllivip — ko + ky) + m]

X [—tvlp — ko) + m][(p — ki + ks)* + m*]T. (5.5)
This is the significant part of (5.3) since it cor-

F1c. 9. A diagram which does not
give a significant contribution.
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Fic. 10. The effective reduced
ziiag-)ram associated with the term
5.5).

responds to a cancellation contribution associated
with the effective reduced diagram of Fig. 10 in
which there are now three 2-lines, giving an asymp-
totic behavior from the denominator alone of {™* In” ¢.
This cancellation contribution is not canceled by
the corresponding crossed diagram since this is just
Fig. 9 which is already known not to be significant.
The first three factors of (5.5) are now amenable
to the type of manipulation given in C and Sec. 3
by writing

The first two terms of (5.6) will give cancellation
contributions. These are expected to be cancelled
by the diagrams of Fig. 11, though this has not
been checked in detail. The third term then gives
the correct contribution to correspond to (a).

The terms corresponding to (b) are obtained from
Fig. 12 and its reflection. There are two factors of
typ, associated with Fig. 11 and only one factor
of 7Zyp,. The desired contribution comes from the
displacement contribution associated with the scalar
products (p,-p.)- (p,-ks). This gives a Mellin trans-
form proportional to

C12C " as(py pa)’. (5.7

The «, reduces the asymptotic behavior of the
denominator to ¢~ In® ¢ and the ¢ factor is canceled
by (p:-p.)°. The remaining spinor factors may be
manipulated exactly as in C and Sec. 3 and after
cancellation by contributions from the appropriate
crossed diagrams the correct coefficient of In* ¢
remains,

Fic. 11. One of the crossed dia-
grams associated with Fig. 8.

J. C. POLKINGHORNE

Fi1g. 12. The diagram giving the
cross-term contribution.
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APPENDIX

In this Appendix we summarize some useful
results in the Mellin transform method of evaluating
asymptotic behavior.’

If f(s, B) is the Mellin transform of f(s, —) with
respect to 7 = —¢, then

J6.8) = N-T(~a)
x [ dzo@'c@ M@, @D

where z; are the set of I'eynman parameters,
DC™ = —[rgC™" + J(s, 2)], (A2)

C and D are the appropriate Feynman functions,
M is the additional numerator term due to spin,
N is a constant.

The singularities of (s, ) in 8 give the asymptotic
behavior. A pole of order m + 1 at 8§ = —n cor-
responds to a behavior +™" In™ r. These singularities
arise from the divergence of (Al) at the edge of
the region of integration corresponding to a set of
z; equal to zero. The effect of this may be exhibited
by introducing a scaling parameter p for the set
of z,; concerned and integrating by parts with respect
to p. The singularity for a given value of 3 may be
due to divergencies associated with several distinct
sets of z;. The number of such independent sets
gives the order of the pole.

The integrand associated with (2.2) is

(aiazaa)aﬂczc_‘-ﬂe_; ) (AS)

with C and J corresponding to Fig. 1. This is first
divergent at 8 = —2 and the independent sets are
four in number: a;, a,, By, B]; @} a2} as. This gives
the ¢** In® ¢ behavior discussed in Sec. 3.
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Bloch waves are special solutions of Schrédinger’s equation with a periodie real potential. They
are plane waves multiplied by periodic functions. In this paper we prove the existence and completeness
of Bloch waves and of the related Kohn-Luttinger waves in unbounded domains for a class of partial
differential equations which includes the Schrédinger equation. In addition, we discuss the dependence
of these waves and the corresponding eigenvalues on the wave vector of the associated plane wave.
The results may be interpreted as the analogs for certain partial differential equations of Floquet's
theory for ordinary differential equations or as the determination of the spectral representation of

certain periodic Hamiltonian operators.

INTRODUCTION

INEAR differential equations with periodic coef-
ficients often arise in the analysis of periodic
structures. For example, the Schrodinger equation
for an electron in a crystal is of this type with the
spatially periodic potential occurring as a coefficient.
In the case of ordinary linear differential equations
with periodic coefficients, Floquet’s theorem shows
that every solution is a linear combination of special
solutions, each of which is an exponential function
multiplied by a periodic function.''* For partial dif-
ferential equations a certain corresponding result
has been proved by Bloch.® It pertains to Bloch
waves, which are plane waves multiplied by periodic
functions, and they have formed the basis of the
theory of electrons in erystals—i.e., of the theory of
solids. It is our purpose to prove the existence and
completeness of Bloch waves and of the related
Kohn-Luttinger waves in unbounded domains for a
class of partial differential equations which includes
the Schrédinger equation. In addition, we deduce
some properties of these waves and the corresponding
eigenvalues. In the theory of solids, these results are
usually assumed to be true in three dimensions be-
cause they have been proved in one dimension with
the aid of Floquet’s theorem.
Mathematically, our results may be interpreted as
the analogs for certain partial differential equations
of Floquet’s results for ordinary differential equa-

* Supported in part by the National Science Foundation
under d]ra.nt.s Nos. GP-2003 and GP-98.

1 E. C. Titchmarch, Eigenfunction Ezpansions Associated
with Second-Order Differential Equations (Oxford University
Press, London, 1958), Part II.

* W, Kohn, Phys. Rev. 115, 809 (1959).

3 F. Bloch, Z. Physik 52, 555 (1928).

tions. They may also be viewed as the determination
of the spectral representation associated with certain
periodic Hamiltonian operators. The “crystal-
momentum’ representation of these Hamiltonians,
which we consider, is the analog of Fourier analysis
for partial differential operators with constant coef-
ficients, and it serves similar purposes.

In Sec. 1, after some preliminary remarks, we
define the eigenvalue problem. Section 2 is concerned
with proving the existence and completeness of
Bloch and Kohn-Luttinger waves and with some
of their properties. In Sec. 3, we discuss the depend-
ence of the energy on the wave vector and prove
the convergence of what is usually known as the k-v
method. We also show that the spectrum is the union
of a countable number of intervals, which demon-
strates its well-known band structure. In Sec. 4,
we conclude with some remarks on Wannier func-
tions and on the representation of the position
operator.

1. PRELIMINARIES

The Hamiltonian H governing the motion of an
electron in an infinite periodic lattice in three dimen-
sions may be taken to have the form

H = —A+ V(z). (1.1a)

Here, A denotes the Laplacian operator, V(z) is the
real potential energy, and z is a vector (z,, z,, ;) in
the three-dimensional space R;. If the lattice is in-
variant under the group generated by some three
primitive translations i, t;, f;, then both V and H
will be invariant under the same group. For the sake
of clarity we assume that the vectors ¢; are mutually
orthogonal and directed along the coordinate axes.
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The modifications in our analysis necessary to treat
a general Bravais lattice are rather obvious.

We consider a more general operator /, invariant
under the same group, and defined by

R,

by (a a%?) + V@y.  (L1b)
We assume that a,; is a real symmetric differentiable
matrix which renders H uniformly elliptic and that
V is real and continuous, although weaker smooth-
ness conditions would suffice. Under these conditions
H, regarded as an operator in L,(R;), has a unique
self-adjoint extension,* which we also denote by H.
Its spectral analysis is based on the eigenvalue

problem
Hy = N\ (1.2)

To (1.2) we must add appropriate restrictions on ¢ in
order to have a well-defined problem. In the one-
dimensional case there are no L, solutions of (1.2)
since all bounded solutions are sums of Bloch waves.
Therefore, we seek solutions of (1.2) in the space of
bounded continuous functions.

A first step toward the analysis of solutions of (1.2)
is provided by the following theorem of Bloch.”
Consider (1.2) in a rectangular box whose sides have
lengths K, L, M which are integer multiples of the
primitive translations. Assume that ¢ satisfies
periodic boundary conditions and that the eigenspace
associated with a fixed eigenvalue A\ = 1A, is finite
dimensional. Then the eigenfunctions corresponding
to A, may be taken to have the form of Bloch waves,

4“.!.-(3: Y, z)

= exp [211'(% + % + %)]un.t.n(zg y,2), (1.3)

where k, I, m are integers and u is periodie. The proof
depends upon a simple group theoretic argument.
The corresponding theorem for the whole space does
not seem to have been proved, although several
authors’'® indicate that it is valid. It is often incor-
rectly stated that Bloch’s theorem proves that all
bounded solutions of (1.2) are sums of Bloch waves’.
We prove the existence and completeness of Bloch
waves in the whole space.

4 N. Dunford and J. Schwartz, Linear Operators, Part I1.
Spect)ral Theory (Interscience Publishers, Inc.,, New York,
1963).

& J. 8. Lomont, Applications of Finite Groups (Academic
Press Inc., New York, 1959).

¢ G. Lyubarskii, The Application of Grou
Physics (Pergamon Press, Inc., New York, 1960).

TN. F. Mott and H. Jones, The Theory of Melals and
Alloys (Oxford University Press, New York, 1936).
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2. EXISTENCE, COMPLETENESS, AND PROPERTIES
OF BLOCH WAVES

Let us consider the eigenvalue problem

Hy = Ny, (2.1)
where H is defined by (1.1b) and ¢ is bounded in R;.
We suppose that the whole space is decomposed into
a countable number of rectangular unit cells with
edges equal to the primitive translations, and place
the origin of coordinates at a vertex of the “first”
unit cell €. By using these cells we prove the follow-
ing lemma, which asserts the existence of Bloch
waves.

Lemma 1. For any real vector k there exist a
countable number of solutions of (2.1) of the form
¥a(z, k) = €77, (z, k). 2.2)

Here, ¢.(z, k) is a smooth function of x which has
the same periodicity as the lattice and k-z denotes
the scalar product of the vectors k& and z.

Proof: By substituting (2.2) into (2.1), we find
that ¢ must satisfy
: J ( a¢) . )
quS = 1.§1 {—ax‘ Aim oz, — diwa, .k, oz,

aa!m
0x,.

— 2iwok; - 41rz¢a,,,.k,k...} + Vo = N. (2.3)
We now consider the eigenvalue problem (2.3) in the
first cell only and impose periodic boundary condi-
tions on ¢. It is then easy to check that ,, with these
boundary conditions, defines a symmetric operator
in the space of continuously differentiable functions
whose first partial derivatives are absolutely con-
tinuous. The smoothness conditions which we have
imposed on the matrix a,; and on the potential V
are sufficient to assure that there is a unique self-
adjoint extension of H, in L,(2), which we also
denote by f,. This operator H,, being a regular uni-
formly elliptic self-adjoint operator defined in a
bounded domain, possesses a discrete set of eigen-
values A = A,, each of finite multiplicity and cor-
responding eigenfunctions ¢,(z, k). Moreover, the
¢u(z, k) are smooth functions of z." By extending
each ¢.(z, k) to the whole space by periodicity, we
obtain a solution of the form (2.2), which proves the
lemma.

By varying the vector k over the whole k space,
we obtain a set S = |\, S, of the eigenvalues
Sy = {M(k)} and a corresponding set of Bloch
waves. We prove in Sec. 3 that the set S is exactly
the spectrum of H, as an operator in L,, and in this

8 8. Agmon, Commun. Pure Appl. Math, 15, 119 (1962).
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section we show that the Bloch waves are complete
in L,(R;). These results remain true even when k is
restricted to a unit cell, 0¥ in the reciprocal lattice
defined by the three primitive translations k; which
satisfy the relations ¢;-k; = é,;.

To show that it suffices to restrict &k to the cell 2%,
we note that the set S, is the totality of the eigen-
values of the problem (2.1) under the “boundary’
condition ¢(k; r + t) = €*"*"*¢(k; r). But this latter
problem does not change if & is replaced by k& 4 K,
where K is a reciprocal lattice vector, i.e., K = m;k;
where the m; are integers, Hence, the set S, and
the corresponding set of solutions are invariant under
such a translation. Therefore, the eigenvalues and
eigenfunctions corresponding to all & in Q* are the
same as those corresponding to all k in % space.

In order to prove the completeness of these eigen-
functions, which is the main result of this section, we
first prove two lemmas. They define a certain trans-
form of L.(R;) into L,(2) and its inverse, which
pave the way for the completeness theorem. For
the sake of clarity, but without loss of generality,
we assume  to be a unit cube and then O* is also a
unit cube.

Lemma 2. Let g(z, k) € L,(2 X @*) where 2, 2*
are the closed unit cells and let

fa,m) = [ o, K dk,

where n is a lattice vector. Then the function f(2)
defined, a.e., by
/@) =fz+n) =ian), z€Q

belongs to L,(Rs). (“a.e.” is used throughout this
paper as an abbreviation for “almost every” or
“almost everywhere.”)

Proof: By Tonelli’s theorem, g(z, k) € L,(2*) for
almost every z in Q. Hence, the integral in (2.4) exists
and by Parseval’s equality, it follows that for z, a.e.,

[, o, B @k = X i1z, "

we get,

(2.4)

(2.5)

Upon integrating (2.5) over £, since

9 € Ly(2 X 2%,

© > ffnn_ lg(z, k)|* dz dk = fﬂ 2 [f(x, n)|* dz
> [ i mp as
> [ e+l a

[ 1t de.

I

I
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Here we have interchanged summations and integra-
tions using a special version of Fubini’s theorem and
the fact that the sums and integrals are convergent
in L,. The last inequality proves the lemma.

Lemma 3. If h(z) € L,(R,), n is a lattice vector,
k € Q* and

g(z, k) = X h(z + n)e"**™", xE Q, (2.6)

then g is defined for a.e. z in Q and belongs to
Ls (2 X OF).
Proof: Let h,(z) = h(z 4+ n), x € 2; then we have

> fn h@)[* dz
= f T @] dz.

Hence, 2, |h.(z)|* € L, for a.e. z € Q and therefore
g(z, k) is defined for a.e. z & Q. Parseval’s equality,
together with (2.7), now proves that g € L.(2 X Q%),
and this completes the proof of the lemma.

From (2.6) and (2.4) it follows that

@ > f Ih(@)|* dz =

(2.7)

hlz +n) = f‘ g(z, ke > " dk = f(z, n).

Thus, h of Lemma 3 and f of Lemma 2 may be identi-
fied. Therefore, for any function f in L,(R;) we obtain
the representation theorem

fe +n) = f > flz + m)e* ™ dk.

This theorem can also be derived as a special case of a
representation theorem due to McGarvey.’

We are now in a position to prove the complete-
ness theorem. As in Lemma 1, let ¢.(z, k), M\.(k) de-
note, respectively, the orthonormal eigenfunctions
and eigenvalues of the auxiliary problem H,¢, = \.¢..
Let ¢.(z, k) = €*""*"*¢,(z, k). Then we prove

Theorem 1. The set of Bloch waves B = {{,(z, k)},
where k varies over the whole closed unit cell Q*
and n ranges over the positive integers, is complete
in L,(R;).

Proof: We give the proof in one dimension in which
case both @ and Q* are the closed interval [0, 1]. The
proof applies to higher dimensional cases merely
with a change in notation.

We first prove that if f & L,(— », 4 =), then the
scalar product {f, ¥) where ¢ & B, exists in the sense
of mean convergence. Let ¢ = ¢*"***¢ and consider

* D. McGarvey, J. Math. Anal. Appl. 4, 366 (1962).
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the inner product {f, ) defined by

+N

lim (@)’ “¢(z, k) dz

Now J-n

lim 3 f " e (e, K) da

N=w j==N i

1 N1
[ 1+ ermrieriage, ) ag

j=—N

d o=

lim
N—swo

I

" lim 3 [+ e e, ) d
Here we have interchanged the limit and the integra-
tion, which can be justified with the aid of Lemma 3.
The last integral exists since both ¢ and the sum
= __ ¥ + De*™™ belong to L,(£), for a.e. k.
Thus, the scalar product exists.
To prove the completeness of B we must prove

that if {f, ¢) = 0 for all ¢ € B, then f = 0. From
the above equations we have
{1, ¥n)
1 N-1
N f {}}_{2 2 e+ J)e“"”}xb..(é, k)t (2.8)

Let us define g(¢, k) by
g(¢, k) = lim Z 1€ + e’

N j=—N

(2.9

Then, by Lemma 3, ¢ € L,[0, 1] for a.e. k. Since the
functions ¥, (¢, k) are complete in L,(0, 1) for every k,
the vanishing of (f, y,,} for fixed k implies, from (2.8),
that g(& k) = 0 for a.e. £. By varying k in [0, 1],
we find that g(¢, k) = 0 for a.e. £ and k. But since

ot = [ oo, B ak,

{ vanishes identically. Thus the theorem is proved.

Corollary 1. “Momentum represeniation of Lo-func-
tions”. If { € L, and

W@ = [ 3 e, KXo, B, 1) d,

then fy(x) converges in the mean to a function
F(z) = f(z) a.e.

Proof: It is sufficient to consider « in the interval
I =[0,1] since F = f ae. in I implies F = f a.e.
in (— o, 4 =) because of the quasiperiodic property
of the basis functions ¢,(z, k). Let f,(k) denote the
scalar product (¢,, f). Then using (2.8), and (2.9)
and integrating over k, we have

[ Z v orwae = [ 5 vutba, o, 1) a.

J. B. KELLER

But, since g(z, k) & L.[0, 1] for a.e. k£ and
{¢.(x, k)} is an orthonormal set which is complete
in [0, 1] for every k, we have

Enhbﬂ(wn, g)— gz, k) in L0, 1),

for a.e. k. (2.10)

Integrating (2.10), we get

[ vt ar = [ T v 0 = [ ota ) a.
The last integral is equal to f(z) by Lemmas 2 and 3
above, which proves the corollary.

Corollary 2. “Parseval’s equality.” The Bloch rep-
resentation is an isometry in L,, i.e.,

Il = [ 3 1wl a.

Here ||f|| denotes the norm in L,(R;). The proof
proceeds along lines similar to the two preceding
ones, 80 we omit it.

Corollary 3. “The Kohn—Luttinger (K-L) repre-

sentation.” If k, is a fixed vector in Q¥ then the
functions

Yal, k) = "7, (z, ko)
are known as the K-L functions'. They are complete

in L,(R,). The proof consists in repeating the proof
of Theorem 1 with the new definition of ¢,.

3. NATURE OF THE SPECTRUM

In Sec. 1 we introduced the auxiliary eigenvalue
problem H,¢, = ¢, and showed that it possesses a
discrete set of eigenvalues S, = {A.(k)}. In this
section we prove that the spectrum o of the operator
Hin L, is equal to § =\U,c o S, (in fact, S = § =
closure of S) and discuss the dependence of the eigen-
values A on k.

Lemma 4. The set § =
in the spectrum of H.

Proof: Let N\ be a point in S. Without loss of
generality we may assume that A = 0. Then there
exists a Bloch wave

Y(@) = € " (z, k),

where ¢(z, k) is periodic and Hy = 0.

To prove that A & ¢ we construct a singular se-
quence of functions ¥ in the domain of H such that
||Hyw||/|l¥nl| — 0 as N — «. We first choose a
mollifying function 5(f) & C* such that

10 W, Kohn and J. M. Luttinger, Phys, Rev. 97, 869 (1955).

U (M(k)} is contained
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q(f) = {ll t & (—l, 1):
0, [t|=2,

and |7'[, |7"'| < 2. Consider the sequence yy(z) =
n(|z]/N)¥(z) where N is an integer. Then

el = ([ o(2) o

Vn(JN’il)wH + 35

(i)

< 5 19 ¥ lovam + 32 [[¥]lovam,

C
=N
(3.1

where c is a generic constant, independent of NV, and
[| |lv.2x denotes the norm in the region between the
two spheres of radii N and 2N, respectively. From
(3.1) we have

[[Hen|l/[1¥n]] = OUNT" [V ¢|x.an
+ N7 [[¢l v}/ [[¥]]o.¥]
= (0(1/N) as N— =,

Hence, A € ¢, where o, is the essential spectrum®
of H, so A € ¢ and the lemma is proved.

Lemma 6. The spectrum of H is contained in S.

Proof: Let p 7 o be a real number which is not in
S and consider the equation (H — u)¢ = f where
f € L,. Then from Corollary 1, namely the ‘“Bloch
representation” of f, we have

o= [ s vila, Y (= N(E) d,

where the right-hand side of (3.2) is a bounded
operator on f since u € S. Hence u is in the resolvent
set of H and the lemma follows.

(3.2)

Lemmas 4 and 5 show that the spectrum of H,
being a closed set, is equal to S. It is clear, however,
that the spectrum is identical with its essential part
since, if there were a point eigenvalue of finite
multiplicity, one could easily construct an L, eigen-
function common to both H and the group of
translations, which is impossible.

We show now that S is simply a countable union
of closed intervals. This depends on the following
theorem which deseribes the dependence of an eigen-
value A = A, on k.

Theorem 2. Let A, (k) denote the nth isolated eigen-
value of the auxiliary problem (2.3). Then A, is an
analytic, though not necessarily single-valued, func-
tion of k.

Proof: Let k = k, 4+ ed, where d is a fixed unit
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vector. Upon inserting this value of k into (2.3), the
operator H, can be written in the form

EEEH(E) =Ht.+€B =HD+EB.
Here A,, = H, is the operator A, with k = k, and B
is defined by

2

I,m=1

. 801,
0T, 0L

+ 41['2a[m(kmd,,, '+' komdg) + e41rza;,,.d,d..]-

- 21:1t'd 1

B = [ - 4?:‘1”1:,,0!1

To prove the analytic dependence of X on e
amounts to proving the convergence, in ¢ of the
formal perturbation series for A = A(€). Although
this can be deduced from general theorems about
regular perturbations of a self-adjoint operator in
the sense of Rellich,"" the situation above is simple
enough to give another proof. Let z denote a real
number; then for large enough 2z, the resolvent
operator

R(H)=(H@+2" =Ho+eB—2"

exists as a bounded operator in L,. This follows
simply from the semiboundedness and self-adjoint-
ness of H(e). But

R.(H) = R,(Hy)[1 + ¢BR.(HJ)]"'.  (3.3)

Now, since B is relatively bounded with respect to
H,, i.e., since ||V¢|| < Clllg|| + [|[Hwll], for all ¢
in the domain of H,, the operator BR, is bounded,
and hence the geometric series for [l + eBR,]™
converges uniformly for small e. But then the eigen-
values u(e) of R,(H,) depend analytically on e
The same statement is then true for A(e), which
proves the theorem. It is clear now that the set
S, = {A.(k)}, being the image under a continuous
function of the closed unit cell, is itself a closed
simply connected set.

We end this section with a few remarks.

(i) We have proved that the spectrum is equal to
the closure of Ukea. {M(k)} = \U, S.. The sets S,
are closed ““intervals” by the above theorem. It is
possible to show that the countable union of these
sets is again closed because of the asymptotic be-
havior of the eigenvalues A,. Then one has ¢ = U,. Sa-

(ii) In the special case when the eigenvalues
M(k) € 8, are all simple—i.e., the case of nonde-
generacy of the nth band—the proof of the lemma
shows that A(%) is a single-valued holomorphic func-
tion of the three complex variables k,, k., k; in the
domain Re k € Q% |Im k| < ¢ for small enough e.
mlh'ch, “Perturbation Theory of Eigenvalue Prob-

lems,” New York University Notes, (Courant Institute of
Mathematical Sciences, New York, 1953).
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(iii) The dependence of the eigenfunctions ,(z, k),
regarded as elements in L.(2), is also governed by
Theorem 2. This follows from results of Rellich"
and Brownell.”® If the eigenvalues are simple, then
we again have holomorphy in the complex sense.

(iv) The perturbation method described in Theo-
rem 2 is usually called the k-v method because it
was first applied to the case & = 0; then ¢ = k and
1V is proportional to v. It is widely used, but no
proof of its convergence seems to have been given
previously.

4. MISCELLANEOUS REMARKS

A. Operator Representation

The Bloch representation discussed above is
simply the “Fourier” analysis of the operator H,
and hence it makes H diagonal. As in the theory of
Fourier transforms, it is interesting to discuss the
form which other operators take in the Bloch repre-
sentation. One important operator is the position
operator z, concerning which the following lemma
is useful.

Lemma 6."° Let f(z) € L., zf(x) € L,, and let {,(k)
and g.(k) be the Bloch components of f(z) and zf(z),
respectively. Then

2rga(k) = ifak) — @ }; Ann(®)fak)  (4.1)
where
P, ' g}
An.ﬂ'_(k)¢m)— s ko".

and ¢, is defined by (2.3).
Proof: We assume that the phase of ¢ is chosen
to be analytic in k. The definition of f,.(k) is

WO =) = [ 100 D de @2)

By Theorem 2 we can differentiate (4.2) with respect
to k to get

=ik [T ey

By substituting for f(£) its Bloch representation,
we get

2mg.(k) (4.3)

2rg, =

LT [ 1w

X f ity 6 k) BB e wa
12 F. H. Brownell, Math, Anal. Appl 6, 190 (1963).
13 The lemma is proved by Blount,!* but our proof is

somewhat different.
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We now expand the periodic function
An ok, k') = (3¢7(E, k)/k)n(, k')

in a Fourier series in ¢ and substitute into (4.4), and
the result follows.

In the Kohn-Luttinger representation, the second
term in (4.1) is not present and the z operator
corresponds simply to differentiation with respect to
k as in the theory of Fourier transforms.

The representations of many other operators are
given by Blount." Qur Theorems 1 and 2 may be
used to make the derivations of those representations
completely rigorous.

B. Wannier Functions

Wannier functions are band functions which, by
definition, are proportional to

a@ = [ ¥, K dk. (4.5)
n.
Equivalently, if n is a lattice vector, we have
a.(z — n) = f ey @, k) dk. (4.58)
e+

A most important property of Wannier functions
is that they are localized, i.e., that a,(z — n) is con-
centrated around the lattice point + = n. This has
been proved in the one-dimensional case by Kohn.?
We now indicate a proof of their localized nature in
three dimensions, although in a rather special case.

The definition of the bands, i.e., of the set of
eigenvalues \_U, {A, (k)] = S, of Theorem 2, depends
essentially on the analytic continuation of A,(0) as a
function of k. We mentioned in Sec. 2 that the eigen-
value problem HyY = M\, where ¢¥(z + () =
¢’"™*'Y(z), is unchanged when k is increased by a
reciprocal lattice vector K. Therefore, for every »
there exists an m such that A\, (k) = A.(k + K).
Suppose now (a) that no two bands overlap, and (b)
that the eigenvalues in each band are simple. Then
one can label the bands in order of increasing energy,
and the eigenvalues will be periodic in k. Further-
more, the eigenfunctions can be chosen to be periodic
and complex analytic in k, by remark (ii), Theorem 2.
Then, application of the Riemann-Lebesgue lemma
to the integral (4.5a) proves that the Wannier func-
tion decays exponentially with |z — n|. This dem-
onstrates that these functions are localized in the
case when Conditions (a) and (b) above are satisfied.

14 B, 1. Blount, in Solid-State Physics, edited by F. Seitz
%m? D. Turnbull (Academic Press Inc., New York, 1961),
ol. 13.
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Extending an idea of Good, a modified WKB approximation using radial wavefunctions having the
form of free-particle solutions to the radial wave equation rather than an exponential form is developed.
The lowest-order phase shifts are the same as those of the usual WKB approximation, but are improved
by the contribution of the next order. The method is applied to two examples: the radial Dirac equation
in the high-energy limit and the radial Schrédinger equation.
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I. INTRODUCTION

T is our purpose, in this paper, to develop a modi-
fied WKB approximation for partial-wave phase
shifts by extending an idea first proposed by Good.'
Partial-wave phase shifts are obtained, of course,
from the asymptotic behavior of the radial wave-
function. Now, in the customary WKB approxima-
tion, one writes the radial wavefunction in the form

u(r) = A(r) exp [¢S(r)/R], (1.1)

and assumes a solution to the wave equation can be
found by developing A (r) and S(r) in a power series
in h. As is well known, the resulting wavefunctions
are singular at the classical turning point. The ques-
tion was raised by Good as to whether the func-
tional form used in Eq. (1.1) is the most appropriate
one when dealing with radial wave equations. He
suggested that rather than the exponential form,
the form of the free-particle solutions to the radial
equation be used. He then made the customary
development in powers of % and was able to define
the phase function S(r) in such a way that it is real
everywhere except perhaps for a range of r in the
vicinity of the turning point and also such that the
wavefunction is everywhere finite.” The latter makes
unnecessary the use of connection formulas across
the turning point.

The key point in our generalization of Good’s
method lies in the recognition of the fact that the

* This work supported in part by the U. S. Atomic Energy
mmission.
1 Permanent address.

1 Present address: Department of Physics, Cornell Uni- .

versity, Ithaca, New York.

1 R. H. Good, Jr., Phys. Rev. 90, 131 (1953).

2 For somewhat related work on modifications of the WKB
method which also result in wavefunctions which are non-
singular at the classical turning point, see C. E. Hecht and
J. E, Mayer, Phys. Rev. 106, 1156 (1957), and J. S. Nodvik,
UCLA Tech. Rept. No. 3—-1-58.

higher derivatives of the zero-order functions—the
free-particle solutions—can be reduced to zeroth and
first derivatives (for the second-order equations we
are interested in). Hence, we need use only two func-
tions of S(r). For purposes of illustrating the method,
we give two practical examples in Seec. IT and III,
applying the method to the Dirac radial equation in
the high-energy limit and to the Schridinger equa-
tion, respectively. We show that in both cases S(r)
may be defined such that it is finite and real every-
where, including the vicinity of the turning point.
The lowest-order phase shifts, which are the same
as those obtained in the usual WKB approximation,
are improved by the next higher order. In the last
section we indicate several further possible
applications.

II. ELECTRON-SCATTERING PHASE SHIFTS

A. Lowest-Order Approximation to Radial
Wavefunctions.

We are interested in scattering at energies high
enough so that we may neglect the mass term in the
Dirac equation. We begin, therefore, by considering
the coupled Dirac radial equations, written in dimen-
sionless form

@F/dz) — [(l + 1/z]F — (1 — v)G = 0,

dG/dz + [(I + 1)/2]G + (1 — o)F =0,

where the radial variable is in units of k™' = X,
k = E/he, v(z) = V(r)/E

and E, of course, is the total energy. Note that we
describe the interaction between the electron and the
nuclear charge distribution by a static central
potential V (r). For reasons that later become clear,
we put Egs. (2.1) and (2.2) into a more symmetrical

2.1
2.2)
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form by defining the two functions

M(z) = F(z) + G(x), N(z)=F(x) —Gz). (2.3)
We find that

dM /dz = {(z)N, dN/dx = g(z)M, (2.4)
where

f@) = (I + 1)/z — (1 —v),
giz) =+ 1)/z+ (1 —v).

In accordance with the ideas expressed in the
previous section, we want to find a function S(r)
which will enable us to approximate the radial wave-
functions by functions of the form of the unperturbed
solutions of Eqs. (2.4). We denote the unperturbed
solutions by M, and N,, respectively; they satisfy
the equations

dM,/dS = [(l + 1)/8 — 1]No = fo(S)N,,
dN,/dS = [(l + 1)/8 + 1]M, = g,(S)M,.
The functional behavior of M, and N, can be inferred
from the fact that
Fo = 3(M, + No) ~ 85i(8),
Go = §(Mo — No) ~ 8jisi(8),

where j; is the spherical Bessel function of order I.
The solution regular at the origin is chosen in antie-
ipation of the fact that the modified WKB wave-
functions are well defined everywhere.

In lowest order we, therefore, write

M(z) = ao@)Mo(S), N(z) = by(@)No(S), (2.8)

and neglect the derivatives of a, and b,. Substituting
Eq. (2.8) into Eq. (2.4) we obtain

(2.5)

(2.6)

(2.7)

M' = a,8'"M{ = a,S"fN,
= f(x)bolNo,
or
aofoS" = bof. 2.9
Similarly,
bogoS‘ = aug, (2-10)

where a prime denotes the derivative of a function
with respect to its argument. Note that the compari-
son functions M, and N, do not appear in Eqs. (2.9)
and (2.10); they have dropped out. We proceed in
higher approximations in such a manner that this
oceurs in each order. Solving the above equations
for §’, we obtain

fogo(8)" = fg (2.11")

M. ROSEN AND D. R. YENNIE

or

[t do = [ (~19) dp. (211
We define S such that it is everywhere real and
that S’ is finite at the classical turning point z,—
defined to be that point where f(z) vanishes. We
therefore take the lower limit of the left-hand integral
to be

S;=l+1.

Although we are primarily interested in the region
z > x,, BEq. (2.11) is of course valid for all z and S,
including z < z, and S < S,. An equation for S(r)
similar to Eq. (2.11) was also obtained by Good. He
also chose the lower limits of his integrals to bez,
and S, = | + 1, respectively, although for a dif-
ferent reason. The integrands in his equation had
branch points at p = z, and ¢ = | + 1, respectively,
which led him to associate them with each other. He
obtained an S(r) however that was, in general, not
everywhere real.

We also find from Egs. (2.9) and (2.10), that

(au/bo)2 = gof/fo9- (2.12)

To completely determine a, and b,, it is necessary to
take a look at the next higher approximation.

In first order, we cannot neglect the derivatives of
a, and by; thus when we substitute Eq. (2.8) into
Eq. (2.4), these introduce terms containing M, and
N,, respectively. However, if we write

M(s) = asMo(8) + aiNo(8),
N(z) = bNo(S) + b, M(S),

and neglect the derivatives of a, and b,, the functions
M, and N, again drop out, resulting in the following

set of equations:
[al] ) a‘;] .
b, b4

[_ goS’ I

g —foS’

The matrix on the left, however, is a singular one,
its determinant vanishing according to Eq. (2.11").
Therefore, a) and b must satisfy a solvability condi-
tion of the form

(2.13)
(2.14)

(2.15)

da{; +ﬂb5 = O:

" and indeed we see that

foS'as + fbg = 0. (2.16)

This, together with the fact that
as/be = 1/foS" = g8'/g
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yields

asb, = const = 1. (2.17)

We may set the constant equal to unity, as this
affects only the normalization of the wavefunction.
It follows that

a=0b'= (gnf/fug)% o (j/qu’)i = (QDS’/Q)}o (2.18)

The amplitudes a, and b, are finite everywhere and in
particular at the turning point, thus obviating the
necessity of connection formulas. Furthermore, in
most cases of interest, they deviate only slightly
from unity.

The lowest-order wavefunction is now fully
determined and we are in a position to calculate the
lowest-order phase shift. The asymptotic solutions
to Eq. (2.8), valid for large z, are

M = cos[S — (I + $)in]
N « cos [S — (I + 8)in];
therefore, denoting the lowest-order phase shift
by 2‘”, we have
72 = lim (S — z — v In 22),

T
where
v = Za,

Z is the atomic number of the target nucleus and «
is the fine-structure constant. The logarithmic term,
of course, takes into account the phase distortion at
infinity due to the long tail of the Coulomb potential.
From Eq. (2.11), we find

z 2714
Fim: s fim [(1 - Q—";j—l—)—] di
+ (I + 1in, (2.19)
and hence

~ e[ fo-r- 52T

z—®

—z—yh2+ @+ 1)%«}- (2.20)

This is just the expression given by Baranger®
for the WKB approximation to the phase shifts for
the elastic scattering of high-energy electrons from a
central potential. Our lowest-order phase shifts, then,
are just those given by the usual WKB approxi-
mation.

A perhaps useful piece of information comes out
of the above analysis. Calling the quantum number [
which characterizes the solutions to Eq. (2.4) the

3 K. Baranger, Phys. Rev. 93, 1127 (1954).
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index of these functions, then the lowest-order phase
shift is independent of the index we choose for the
comparison functions M, and N, For example, if
we denote the index of M, by k, then according to
Egs. (2.8) and (2.19)

M, ~ cos {[}iﬂ} f ((1 - -(i%l)—z)! dp

+ (b + %)%w] — &+ %)%w}

ST
(59T

This leads us once more to Eq. (2.20). There is
therefore an infinite class of modified WKB approxi-
mations all giving the same phase shifts in lowest
order, but which will not, in general, agree in higher
orders. It seems reasonable to take &k equal to [,
but it is conceivable that with some other approach,
it might be advantageous to choose k differently.

It is also of interest to see how condition (2.17)
affects the function that plays the role of the Wrons-
kian in Dirac scattering theory. Eq. (2.4) has two
linearly independent sets of solutions which we de-
note by (M, N) and (M*®, N®), respectively.
The Wronskian is then given by

W& = (MON® — MOND),
it follows directly from Eq. (2.4) that
W'(z) = 0. (2.21)
If we substitute Eq. (2.8) into Eq. (2.21), we obtain
dlacbe(M"Ns” — M Ng")l/dx
= d(M;"No” — M3"Ny")/dz = 0.
Thus, the Wronskian is independent of = both exactly
and also in lowest order.
B. First-Order Phase Shift

We now go on to further consideration of Iq.
(2.15). It is convenient to write. (a,, b,) as the sum
of two terms—one a solution of the homogeneous part
of Eq. (2.15) and the other a particular solution:

-]+ ]
b, t \n

sl
g —foS") (¢

where

(2.22)
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We can make the separation explicit by writing
(a,, by) in the following way:

ay | _ 1 "QGS' =3
b, Un + go)S'

N
t—g  —fS" b

+[f°8’ f][“‘”. (2.23)
g g8’ LBy

from which we obtain

al bg
WETPNE. . SR g T T
" Gt ws " Thtews @
From Eq. (2.22), we find
s = p(@)f, t= p(x)gS’, (2.25)

where the function p(z) is determined only in the
next higher order.
It is not difficult to see that as z — «

g, bo‘—‘)l,

m, n—0,
and
s— —p(=), t— p(=).

Therefore
MNMO = p(m)NUl

NNN() + P(m)MO:

from which, assuming p(= ) to be a small correction,
we find

M(zx) ~ cos [S — (I + §)ir + p(=)],
N(@) ~ cos [S — (I + §)ir + p(=)].

We see that p(e) is a correction to the lowest-order
phase shift.
Going on to the next order, we write

M(z) = auMo + aNo, + a:M,,
N(x) = bN, + b,M, + b.N,,
and, proceeding as before, find
[—IOS’ f azJ _ [af].
9 —goS’J [bn {b{

The coefficients a, and b, must satisfy a solvability
condition

(2.26)

(2.27)

goS’al + fb] = 0,
or

2fgoS’p’

4o ydm | dn _
+ 2 (G950 + 008" T2+ {2 = 0.

= (2.28)

M. ROSEN AND D. R. YENNIE

Therefore
—1
P®) = 370
* goS'(dm/dx) + {(dn/dx) const
X L, 795" %+ oSy

Now we want p to be real since our equations and all
the quantities we have dealt with are real; we there-
fore require that the constant be zero. This also
means that p is everywhere finite, which is necessary
if our whole approach is to be meaningful. Thus

,dm . dn
@) = =L f’g“s & T
P = 2gS ) ).y T (oS

and the first-order correction to the phase shift is

dz,  (2.29)

2™ = lim p(z).

@

C. Point Coulomb Phase Shifts

For the case of scattering from a point Coulomb
field, the lowest-order phase shift is easily calculated.
We have

] 2\ 1
2® = lim [f (1 4 2y = .‘\7) dp
oo T P P

—z—yn24 (+ 1)%r:| (2.30)

=7—Atan"3}’\-—ym(l+1)

where
Az = (l + 1)2 —_ 72

and we have used the fact that

2, =1+ 1) — .
Now, the exact-point Coulomb phase shift 7, is
given by*

. _ (A — 1Y) T(A — 7y)
exp Zine = ") T(A + &)

If we use the asymptotic form of the gamma function

InT'(z) = 2 In2x

exp [ri(l + 1 — A)].

—z4+(@—Phz+ 01/, (@31
we find
7.~y — Atan™' (y/A) —yIn(l + 1)
+ [l +1— Aljn. (2.32)

4+ N. F. Mott and H. 8. W. Massey, The Theory of Atomic
Collisions (Oxford University Press, London, 1949), p. 79.
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The WKB phase shifts therefore are just those ob-
tained by replacing the gamma functions in the exact
expression by Stirling’s approximation. We shall see
that the contribution from »’ is just that correction
to Eq. (2.32) obtained by neglecting only terms
0(1/2%) in Eq. (2.31).

To calculate the first-order correction to the
phase shift, one has to evaluate the integral in
Eq. (2.29); since p is a small correction, we do this
only approximately. It is convenient to expand the
quantities occurring in Eq. (2.29) to first order in the
potential. We therefore let

=+ Dy + 0 - UE)],  (2.33)

where
= /(1 + 1),

and, taking 8 to be a parameter of smallness, perform
all further calculations only to first order in 8. The
equation for U(y) is obtained by substituting Eq.
(2.33) into Eq. (2.11") and neglecting terms of
second and higher order in 5. We find

¥y + Dy — HU'(Y)

y = a/z,,

+ W+ 1)+ 1UW =y, (2.34)
from which we obtain
v §
o gl [ A5y + ]
W=g—Dw -1y f: a1 T oot

Since U must be real (because S is real) the constant
is zero. Hence

v i

i [
y— D@ - D e+ 1/
The integral can now be done to first order in g and,

after lengthy but straightforward manipulation, we
obtain

Uly) = ( (2.35)

2" = v/12(1 + 1) (2.36)

This is indeed the correction to Eq. (2.32) which is
obtained if the 1/12z term in the asymptotic ex-
pansion of the gamma function is retained and higher
terms are neglected.

D. Scattering from a Distributed Charge

In the case of scattering from an extended nucleus,
the phase shift is given in terms of the Coulomb
potential of the extended charge distribution. The
potential may be written

v(z) = —(v/z)uly),
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where

47 [ ,
w@=r;Ltqwm

=

y = p (2.37)

o f tq(t) dt;

and the dimensionless reduced charge density ¢ is
normalized such that

o f " OF dt = (2.38)

We can estimate the integral in Eq. (2.29) in a
manner similar to that in the point Coulomb case;
the function U(y) is now given by

Uy)

- y ’ £ = 11
- D - 1) j: tW(t)(t - 1) &
where W (y) is defined by

w(1) —w@) = 1 — YW(E).

Expressing #‘"’ in terms of the charge distribution,
we find in a straightforward manner

, (2.39)

1)

A .
" 12(0 + 1)°

a2

Now it is clear from Eq. (2.20) that »” is not
strongly affected by the details of the charge distri-
bution; the second term in 3’ is a correction which
takes into account a more detailed feature of the
distribution—its radial derivative—while the first
term is seen to be a correction to the point Coulomb
part of 7.

To make clearer the dependence of "' on I we
evaluate it explicitly for a simple case—that of a
uniform charge distribution with radius B. We find

=g B

—_“1) ?'(y) dy] (2.40)

($9]

7"’ (uniform)

R <z

% — 1o 42 ]
==k R >
F] ts
2 zolzo(to — 1)1 @
(2.41)

I R
12(0 + 1)*”
S —— [1
12(1 + 1)

where
= (R/x t)2:

and z, is to a good approximation, proportional to
(I + 1). We see that as the turning point approaches
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the surface of the charge distribution from the left,
the correction becomes singular as [— (R — z,)7Y],
but is finite and positive as the surface is approached
from the right. This discontinuity is a consequence
of the sharp discontinuity in the charge distribution;
in the case of a smooth distribution " is finite for
all values of [—although remaining peaked and of
opposite sign on opposite sides of the surface.

Rather than proceeding as we have done above,
we could have written from the start, following the
ideas sketched in the introduction,

M(z) = a(@)Mo(S) + c@)No(S),
N(z) = b)No(8) + d(@)M,(S).

Substituting these into Eq. (2.4) and equating the
coefficients of M, and N, to zero, we obtain

a’ + ¢8S'gy = df, aS'fy + ¢ = bf,
bS’g, + d’' = ag, b’ + dS’fy, = cg.

If we take S(r) to be as defined above, these form a
set of four first-order equations for the four coef-
ficients. Since the coefficients are generally slowly
varying, these equations would lend themselves to
numerical methods of solution. What we have
actually done however, is equivalent to writing the
coefficients as follows,

(2.42)

a=a tat+a+ -,
b=bo+ bt bt -,
A B ol T o SR
d=d +ds+dg+ -,

where the indices denote order of smallness. The
coefficients a, and b, then satisfy Eqs. (2.9) and
(2.10); ¢, and d, are just the coefficients we have
previously denoted by a, and b,, respectively.

If one follows through the analysis in Secs. 1 and 2,
it is seen that, in all orders, the modified WKB phase
shift depends only on the potential outside the
turning point. Indeed it is straightforward to show
that the even- and odd-order corrections, respect-
ively, are given by

L .
P\Z) = 20108’)

d d
squ’—;mk-l‘fan,,

x [ —2&

(tfoS8")}
pulz) = TNk

dz,

k even,

1
o
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d d
= goS'amk + fank
X f | e de, kodd, (2.43)
where
m, = iy b;—l

Tt @S T T+ @S

Thus, with this method, we can only obtain informa-
tion about that part of the charge distribution which
lies outside the turning point; e.g., if the turning
point lies outside the charge distribution we could at
best obtain pure point Coulomb phase shifts. This
follows from the fact that

M~ (1= p») = pw) — )M,

— (p(») + pa(=) + - -)N,,
N ~ (@1 — p(®) — p(®) — -+ -)No

+ (po(@) + ps(®) + -+ -)M,.

This expansion may be asymptotic if the potential
is analytic, and, of course, must be so if it is not.
Indeed it is clear that the expansion eventually
diverges if there is a discontinuity in, say, the nth
derivative of the potential. For if »* is discontinuous
or singular then so also are a/” and b)” and hence
m*?, 2", and p,(2)""". Each successively
higher order coefficient becomes discontinuous or
singular at one lower order of the derivative, so that
eventually all the coefficients beyond a certain order
are discontinuous or singular. From Egs. (2.1) and
(2.2), however, it is seen that if the potential con-
tains a discontinuity or singularity in its nth deriva-
tive, then the exact functions contain a discontinuity
or singularity only in the (n + 1)st and higher
derivatives.

As an example, let us examine a case we have
already treated above—that of a uniform distribu-
tion. Here »(x) and »'(z) are continuous but »**
is discontinuous at the radius R of the charge dis-
tribution. We have seen that a, and b, are indeed
continuous, as are also a{" and b{" (and consequently
m, and n,); ad?, b, m™ and n{" are discontinuous
at x = K. We see also from Eq. (2.28) that p"’ (x) is
discontinuous there and, moreover, its discontinuity
is considerably enhanced if the turning point lies
near the discontinuity. This accounts for the singular
behavior of 7 as a function of I in Eq. (2.41).

It should be noted that if we use the exact equa-
tions for a, b, ¢, and d, this singular behavior does not
occur, for although their derivatives may be dis-
continuous, the coefficients themselves are not.
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TasLe 1. Point Coulomb phase shifts for scattering from
gold; ¥ = 0.5765.

Corrected
(+1) WKB WKB Numerical»
1 +0.36175 —+0.40979 +0.40736
2 —0.24973 —0.23772 —0.23797
3 —0.53832 —0.53298 —0.53303
4 ~0.72957 —0.72657 —0.72659
5 —0.87289 —0.87097 —0.87098
6 —0.98756 —0.98623 —0.98623
7 —1.08316 —1.08218 —1.08218
8 —1.16513 —1.16438 —1.16438
9 —1.23688 —1.23629 —1.23628
10 —1.30068 —1.30020 —1.30020
11 —1.35811 —1.35771 —1.35772
12 —1.41034 —1.41001 —1.41001

» See Ref. 5.

The modified WKB phase shifts, in lowest order
and with first-order corrections, together with phase
shifts obtained by the numerical integration of the
radial Dirac equations®® are given for several dif-
ferent charge distributions in Tables I-11I. The
difference between the exact and the corrected WKB
phase shifts are indicated in Fig. 1. It is seen that the
error is appreciably smaller for the smoother Fermi-
shaped distribution. The test however isin the angular
distribution and in Fig. 2 are compared the WKB
and the exact angular distributions for the scattering
from gold for k = 10" em™ (=197 MeV), using a

TasrLe II. Phase shifts for scattering from gold, using a
uniform distribution with kR = 8.0, ¥ = 0.5765.

Corrected

(t+1) WKB WEKB Numerical®
1 —0.83551 —0.83552 —0.83563

2 —0.85283 —0.85287 —0.85289

3 —0.88140 —0.88149 —0.88136

4 —0.92079 —0.92093 —0.92116
5 —0.97028 —0.97056 —0.97034

6 —1.02887 —1.02935 —1.02902

7 —1.09498 —1.09582 —1.09683

8 —1.16607 —1.16797 —1.16829

9 —1.23688 —1.23629 —1.23710
10 —1.30068 —1.30020 —1.30033
11 —1.35811 —1.35771 —1.35773
12 —1.41034 —1.41001 —1.41001

* Bee Ref. 5.

*D. G. Ravenhall and D. R. Yennie, Proc. Phys. Soc.
London, 70A, 857 (1957).
¢ B. C. Clark, R. Herman, and D. G. Ravenhall, (private
communication). The differences between the exact
phase shifts for the Fermi-shaped distribution given above
and the earlier published set of Ravenhall and Yennie® are,
to the accuracy quoted, due entirely to small but significant
fferences in the dimensionless parameters on which the
calculation depends. Specifically, the earlier values and the
resent ones are as follows: v was 0.5765, is here 0.5764854;
¢ was 7.5761421, is here 7.568; kt was 2.7883561, is here 2.79.
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TasLe III. Phase shifts for scattering from gold, using a
Fermi shape distribution with k¢ = 7.68, kt = 2.79 (c is
the distance to the half point and ¢ is the 90% to 10% dis-
tance), v = 0.5764854.

Corrected

a+1) WKB WKB Numerical»
1 —0.83606 —0.83606 —0.83607

2 —0.85403 —0.85407 —0.85406

3 —0.88365 —0.88375 —0.88375

4 —0.92437 —0.92457 —0.92457

5 —0.97528 —0.97565 —0.97557

6 —1.03500 —1.03567 —1.03576

7/ —1.10129 —1.10242 —1.10267

8 —1.17055 —1.17183 —-1.17179

9 —1.23818 —1.23867 —1.23864
10 —1.30094 —1.30080 —1.30086
11 —1.35814 —1.35783 —1.35787
12 —1.41032 —1.41001 —1.41002

s See Ref. 5.

Fermi-shaped distribution.® The result is somewhat
disappointing. One expects, of course, the modified
WEKB approximation to improve with increasing
energy (and with more diffuse surfaces of the charge
distributions), but on the other hand, the exact
angular distribution drops off more steeply and
necessitates greater accuracy in the phase shifts.
Clearly a comparison of the WKB and exact angular
distributions at higher energy is needed to check
the usefulness of the modified WEKB approximation
in analyzing the elastic scattering of high-energy
electrons from heavy nuclei. Although these results
would discourage us from using the WKB phase
shifts for a complete practical calculation, it is
possible that one could use them in combination
with phase shifts obtained by numerical integration
of the radial wavefunctions. Since the greatest
errors occur for those partial waves whose turning
point lies in the surface, one might for example use
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the exact ones obtained by numerical integration of the
radial equations.
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the WKB phase shifts for small and large [:
C+1)S KR —-k), (@+1)5 KR+ kb),

and the exact ones for the critical region. In this way,
it might be possible to reduce considerably comput-
ing-time requirements while retaining reasonable
accuracy in the angular distributions.

III. APPLICATION TO THE SCHRODINGER
EQUATION

A. Modified WKB Wavefunction

In this section, we show that the essential ideas
outlined in the previous sections can be used when
dealing with the Schrodinger equation also.

We may write the radial wave equation

2
B b
21nu )

Vo + GED ) < ey, @)

2
where

u(r) = ry(r),

I is the angular momentum quantum number, and F
is the total energy (positive for positive energies
and negative for bound states). Equation (3.1) can

be rewritten in dimensionless form
u'(p) — ¢*(p)u(p) = 0, (3.2)

where

M. ROSEN AND D. R.

YENNIE

) =W+ 1)/ +v—1 (E>0),
p = kr, K = 2mth ) v(p) = ']{E(.rT)

If we could factor Eq. (3.2) into two linear equa-
tions having the same form as Eq. (2.4), we would
be able to treat the radial Schridinger equation in
exactly the same way as we did the Dirac radial
equations. Unfortunately, there is no natural factori-
zation of Eq. (3.2) and we must proceed in a some-
what different manner.

As before, we want to approximate the solutions
of the radial equations by functions of the same form
as the unperturbed solutions to Eq. (3.2). We denote
the unperturbed solutions by wu,; they satisfy the
equation

u’(S) — go(S)u(S) = 0, (3.3)
where
a(8) = I(l + 1)/8* — 1.
We write therefore in lowest approximation,
u(p) = as(p)us(S). (3.4)
Substituting this into Eq. (3.2), we find
(@t"uo + 2a5uiS’ + ao(S)ul’ + auiS’’)
— aoqu, = 0. (3.5)

By making use of Eq. (3.3), all derivatives of u, may
be reduced to expressions containing no derivatives
greater than the first. In picking out the dominant
terms in Eq. (3.5), we take, u,, uj, and u}’ to be of
comparable order, but assume that derivatives of a,
are relatively small. We also assume that second and
higher derivatives of S are also small. We then
obtain

(8" — ¢* = 0. (3.6)

This equation was also obtained by Good, but his
treatment differs from ours in that he separates
I(1 + 1) into two terms, [({ + 1)* — (I + 1)] and
assumes the second term to be small relative to the

first.
Using Eq. (3.6) to define S, we proceed using the
ideas described above, and write

u(p) = alp)us(S) + blpyui(S).

Substituting this into the wave equation and equat-
ing the coefficients of u, and uj, respectively, to
zero, we find

a” + 2(g58")}d/dp)[(g:5")'b] = 0,
b’ + 2(8")}d/dp)[(8")a] = 0.

(3.7)
(3.8)
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As in the case of the Dirac equation, it might be
interesting to solve these equations directly. Since
the rapid oscillations of the wavefunction have been
removed, they may lend themselves to an economical
numerical procedure. However, we do not proceed
along these lines, but instead write

a= Qo+ a +ay+ -,
b= by + by + by + -,

where the indices indicate orders of smallness.

We are satisfied for our present purposes with
calculating phase shifts only to the two lowest
orders and, therefore, in determining only the coef-
ficients a, and b,. We find that they satisfy

2(5)}(d/dp)[as(S")'] =
a’ + 2(0:8")}(@/dp)[b:(g58")'] = 0.

These equations, together with Eq. (3.6), are suf-
ficient to determine the coefficients a, and b,.

(3.9)
(3.10)

B. Calculation of Phase Shifts to First Order.

To find the lowest-order eontribution to the phase
shift, we need to know the behavior of S for large p.
From Eq. (3.8)

s »
[ caras=[(~apar. @
ag L1
As before, we choose the lower limit of the integral on
the left in such a way as to keep S’ everywhere finite
and real. We therefore take

8. = S(p) = [0+ 1)) =
where p,, the classical turning point, is defined by
qa(Pn) = 0.

From Eq. (3.11) we now find

S~hmf (=g dr + Adr

pore

(3.12)

Since the field-free solution to Eq. (3.2) regular at

the origin is the spherical Bessel function of order ,

the lowest-order phase shift, ', is obtained from
= lim (S — p — a In 2p),

where the presence of the logarithmic term is due to

the (assumed) presence of a Coulomb potential,

a = ZZ'¢ [h,

Z and Z’ are the atomic numbers of the nucleus and
Incident particles, respectively, and v is here the
relative velocity of the incoming particle and the
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nucleus. Therefore,

- lim[fp (—¢)idr — p

—aln2p 4 A%‘:rjl- (3.13)
It might be noted that it is not true here, as it is
with the Dirac equation, that the lowest-order phase
shift is independent of the index of u,.

The solution to Eq. (3.9) is

a, = const (8)7%.

As the constant affects only the normalization of the
wavefunction, we may set it equal to unity; thus

@ = (8,

This is finite everywhere, which means in particular
that our wavefunction is finite at the turning point.

The solution to Eq. (3.10) that is everywhere real
and finite is

—1 ? a;’
2(—q8)' o, (— @28’

Now since in the asymptotic region u, and uj are
37 out of phase and a, approaches unity, we see that
b, () is the first-order correction to the WKB phase
shift.

We can write b; in a more convenient form. If we
let

(3.14)

bl(p) )i dT.

Qu(8) = —qa(8), —q°(p),
we find

2by(=)

=112'f:d3§1fdis(_) 12f %‘:(Q”)

Q(p) =

5.8, {Qo Q; w}—i{ % w_ Q" w}.
24 @i, — QU.. T 12 \QiQll. T Q@M.

The integrals are convergent, but the integrated
terms must be considered carefully. To investigate
the behavior at the lower limit, we expand Eq. (3.8)
about the turning point and find that in the neighbor-
hood of p,

S=A+C(P_Pt)

+c[1 Qf'+~-]( o) e

10 @ 10 A .16}

where
C* = §AQ1.
From this, it is easy to show that the integrated
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terms cancel. We therefore have, after performing
the integration over S,

1 1 4 (Q"”
sﬁ”"zz;f P, (Q )
It is remarkable that this reduces to an integral over
p of only explicitly known functions of the potential.
This was unfortunately not the case with the Dirac
equation.

Note that Eq. (3.17) does not hold for S waves.
Here the comparison function is purely oscillatory
and of a very different character from » when a
turning point exists. Indeed, we find that S’ vanishes
at the turning point and is no longer everywhere real;
also a, and b, are singular at p,.

As we have seen, the lowest order yields just the
usual WKB approximation to the phase shift. Now
an old rule of thumb, justified by Langer,” states
that an improved result is obtained if one replaces
I 4+ 1) by (I + 3)*. In order to introduce the (I + 3)°
in a natural way, we make the following transforma-
tions

bi(e) = (3.17)
[

p=2¢ —o <z < @
and then
u = e w(z),

where w(z) satisfies the equation

w4+ e[l —vE) — 4+ Pe™w =0 (3.18)
Proceeding as with Eq. (3.2), we obtain

"Po(S)[8'()]* = P(a), (3.19)

a(z) = (87, (3.20)

— 2(P,,S’)‘ [b (PoS)1 =0, (3.21)

where
Py =e&"[1 — (1 + 1)
P =e"[1 — o) — (I + 3%,

and where we denote the (I 4+ ) phase shifts and
coefficients by a bar. Setting ¢ = ¢*, we obtain from
Eq. (3.19)

f;(l ‘:E) ds—ﬂ[l—v(p)—ﬁf} dp, (3.22)

where

*25],

=({+d;
and from Eq. (3.21)
? R. E. Langer, Phys. Rev. 51, 669 (1937).
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L1 li_éi)
12{.,;""?’“8 :

- [[aemd G

The first integral vanishes since P}’ = 2P}; hence

bi(=) = _24f,‘d 5 (?’)'

The lowest-order phase shift is obtained from the
asymptotic behavior of o, [since wo(S) ~ Ji.y(0)],
and is seen to be the same as the one previously ob-
tained except that I(l 4+ 1) has been replaced by
(I + %)°. As a consequence, 7' is independent of the
index of the comparison functions. Expressing b, (=)

explicitly as a function of the potential we find
I 1 d
i) = g1 [, 4 gd,

st (4(1 —v) — 5p0 — p’u”)
2(1 —v) — pv' !

2by(w) =

(3.23)

(3.24)

where

Qlp) = 1 —w(p) — (L + 4)*/p".

It is clear that the previous difficulty with S waves
is not encountered here.

C. Point Coulomb Scattering
Consider Eq. (3.11) with
A2
? 3

=g =1
We find
S~p—aln2p — «

+ jaIn (@ + A%) + Atan™' (a/A),

and consequently,

76" = —a + daln (@ + AY)

+ A tan™' (a/A); (3.25)
it is also easy to show that
i’ = —a+jeln @ + &)

+ A tan™' (a/A). (3.26)

Now the exact Coulomb phase shift is given by
nc = arg T(l + 1 + da);

if we employ Stirling’s approximation, we find

_m) o o .
+8K2+ 2+0(K2+a2)

ne (Stirling) =
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Including the next term in the asymptotic expansion
of the gamma function, we obtain an additional
contribution of —a/12(A* + o°); thus

7. (“‘extended” Stirling)

b))
= TN \FE T AT+
When b,(«) is evaluated, we indeed find

(3.27)

() = 2ila/(A* + o)].
It is also easy to show that
1@
bi(=) = 24A + Tra T g

In Table IV, values of the exact and approximate
point Coulomb phase shifts are given for special
values of I. One may note that the "’ and 7
terms bring substantial improvement in the WKB
phase shifts and also that the Langer-type approxi-
mation is the better of the two. As one would expect,
the approximation improves as | or « increases.

4. Further Applications

The modified WKB approximation outlined above
can be applied, of course, to potentials other than the
ones we have used. For instance, no essential changes
need be made for a spin—orbit potential. The only
difference would be that the potential would now be
a function of I and j, the orbital and total angular
momentum quantum numbers, respectively.

If however, V(r) is no longer real, then the wave-
function u(p) is no longer required to be real, nor is
the classical turning point on the real axis. Our dis-
cussion must therefore be suitably modified. Nodvik®
has treated Eq. (3.6) (which he obtained in a some-
what different manner) in some detail for the case
of a complex well, and so we restrict ourselves to a
few descriptive remarks.

We allow p and S to assume complex values and
understand the integrals in Eq. (3.11) to be contour
integrals in the complex p and S planes, respectively;
the square roots and integration paths can be defined
in some convenient manner. In order that in the
limit of real potentials the method reduce to that
described above, the lower limits of the integrals are
still to be defined by the zeros of ¢° and ¢}, respec-
tively—but here complications arise. V(r), in
general, is not analytic along the real r axis. Also,
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TasLe IV. Nonrelativistic Point Coulomb phase shifts. The
parameter of the Coulomb potential is « = ZZ'¢!/hv. The
t.;:o different WKB approximations defined in Sec. 3 are
shown.

WKB Corrected WKB
I a 20 2(® + o Exact
% 0.04348 0.056386 0.05298
1 1 0.18333 0.22263 0.21959
2 1.14278 1.24111 1.23680
8 10.73262 10.86105 10.85695
1< 0.11204 0.11551 0.11540
2 15 0.45137 0.46498 0.46457
2 1.97980 2.02308 2.02219
8 12.11383 12.18359 12.18277
! @ "‘(0) ﬁ(ﬂ! -+ ,‘,(l) Exact
b —0.08537 —0.06576 —0.07138
0 s —0.28059 —0.23892 —0.24406
2 +0.10983 +0.12944 +0.12965
8 9.40532 9.41050 9.41051
] 0.05083 0.05313 0.05298
1 5 0.21170 0.22003 0.21959
2 1.22352 1.23685 1.23680
8 10.85191 10.85694 10.85695
b 0.11459 0.11542 0.11540
2 15 0.46144 0.46465 0.46457
2 2.01413 2.02226 2.02219
8 12.17802 12.18276 12.18277

¢" in general has more than one zero in the complex
plane. Nodvik points out, however, that V(r)
usually is analytic on the real » axis except at a finite
number of isolated points which thus divide the
axis into a finite number of intervals; that in each
interval there is a V(r) defined which can be ana-
lytically continued into the complex r plane. He
takes as r, the zero of that particular ¢* which lies
closest to the real axis. If the imaginary part of
V(r) is small, this will be near the “real” turning
point. Further details may be found in Nodvik’s
report.
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The slowing down of a particle by a homogeneous isotropic moderator is considered. It is shown that
finding the collision density of the particle as a function of space and energy is equivalent to finding
the probability distribution of a certain random functional. By means of this random functional, ex-
pressions for the spatial moments are obtained without imposing any restrictions on the variations of the
scattering kernel or cross section with energy. These moments are then used to obtain theageequation,
the derivation given here differing from others in that no a prior: assumptions are made on the collision
density itself. Finally, as a special case of the above, the time—energy moments are found.

1. INTRODUCTION

N an earlier paper, random functionals were used
to derive the moments of the neutron time-
energy distribution." The methods presented there
can however be considerably simplified and extended.
It is the purpose of this paper to make these exten-
sions to the case where the spatial distribution of the
particle (as a function of energy) is the quantity of
interest. The class of scattering kernels and cross-
sections covered is much larger than that allowed for
in Ref. 1 (main restriction: infinite homogeneous
medium at 0° temperature), and in fact is sufficiently
broad that our more general title—‘‘particle modera-
tion” rather than just ‘“neutron moderation”’—
appears justified.

Stochastic methods have been relatively ignored
in recent years, moderation theory relying chiefly on
the transport equation. Nevertheless, the classic
paper of Fermi® used a stochastic approach to find
the mean-square distance (r*(E)) for a neutron to
slow down to a given energy E with a hydrogen
moderator. The determination of (r*(E)) for a
moderator with atomic mass greater than unity, how-
ever, has been done through a solution of the impor-
tant ‘“moment” equations of transport theory.’

While a general analytic solution of the moment
equations has not yet been given, extensive compu-
ter programs for their numerical solution have been
written.* For the one-dimensional case, }[n(n + 1)]
coupled equations must be solved to obtain the first
n moments (z*(E))(j = 1, --- , n) of the distance
to slow down to energy E. Recently, group-theoretic
techniques have been applied to neutron moderation
notably by Guth and Inénii® and by Wigner.®

! M. A. Leibowitz, J. Math. Phys. 4, 446 (1963).

* E. Fermi, Rie. Sei., 7, 13 (1936).

! R. E. Marshak, Rev. Mod. Phys. 19, 185 (1947).

* H. Goldstein, Fundamental Aspects of Reactor Shielding,
(Addison-Wesley Publishing Company, Inc., Reading, Mas-
sachusetts, 1959), Ch

ap. 6.
§ E. Guth and E. Fnénil, J. Math. Phys. 2, 451 (1961).
* E. Wigner, Phys. Rev. 94, 17 (1954).

We proceed here, as in Ref. 1 by showing that
finding the particle collision density as a function of
space and energy (lethargy) is equivalent to finding
the distribution of a certain random functional. This
is based on the assumption of an infinite, homo-
geneous moderator at rest consisting of nuclei of
only one kind (this last condition is removed in the
Appendix), but no assumption is made on the cross
section (scattering and absorbing) or on the scatter-
ing kernel (it need not be isotropic in the center of
mass frame). In Sec. 6 we find the moments of this
functional and hence of the collision density. The
results are in the following form: each moment is
expressed recursively in terms of the previous
moments by means of an integral over lethargy. In
the equations for the first » moments there appears n
functions of lethargy which can be given as solutions
of n integral equations. But in contrast, to the mo-
ment equations (which are 4[n(n + 1)] in number),
these equations are uncoupled and under special
conditions (e.g., scattering-angle distribution inde-
pendent of energy, scattering and absorption cross-
sections proportional) permit an analytic solution.
Moreover, since we do mot require the particles’
source direction to be isotropically distributed, these
results should give information on the slowing down
of a beam of particles.

In Sec. 7, the expressions for the moments are used
to obtain the age equation. Though this result is
well known, the proof given here differs from the
usual one in that no prior assumptions are made con-
cerning the collision density itself (e.g., it is not
assumed that only the first two terms of the Legendre
polynomial expansion of the collision density are of
significance in passing to the age limit: this fact
follows from the proof). Finally, in See. 8, we return
to the time—energy moments which can now be
readily found as a special case of the space moments.

It is of course true that any result obtained
through the use of random functionals is, in princi-
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ple, obtainable by means of the transport equation.”
The two methods are after all equivalent. Neverthe-
less, the use of random functionals can claim at least
two advantages: (1) It is less formal in remaining
closer to the physical situation, which is essentially
a random walk; (2) It is keeping with a trend which
has appeared in other parts of Mathematical Physics;
pamely, the formulation of problems in terms of
random functionals.®

2. THE SCATTERING KERNEL

We consider an infinite, homogeneous isotropic
moderator consisting of free atoms at rest, and sup-
pose that at time ¢t = 0, a particle with velocity v,
enters the medium, at a point which will be taken to
be at the origin of a rectangular coordinate system;
through collisions with the atoms the particle will
slow down. Let v be the particle velocity at any time
and u = In(y,/v) its lethargy, so that u is a non-
decreasing function of the time.

At scattering collisions, particles suffer an instan-
taneous change in direction and lethargy, the random
nature of the change being fully described by the
scattering kernel K(Q-Q', u, v') giving the proba-
bility density for a particle to have a direction of
motion along the unit vector @ and a lethargy
after collision assuming that it had direction @' and
lethargy %' before collision. The scattering kernel
may be factored as

KQ-Q u,u)=KQ-Q |u, u)flu|u), W < u.
' (1)

In (1), f(u | ') is the probability density of a particle
having lethargy u after collision given that it had
lethargy ' before, and K(Q-Q|u, w') is then the
probability density of Q given u, v/, and Q'. Note
that the scattering kernel, because of the isotropy
of the medium depends on @ and Q' only through
the cosine of the scattering angle 6.

For neutron moderation, which is the case upper-
most in mind in this paper, the most important
scattering kernel is the one resulting when the
additional assumptions of elastic scattering and
isotropic scattering in the center-of-mass frame are
imposed. Then, if M is the atomic mass of the scatter-
ing nucleus, we have

flu — w)
M A I)  ineuss (ﬂf + l)z
an ¢ 0<dushizr—i)/
0 otherwise,

"E. Guth and E. Inénii, Phys. Rev. 118, 899 (1960).
8I. M. Gelfand and A. M. Yaglom, J. Math. Phys. 1,
48 (1960).

RANDOM FUNCTIONAL APPROACH
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K(Q-Q' |u,u’)

= §[Q-Q" — M sinh }(u — u’) — cosh (u — u')].
2)

Note that in (2) the quantities « and %' enter only
through their difference Au = u — wu’; this is the
main advantage in introducing the lethargy variable.
Implicit in the above is that there is only one kernel
corresponding to the assumption of only one type of
scatterer; this will be taken to be true for the present
though it will be removed later.

The quantity of chief interest in transport theory
is F(r, u, Q) the average number of particle collisions
per unit lethargy and per unit solid angle and volume.
For our purposes, F(r, u, Q) must be reinterpreted
since its definition involves the phrase “number of
particles” while here the functions of interest are
probability densities over the ensemble of all possible
ways a given particle may slow down after leaving a
source.

Let W(u | w)du be the probability that a particle
with lethargy ' will at some later moment have a
lethargy in the small interval (u, v + duw). For a
particle leaving the origin with lethargy zero (i.e.,
u' = 0) W(u | 0) is just the normalization factor
for F(r, u, Q):

W(u|0) = f F(r, u, Q) dr dQ. (3)

Hence
Fr,Q |w) = F(r,u, Q)/W(u | 0) (4)

is a probability density and has the following mean-
ing: F(r, Q | w)drdQ is the probability that a particle
with lethargy u while moving with a direction in the
solid angle [Q, Q@ + dQ] will make a collision in the
volume [r, T + dr], under the condition that the
particle does in fact have the lethargy u at some
moment, in its life. The simpler probability densities

Fic ) = [ Fe, @ |w) de, ®)
FlQ |w = f F(r,Q |w) dr (©)

are also of importance and easier to obtain.

For the special case of the kernel (2), W(u | u')
was first introduced by Placzek.” In general,
Wi{u | w') satisfies the integral equation (assuming
no absorption)

W |w) = é(u — u)
+ [t e |wyaw, @)

9 G. Placzek, Phys. Rev. 69, 423 (1946).
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which simplifies to

W) = 5u) + f S — w)Ww) du' (8)

when f(u | w'), and hence W(u | «’) depend only on
the difference v — /, i.e.,, W(u | u') = W(u — ).
Equation (7) follows on noting that
W |w) = 2 Wi |w),
i=0

where W,(u | w') is the probability density of the
lethargy j collisions after the lethargy ' is attained.
But

Wi |w) = f WO | ) du.

3. RANDOM FUNCTIONAL FORMULATION®

Let r; denote the position of the particle when it
makes its jth collision so that

I, = Ay + Af; + -+ 4 41, (9)

where Ar; = r; — r,_,. To make the dependence of
r; on the scattering cross section ¥ (u) explicit, we
introduce random variables Ag; related to Ar; by

T = Aei/Z(‘u-’-l); (10)

where u, is the lethargy just after the 7th collision.
Then

APy Bps . AY
YT 3w T3t TR

The variable Ag, has a simple physical meaning: It
is the change in position between the (i — 1)st and
ith collision in a fictitious medium such that for all
2 (u) = 1. Ag;, in turn, may be factored into

Ag‘- = ﬂ.'_lAI‘, (12)

with Q; being a unit vector in the direction of the
particles’ motion just after the sth collision, and Al
the distance (path length) traveled between the
(¢ — 1)st and 7th collision [if £ (u) = 1]. The Al
are independent random variables with density
¢ *'. Then (11) becomes

r, = QDAII QlAZg Qf-qu; 1
" Sw) T 2w) >(u;)

To proceed, it will be necessary to write (13) as an
integral over lethargy. Define the random function
(") by

4§ 4 w3 it (13)

) =0,
lw) = L,

1 We restrict ourselves here to a moderator containing
only one type of scatterer with no absorption.

siial (14)

Uy < U Ly,

LEIBOWITZ

where I; = Al + Al, + --- + Al,. l(w") would be, if
T (u) = 1, just the distance traveled by the particle
until it makes the collision which slows it down past
the lethargy u'.

In addition, define the random function Q(u") by

Q) = Q,, (u; — & <u < (u: + ¢,
Q) =0 otherwise.

Here € may be any small positive number, greater
than zero, chosen such that the intervals u; —
e < u < u; + € do not overlap. As will be seen,
Q(u') may be entirely arbitrary outside these inter-
vals, but for definiteness we will suppose that it
vanishes.

Now, assume that u,_, = u, and write r; as r;(u);
then

(15)

. , )
) = [ sanee) dw),  19)
where the integral includes the contributions due to
the jumps at ' = 0 and ¥’ = wu.

To see the equivalence of (13) and (16) one need
only observe that the function I(u) has jumps of
magnitude Al,,, = l;,, — [ at the points ' = u,,
and at these points Q(u,) = Q,.

Note that in Eq. (16), the number of collisions, j,
made by the particle no longer appears on the right
side. Let us then drop the requirement that the
lethargy u be attained at the jth collision and merely
demand that there be some collision just after which
the particle has the lethargy w. Then if r(u) is the
position of such a particle when it makes its next
collision, we have [dropping the subscript j in (16)]

W e e ’
W = [ 5o 00) dew), )
and r(u) has by definition the probability density
F(r | w). The moments of the random variable r(u)
may be obtained from (17):

rr(u) -*- r(w) = j: P j;u 2(:{) 2(1:"")

X (@) -+ - Q™)) + -+ dlu™)),

(18)

where (r(u)r(u) -* - r(u)) represents any n-fold product
of the three components of r(u), and similarly for
(@) --- @u™)). For simplicity we restrict our-
selves to the one-dimensional case. Then if 4 denotes
the = component of the vector €, (17) and (18)
become

o) = [ ﬁ ulw’) i) (19)
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and

Ko = } . n'- : 1 1
(I (u)) j; j; z(uf) e z(u(n))

X ()« p@™Ndl@!) --- di™)),  (20)
with the probability density of z(u) being denoted by
F(z | u).

Before any use can be made of (20) however, the
quantities (dl(w’) - - - dl(u*™)) and {u(u’) - - - u(u™)),

must be obtained in an explicit form (which we pro-
ceed to do).

4. THE MOMENTS (dl(u’) «++ dl(ut))
Consider first the quantity (di(u’)). We have

(di@w)) = lim (' + du'? — Hu) du’.
du’—0 du

l(w' 4+ du') — l(w') vanishes unless the particle
glqws down past u’ and w' 4 du’ at different col-
lisions; or equivalently, unless the particle has, after
some collision, a lethargy in the interval (', w'+du’).
Let us denote the probability of this event by
P(u | u" .l 0)du’ indicating by the notation that this
probability is taken only over particles which at
some moment have had the lethargy zero and would
have the lethargy u at a later time. Because of this

last condition, P(u | w’ | 0) is not given by W(u' | 0
but rather by ¢ e

21)

W |w)W' | 0)
W0

iIfience, since .the- mean distance between a collision
Z (u) = 1 is simply unity, one has

Wo |[v)We | 0), ,
W(u l 0) au .
Now, let us consider (dl(u')dl(u”)) for u” < u'.
One has
(dlw’) di(u’"))

= W | wYW' | w)W '’ | 0)du’ du'’
Wu | 0)

k= {2 w =yt

1w =,
i’f* ff'}f: for 1;, # " Eq. (24) is simply the probability
W 4+ I;M" icle ’}’mvmg I:athargxes in the intervals
mishes]u ), (" + du”) [otherwise dl(w)dl(u")
and given that it initially had lethargy zero
would later have lethargy w; multipled by the

Pu |[u'|0) =

(22)

(dl(u’)) = (23)

; (u' Z ulf)

where 24

1519

product of the mean distances traveled to the next
collision when the particle has lethargy «'’ and when
it has lethargy «'. But this factor k is just unity.
When «" = o/, however, k is not the product of the
mean of two different ““intercollision” distances, but

rather the mean square of a single intercollision
distance:

k= fe-“(u)* dal = 2.

In general,

(@) diw”’) -+ diu™))

=y Vhy ! eee b V W | W)W | w7 -
X W™ | u™)Wa™ | 0) du' duw'’ -+ du™

(k|+kz+ T +k,~=n;u’_>_u"2 e Zu(-))’
(25)

where jis the number of distinet values occurring
among the numbers v/, v, =-+ , u™ and k; is the
number of times the ith value appears. In obtaining
(25) one uses the fact that

f (AD'e™ 4V dAL = k. (26)

5. THE MOMENTS {(u(u’) ++- pu®™))

Let D(u(w) | () be the probability density of
the direction x(u) of a particle just after it obtains the
lethargy w given that it had direction u(u') at some
previous lethargy /(v < w). Implicit here is the
condition that the particle does obtain the lethargy
u at some collision.

Suppose that the probability density of p(u’) is
A()" [if p(w) is specified in advance then A (u)
reduces to a delta function]. After a collision at which
the lethargy u, is attained, the particle’s direction
will have a different probability density A, (u | %:; %)
where

A uiw) = [ = K@ |, w)AG) 42 27)
We introduce the Legendre polynomial expansions

K@ |uw) = ¥ 252 K w)P@e),

©8)
Aw=§%;%ﬂw (29)

Substituting from (28) and (29) into (27), using the
addition theorem for Legendre polynomials and

n We .;uppose the particle’s initial direction has a sym-
metric distribution around the z axis: A(u) = 1/27 A(Q).
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integrating we find

— 2 1
A |u;u) = z‘; n;—

K, (u, w)a.Po(u). (30)

Similarly, if A;(u | uy, s, - -+ u;; w) is the proba-
bility density of u after j collisions giving the particle
lethargies u,, us, - -+ , u; (starting with lethargy "),

MARTIN A.

o~ Wilu [ w)

LEIBOWITZ

then repeated use of (27) and (30) gives

i) = R
n=0

>< [Kn(uli u')Kn(u!} ul) st Kl(u“ ui—l)]anPn(#)- (31)

Hence, letting w; = u and defining A,(x) = A(u) =
8(u — p(u),

A,-(,u Iunuz;

Uiy, W w) e, w') - fu, ) duy

D(,u(u) ! ”(u')) == Z W(u [u:)

=0

The expression within the bracket is just the proba-
bility density of u(u) conditional on the lethargy u
being obtained j collisions after lethargy «, and the
probability of this event is W;(u | w')/W(u | u').
Substituting from (31) to (32) one finds that

D(u() | u(w')
_ 2 ;— 1

n=0

B | w)PG) [ W |w),  @3)

where
B,(u [u) = u — w) + f(u, w)K,(u, u’)
+ i‘ f flur, w') - flu, u)Ka(u,, w') ---
X K. (u, u;) du, --- du;.

Thus B,(u | ') is the solution of the integral
equation,

B,(u |w) = 8(u — u)

+ [, WK, wB ) du,  (30)
which simplifies to
B.(w) = 8(u — )
+ [ = 0@ - wBw) d @)

in the special case of a kernel like (2) which is a
function only of Au = u — «/, since then B, (u | ¥’) =
B.(u — ).

The calculation of (u(u’) --- w(u™)) is most
elegantly performed by the use of matrices. Let P(u)
be the infinite-dimensional vector whose components
are just the Legendre polynomials P,(x). Then,
rather than just (u(u)u(u') --- w(@™)), we con-
sider the more-general vector quantity

(Plpt)lu(w’) - -+ u@™)),
where Plu(u)] denotes the vector P(u) evaluated at

l:ffl,-(u | %y, Ua, =

cooodug,
Wi |u) :| (42)

g = p(u). The introduction of this vector moment is
not only a matter of convenience, but permits us to
obtain information on F(z, u | u) instead of just
F(z | w).

In what follows, we use the fact that the random
variables p(u), p(u’), --- , w(u™) are part of a
Markoff process: this means that the probability
distribution of u(u'™") given u(u'") is independent

@ u™, Thus, let us first find

of u'”,

Plu)] | n@)),
the average value of Plu(u)] given u(u'). Multiplying
D(p(u) | w(u)) by P.(u) integrating and using the
orthogonality conditions, we find that

(Paluw)] | pu))=Bu(u | w)P[u(u)])/W(u | u). (36)
In matrix form,
Ple@)] | p@)) = B | u)Pu)]/W | w),

where B(u | %') is a diagonal matrix with elements
B,.(u | w'). To obtain (P[u(u)]u(u’) | u(u")) we multi-
ply the right-hand side of Eq. (36) by u(u’). From
the recursion formula for Legendre polynomials,

@+ DPii(p) — @0 + DuPi(p) + iPioi(u) = 0,

37
it follows that the vector uP(x) may be written
uP(u) = AP(u), (38)
where A is a matrix with elements a,; given by
o = burlgrih) + sunler)
(£,7=0,1,2, :-+). (39)
Thus,
(Plu(w)]u’) | uw'))
= B(u | w)APu@)] | p@")/ W | w)
= Clu | w)(Pe@)] | uw"))/W(u | u), (40)
where
Clu |w') = B(u |w)A (41)
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is given by
(0B, 0 0.
iB, 0 2B, 0 .-
Clu | w) = 8. 0 B

with B; = B;(u | «’). The elements ¢;; of C are simply
ci;(u | w') = Bi(u | w)ay. (43)
Evaluating (P[u(w')] | w(»'")) in analogy with (36)

we have
(Pla)]u@’) | pw'"))

= Clu [w)B' | w")Plu@"))/W(u | W)W |w).
(44)

Continuing in this way, we obtain

PL@)u’) - - p@™ ") | x@™))
X W | w)Wo' |u'”) - W™ |u™)

= C(u I w)Cu' | u'f) --- C(u(n—l) ] u"")P[,u(u"")].
(45)

(Plu(u‘™)]), however, depends on the initial distri-
bution of the particles’ direction. Let us denote this
initial direction by £, with u, being the projection
along the z axis and assume that u, has the proba-
bility density W (u,) such that

~2i+ 1

W) = 2 =5— wiPu(uo)- (46)
Then, noting the initial lethargy is zero,
L)) = [ @L@™)] | uo)uo) du
= [B6 10) [ PGl dun | /W [0
= B@u™ | O)W,/Wu™ | 0), (47)

where W, is a vector with components w,. Thus, we
have shown using (45) and (47) that

Plu)u@) - - pu™))
X W |uw)Wo' |u) --- W™ |0)

= Clu [u)C’ |u’) --- Cw™ ™" |u™)Bu™ | 0)W,.
(48)
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: (42)

0 [+ 1/@2i+ DB 0

4

6. CALCULATION OF THE MOMENTS OF x(u)

We return to the expression (20) for (z"(u) P[u(u)]).
Because of the symmetry of the integral with respect
tou, u”, --- ,u™, the region of integration may be
divided into all possible subregions of the form
w>u >u' > -+ > u™; the total number of all
such regions is n!/k,%,! - - - k;!, where k;, 4+ &k, +

<+« 4+ k; = n. Here j is the number of different
values which appear among u/, w”, --- , 4, and
ki =1, ---, 7) is the number of times which the

ith value occurs. Note that, because of delta-function
singularities which appear in them, the integrations
over a region in which some of the «’, --- , u™ are
equal cannot be ignored even though it is of less than
n dimensions. Fortunately, the factor [k,!---k;1]™"

cancels the factor appearing in

(dl(u’) dl(u'”) - -+ dl(u™))
(cf. Eq. 25) so that we may write
(" (w)P[p@)])

= nl j: j;"‘ e fou“-” Plu()p@’) - - - p@™))

X [22 @)+ 22 @) dlw) dlw’’)- - - dlw ™)),

(49)
where the asterisk on (dl(w')dl(w") --- dl(u‘™))*
means that in evaluating it the factorial factors in
(25) are to be ignored. In (49) the integration in-
cludes all singularities appearing at the lower limit
and at the upper limit, but otherwise no special
provision is necessary in the case of any equality
among u/, u'’, +-- , u™.

Substituting from (25) and (48), we obtain
(" (WP [u)))W(u | 0)

u u’ ulm=1)
=n!f du'f du'’ f du™
0 0 0

X [2 @) - 2 @™)]'Clu | w)Cw’ |u”) ---
X C(,u(u—l) | u(n))B(u(n) l O)Wu. (50)
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Equation (50) is the main result of the moment cal-
culation. The expression for (z"(u)P;[u(w)]) gives the
nth moment of the jth Legendre coefficient of
F(z, u | w). It might appear that the use of Eq. (50)
requires the multiplication of infinite matrices.
Actually, this is not the case if one is content with
only a finite number of moments of the initial terms
of the Legendre expansion of F(z, u | ). This is made
clear below.

It might be noted that simplifications occur for
the kernel (2). If the cross-section has special forms
(e.g., a sum of exponentials) then (50) can be written
as the inverse of a readily obtainable Laplace trans-
form. This is more obvious from Eq. (51) below.

The special structure of the C matrices allow a
number of general conclusions to be drawn con-
cerning the dependence of the moments on the B
functions and the initial vector W,. Consider any
element ¢;;(u) of the matrix resulting from multi-
plying any of the C matrices together. Apart from a
factor independent of the lethargy variables, ¢;;(u)
will be a sum of terms of the form B.B; B;, --- B;._,
(lethargy arguments have been omitted), where
fhi=1%1,% = jJim = 1,7 = j.—y & 1. This follows
from Eq. (42). Suppose now we consider a specific
component of the moment vector {(2"(u) Plu(u)]), say
the 7th. Then, referring to Eq. (50), (&"(u)P[u(w)])
will be an integral over the lethargy variables of
sums of products of the form B.B;B;,---B;w,,
with j, = fi41 == 1. Therefore,

(a) (™ (w)P.[u(w)]) can depend only on the fune-
tions B;..; Biows1, =5 3 By By, 5% Biawy and
only on the ( — n)th to (z + n)th components of
the initial vector W,. In particular, if the initial
distribution of u is isotropic, (w; = 0, 7 > 0), then
(z"(1) P;[u(u)]) vanishes for ¢ > n.

(b) Conversely, any function B; or any initial
component w; can influence only those moments
(x"(u) Py[u(u)]) satisfying the inequalities 7 — n <
k<14 n

In particular, for & = 0, (z"(u)) can depend only
on the functions B,, --- , B,, and if all but w,
vanishes, only on B,, - -+ , B,. As examples, we give
(omitting arguments) the products which enter into
the calculation of {z"(u)) for n = 1, 2, 3, 4.

n =1 :BBw;

n = 2 : B,B,BW,, B,B,B,w;;

n = 3 : B,B.B;Byw,, B,B.B,B,w,, B,B\B;B3ws;

n = 4 : B,B,B;B,Byw,, B,B,B,B,Byw,,
B,B,B.B,Bw,, B.B\B.B,Bsw,,
B,B,B,B;Bw,, B,B\B.B,Bw;,.

LEIBOWITZ

To find (z"(u)), these products must be multiplied by
suitable constant factors due to the A matrices,
summed and integrated. For the special case of
n = 2 and isotropic source (initial direction), we have
the result found in Ref. (3) through the use of
Laplace transforms.

Equation (50) may be written in a recursive form.
We have

(=P [u) D | 0)
n [ S Cw | WIWE | 0@ @IPLW)) dw

1,2, "')) (51)

(n =
with

(=" @Pk@)]) = B(u | 0)W,.

Though (51) is useful for theoretical purposes, the
presence of delta-function singularities in C(u | ')
makes it unsuitable for computation. To obtain a
recursive expression free of such singularities we
introduce a random wvariable z*(u) which is the
x coordinate of a particle’s position when it obtains
the lethargy w. Hence,

z(u) = z*(w) + [(Al/Z(w)]k),
and
(@"(W)Pu(w)])
= ,Z;J'(n Pl (x*'(u}#n-i(u)P[ﬂ(u)])< E(‘u) >
sl A
~ B e @ WP, 62)

Here, in expressing x*~'P(u), the relation uP(u) =
AP(u) has been successively applied. In a more con-
densed notation, (52) reads

An

nl
.-E it 2]  Bidw),

(=" @P@DW(u | 0) = (53)

where

Ei(w) = (@*'(w)Pu)])/W( | 0).

The expression for E,(«) in terms of the C matrices
is identical to the right-hand side of Eq. (50) except
that the integration is only over v’ < u, the contribu-
tion of the delta function in C(u | %) when »' = u
not being included. This fact leads to Eq. (53), with
the term

(54)

n! A"
i @y &
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resulting from takingu = % = ¥ = .-+ = ™7
and ™7 > u" " in the integration in Eq. (50),
and noting that the singular part of C(u | ') is
just 6(u — uw')A.

To obtain a recursion for E.(w), consider the
expression on the right of Eq. (50), with »' < u, so
that this expression gives E,(u). Now in performing
the integrations, singularities can arise when v’ = "’
with "’ > u®, or v’ = v’ = 4™ and u® > v,
ete. The singularity at u = «/" with «’* > u" gives
the term

(n 1.1:.‘ D! fu“ [E gu!):l’ C(u | w)AE,-,(u’) du'’;

the singularity at v’ = v’ = «® with «® > 2,
the term
n! 2 3 R
i ] s o wowey v, e
Considering all possible cases, we obtain
n! A"
- n! f“ Clu | wHA™’
— — E;(u’) du',
+ ; i) Tmap Ew)dw,  (65)
E(w) = B(u | O)W,. (56)

In (55), the integration is only over ' < wu, the
singularity of C(u | ') at « = ' not being included;
and similarly in (56) the singularity of B(u | 0) at
% = 0 is to be ignored. The formulas (55) and (56)
permit then a numerical evaluation to be made
since they involve only functions which are always
finite.

7. ASYMPTOTIC BEHAVIOR

Because of the difficulty in obtaining exact results
and their complexity in the few cases in which they
can be obtained, approximate theories play a key
role in moderation theory. These are generally of
the asymptotic type, becoming increasingly accurate
as certain parameters or variables take on extreme
values. Perhaps the one best known is age theory.

Under general conditions (see below) on the cross
section and the scattering kernel, age theory provides
a good description of the distribution of particles
which have made a large number of collisions since
leaving their source. It is closely related to ordinary
diffusion and the central limit theorem and can be
derived on the basis of the latter.”* Our aim, here, is

12 M. A. Leibowits, Rigorous Derivation o

Fermi Age
Theory, Ph.D. thesis, Harvard University (1061).
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to obtain the age result for an infinite homogeneous
medium using the expression for the moments (50).

The condition of “many collisions” can be in-
corporated into our treatment (in which the collision
number does not appear) by the following device.
Let £ be the mean lethargy gain at a collision (assume
that it is lethargy independent) and n, the number
of collisions suffered by a particle. Then by the law
of large numbers, if n is large, n ~ u/f. For the
important case of elastic scattering, £ is asymptotic-
ally proportional to 1/M where M is the ratio of
particle to scatterer masses. Thus we may write
£ = ¢/M where { = (M) = 0(1) as M — o, and
n~ Mu/t.

The condition of large n is essentially equivalent
to a condition of large M with u fixed, and in fact,
age theory gives the first term of an asymptotic
expansion of F(z, u | u) in powers of 1/M*. On the
other hand, if M is kept fixed, the requirement of
large n can be achieved by letting the lethargy
become large. Actually this latter case can be trans-
formed into the former by introducing a new lethargy
variable u* defined by v = w*U where u* remains
fized as w and U approach infinity. Then n ~
Mu*U/¢, so that w* and U correspond here to u and
M in the limiting case of w fixed, M tending to
infinity. This explains the applicability of age theory
to moderation in very light elements such as deuter-
ium at sufficiently high lethargies. For definiteness,
we shall suppose that it is the case of u fixed, M
tending to infinity that is being considered.

We begin by obtaining the asymptotic behavior of
the B matrix for large M. First, consider By(u | ') =
W(u | u"). As above, it will be assumed that f(u | w")
actually depends only on Au = u — ; ie,
f(u|w’) = f(u — w'). This is true then of W(u | u’) =
W(u — u') so that

W = 60 + [ fu— )W) aw. 67
The dependence of f(Au) and W(u) on M will be
made explicit by writing f(Aw, M) and W(u, M). It
will now be assumed that

Assumption (1). The function (1/M)f(Au/M, M)
approaches a probability density g(Au) which is not
purely singular; i.e., g(Au) has a continuous com-
ponent as well as perhaps a delta-function part.

EB.g., if f(Au, M) = Me™ ™",
£=1/M and g(Au) = e **)

The validity of our assumptions for the important
kernel (2) is readily seen. It follows immediately
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that £ = (Au) = &/M 4+ o(M) as M — =, where
£, is independent of M. Let

o(p, M) = f e f(Au, M) dAu

and

v(p) = f e ““g(Au) dAu.

Since (57) is an integral equation of the convolution
type, it may be solved by Laplace transforms. We
have
Wi, 3 = s | e (58)
) T i) T—op, )P ¥
the integral being taken over a line to the left of all
poles and parallel to the imaginary axis. Evaluating

by residues,
Weu, M) = 15 + SR+ su=0).  (59)

The term 1/¢ comes from the poles at p = 0 in (59),
the terms R.e”™ from the poles at p = p,, with
R, = —=1/¢'(p, M). From (58) it is clear that the
real part of p, is negative: the p; and R, are actually
functions of M, and to determine their asymptotic
behavior, Assumption (1) above is used. Now

= lim L [ g (& )
v@) = lim 57 [ e1(3F, ) dsu
= lim | e ""*“f(Au, M) dAu
A0

= lim o(Mp, M).
M—0

It follows that if r, are the nonzero roots of ¢(p) = 1
then there is a correspondence between the p; and 7,

such that

p. = Mr, + o(M) (60)

and
R, = —M/y'(r) + o(M). (61)

Thus both R, and p; are of the order of M, as M
tends to infinity.

Turning to the higher-order functions B,(u | ')
(i =1,2, ---), let us assume that K.(u | «) also
depends only on the difference Au = u — u’. Hence
we may write K;(u | v') = K;(u — u'), and as well
B;(u | w') = B;(u — u') where

B(w) = ) + [ K. — w)itu — w)Bw) du.
©2)
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Again, Eq. (62) is of the convolution type and its
solution is given by

1 o
B,-(u, J”) = fi—;me dp,

the integrand being taken over the same contour as
in (58), and ¢,(p, M) being defined by

(63)

oo, M) = [ &K (8w, Mf(au, M) du.  (64)
1}
In (63) and (64) the dependence of the different
functions on M is explicitly indicated. The integrand
in (63) has poles at the points where

@.‘(P; -n'{) = 1.

Let us denote these points by p,;(M)(j = 1, ---)
with residues R,;(M). We will assume that the
p:;(M) are bounded away from zero for all 7, j, M:

lpll(ﬂf)l > M, (65)

where n > 0 is not dependent on M. This assumption
is actually a consequence of a simpler one on the
scattering. Note that for ¢,(0, M) to equal unity it
is necessary that K,(Au, M) = 1 for all Au. This
follows from (64) using the normalization condition
for f(Au). But K,(Au, M) by definition is the mean
value of P;(y)(y = @-Q’) for a change Au in lethargy
at a collision. Hence, since P;(y) = 1 only for
v = 1 or —1 (if ¢ is even), inequality (65) is equi-
valent to

Assumption (2). There exist positive numbers
0 < 7', n'" < 1 independent of M, such that the proba-
bility of the inequality |y| < n' s greater than 5".

In other words, scattering does not tend to become
directly forward or directly backward as M tends
to infinity. The effect of Assumption (2) is that after
a large number of collisions all trace of the particle’s
initial direction is lost.

In addition, we make

Assumption (3). The limit of K,(Au/M, M) as M
goes to infinity exists.
Then by the same argument leading to Eq. (60) one
can show that there are numbers r;; with negative
real parts, and numbers R X such that
pif — M?",—,- + 0(1;{), R“,' o= MR?, + O(M) (61)

Again the validity of the above assumption can be
readily verified for the elastic scattering kernel.
Finally we require

Assumption (4). For some function L(M),
lim areo L(M) Z (u, M) exists for all u and is positive.
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The point of Assumption 4, is to exclude cross
sections of the form = (v, M) = e ™. This case
results if proton moderation at very large lethargies
is considered (M then is the lethargy scale) because
of the 1/v dependence of the cross section. For con-
venience, we take L(M) = M! which can always be
achieved by a suitable transformation of the length
scale.

Consider the moments (z"(u)) for large M. Accord-
ing to Eq. (50), (z"(u)) will be composed of integrals
over different products of n + 1 of the B, functions.
Since B, is of the order of M (Eq. 59) while B;(z > 0)
is of the order of unity," the dominant contribution
will be from the term containing the maximum
possible number of the B,. If we take n to be even,
this is just the term consisting of the product
ByB,ByB, --- BB,, where the B, alternate with
the B,. Let us consider (z°(u)). Keeping only the
dominant, term,

Wi | Oay = 2 [ Gl —w)

3 ) ()
“ B:(u’ - u”)BO(u”) 1
X fo = du'’.  (66)

We have for the inner integral, with By(u) re-
placed by 1/¢ and B,(u) by 2.: Rae™™ + &),

* By(u — u’)B,(u)

A =)
s 1_1’,ﬂ WP gt 1.1
. Z £ f 2(u) £ Z(u)
1 1 IRs 1

= - = — =—=1 —— 4 lower order terms.
E3W ~ 4E paze) T

The last equation comes from integrating by parts

and noting Eq. (61).™ But

R 1

v Pa 1 - ‘PI(P)

"
»=0 1= (7>
¥ = Q-Q).

1 =

Hence we finally have for {(z*(u)), with By(u) taken
to be 1/¢,

8 2 r- 1 du’
@) =3 [ = v

Note that B,(u’ — u’) in the integral in (66) acts
just like the delta function §(u’ — w)/(1 — (¥)).

(67)

13 Though the term R;; er;;» tends to zero exponentially
fast with increasing M for a fixed u, on integration one
obtains R;/p;; which is of order unity in M.

4 The assumption on the cross section was used here.
If, e. g., T(u) ~ e, then ='(u) ~ Me M and this would
lead to additional terms of the same order as those retained.
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Using this fact, one can establish (with By(u) = 1/§)
the recursion for the largest terms,

n _n(n—l) * 1 1 An=2)7 ¢ ’
@y =2 [ o et G

Using (67), solving for (z"(w)) explicitly, and taking
into account the symmetry of the integral,

wwn = i G) L sent=—am)
(n even). (68)

Note that since £ (u) ~ M}, ¢ ~ 1/M, the even
moments are of the order of unity. On the other hand,
the odd moments will be of the order of M~ since
they will contain one less cross-section term and one
less B, term then the next highest even moment.
Thus (z"(u)) — 0 (n odd) as M — «. Hence to the
highest order the moments of F(z | u) are given by
Eq. (68). But these are just the moments of the
Gaussian distribution

Flz |w) = [2r(*@)] ™ exp [—2"/2(z*(w))]. (69)

This is the age result for an infinite homogeneous
moderator.

8. THE TIME MOMENTS

Let F(u, t) be the average number of neutron
collisions per unit time and lethargy interval. Cor-
responding to F(u, t), we introduce the probability
density (¢ | ) defined as the probability density
of the time that a particle with lethargy » makes a
collision, given that the particle does attain the
lethargy u after some collision. We assume, as before,
that the particle leaves the origin at time zero with
lethargy 0. Then

F(t |u) = F(u, £)/W(u | 0).
The moments (t"(w)) of F(t | u) can be found im-

mediately from the analysis of (z"(w)).
Using the random funectional

(70)

t(u) = fo ) —z(;’)v' di(u’) (71)

(where ¢’ is the velocity of a particle with lethargy
u’), one obtains from Eq. (25)

W)W (u | 0)

_— f aw [ dw f du™ (S -
0 o (V)

X E(u(n))v(nl]—ily(u | u!)l,V(ul , un) .

X W(u(n—l) |u(n))W(u(n) |O) (72)



1526 MARTIN A.
Just as before, we can introduce a singularity-free
recursion formula for the moments. Following the
notation of Ref. 1, we let W™ (u)/W(u | 0) be the
nth moment of t*(u), the position of the particle
when it obtains the lethargy u. Then, by the identi-
cal argument that led to (55) and (56),

W () = n! W(u 0)

Z(u = O,
n-—1 ZL_'_ u W(u ruf)w(”(u!) :
MR 20 i o L N O
and .
CQOUCIDE M TECOT Y

where in the integral in (73) the term §(u — ') in
W(u | ') is to be ignored.

We can obtain the asymptotic expression for
F(t | ) in the age limit by substituting from Eq. (59)
into (72), and in so doing retaining Assumption 1
above on f(Au, M). However, Assumption 4 on the
cross section must be altered. In fact, it is required
here that not =(u, M) but rather vZ(u, M) =
vee™"* Z(u, M) have an asymptotic behavior that
is the same for all u. Thus the age approximation
cannot be valid for both the space-lethargy and
time-lethargy distribution of a slowing-down process.

In the age limit, ({") becomes then

» “odu "
= | [ atew] @
so that :
F(t|w) = &t — (Uw))), (76)

i.e., there is no dispersion in the time to slow down to
a given lethargy.

LEIBOWITZ

APPENDIX: EXTENSION TO THE CASE
OF MANY SCATTERERS

Let us consider the case where more than one type
of scattering oceurs. Corresponding to the 7th mode
of scattering (¢ = 1,2, - - - | n) there will be a scatter-
ing cross section Z;(u) and a scattering kernel
K,(Q-Q', u, w'). The key result is that such a
moderator is equivalent to one having only one type
of scatterer with cross section Z(u) given by

2w) = Z,(w) + 2w + - + 2, (@7
and kernel given by
K@, uv) - 2 I K@, uw). @9

This follows immediately by comparison with the
corresponding transport equation and can be seen
readily using our stochastic point of view. In fact,
the probability density of the distance s between
any two collisions is exp [— Z(u)s], while the factor
Zi(u)/Z(u) in (78) gives the probability that
if a collision oceurs it will be with the 7th type of
scatterer.

An absorbing medium is just a special case of the
above with the total cross section Z(u) being the
sum of the absorbing and scattering cross sections,
and the “scattering kernel” at a collision with an
absorber taken to be identically zero.
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The initial-value transport problem of monoenergetic neutrons migrating in a thin slab is solved
by applying the normal-mode expansion method of Case to the results of Lehner and ng Fredholm
integral equations are derived for the expansion coefficients. In addition, exact expressions for the
eigenvalues of the problem are derived and the results of calculations are presented. The solution
is shown to have properties expected from elementary diffusion theory.

I. THE PROBLEM

EVERAL solutions to neutron transport prob-
lems have been found with the use of the
normal-mode expansion method of Case.' This paper
presents an application of this method to an initial-
value problem involving the monoenergetic neutron
transport equation in slab geometry with isotropic
scattering. We consider a slab of material extending
from z = —a to z = a and surrounded by a vacuum.
The neutron distribution N(z, g, ¢) at the time ¢
depends on the single position variable z (measured
in units of mean-free paths) and corresponding direc-
tion cosine p and satisfies the equation

aN aN
Y + Zvu 5 -+ ZuN

1
=2 [ New, pd, (D
2 Ja
subject to the boundary conditions
N(iai 4y t) — Ol o § 0! t > 0: (1‘2)

where Z is the total cross section of the medium,
v the speed of the neutrons, and ¢ the net number
of neutrons produced per collision. The boundary
conditions (1.2) simply express the fact that no
neutrons enter the slab from outside. To complete
the problem we specify that

N, pn, 0) = [z, u) (1.3)

and we wish to find the subsequent neutron distribu-
tion.

We may simplify the problem somewhat if we
introduce

= N(z, u, )e*" (1.4)

w(x, u, t)
to obtain

* This work has been supported in part by the U. S.

Atomlc Fnergy Commission.
M. Case, Ann. Phys. (N. Y.) 9, 1 (1960).
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Wz d) o pya, 4, 1), (1.5)
at
w(za, u, 1) =0, ps0, t>0, (1.6)
u(z, g, 0) = f(z, u), (1.7)
where the operator 4 is defined as
d d I 5.4
A=—uwitd | aw (1.8)

The formal application to Eq. (1.5) of the Laplace
transformation with respect to ¢ yields

[S = A]ﬁ(ﬂ:, Hy S) = f(xl f-‘)' (19)

where

e, i, 8 - f ul, u, et dt.  (1.10)
o

Proceeding formally, we write the solution of Eq.

(1.9) as

alz, g, 8) = [s — A1 'f(z, ), (1.11)

where [s — A]7" is the operator inverse to [s — A].
Finally, we apply the inverse Laplace transformation
operator to Eq. (1.11) to obtain

yﬁrgz—f s — A"z, we ds,
(1.12)

where b is to the right of all the singularities of
[s — A]™'f(z, u). These singularities occur when
the operator [s — A]™' fails to exist, that is, when
s is an eigenvalue «; of the operator A. Hopefully
these eigenvalues are poles of the integrand of
Eq. (1.12). Assuming that [s — A] 'f(x, x) is
otherwise sufficiently well behaved, we may move
the line of integration in Eq. (1.12) to the left
and pick up the residue contributions. For many
years, it was assumed on the basis of physical
argument and analogy with other mathematical

w(x, p, ) =
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physics problems that the eigenvalues {e;} formed
a denumerably infinite set and by deforming the
contour of Eq. (1.12) arbitrarily far to the left a
formal expansion of the form

u(zl Hy t) = Zn 9'-'(1'. F‘)ea“ (]'13)
would be obtained.
Several years ago, Lehner and Wing®'* showed

that the form of Eq. (1.13) is not correct. They
found that the set {«;} is, in fact, finite in number,
and that the integrand of Eq. (1.12) is not sufficiently
well behaved to move the line of integration arbi-
trarily far to the left. They proceeded to show that
the expansion analogous to Eq. (1.13) should consist
of a finite series plus a residual or continuum term.
To be more precise let us introduce the following
notation. Let H be the Hilbert space of complex
functions g(z, u) square integrable on |z| < g,
vl < 1:
a 1
[ [ e wlard<= a1
—a =1
and let the domain d, of the operator A be the
Iinear manifold of those functions g & H such that

Ag € H, (1.15)

The inner product of functions ¢ and A in H is
defined by

g(+ta, u) = 0, p S 0.

mm=[[ﬂmmwmm@.(um

where the #* indicates complex conjugation. The
adjoint operator A is given by

' d e ..,
A= p et L-d,u 1.17)

with domain d consisting of those functions gt € H
such that

A''€EH, g'(a,w) =0, #20. (118

The principal result of Lehner and Wing is the

following:

w(@, u, ) = Z (f, ¥)¥,(z, we™'* + t(x, u, 1),

(1.19)
(@ p, f) = lim = f Rz, u, de** ds
v By — o - Ky '
& 27”’ y—iw
0 <y <an, (1.20)
? J. Lehner and G. M. Wing, Commun. Pure Appl. Math.
8, 217 (1955).

1J. Lehner and G. M. Wing, Duke Math. J. 23, 125
(1956).

R. L. BOWDEN AND C. D. WILLIAMS

where
[’s - A]R(I, M, ‘S) = f(-l', #)l Il’-(l', Hy S) = dA- (1-21)

The funetion R(z, g, s) is analytic (for fixed z and u)
in the right half complex plane of s (Re s > 0)
except for simple poles at the eigenvalues {«;} of

AV (x, p) = a¥;(x, ), ¥i(z,p) Eds. (1.22)

These eigenvalues are real, positive, distinet, and
finite in number, and we order them as 0 < ay <

. < ap. The eigenfunctions ¥} (z, u) are the solu-
tions to the adjoint eigenvalue problem

Az, 1) = a¥(x, w), Vi(x,n) € de (1.23)

and have the same eigenvalues as the eigenvalue
problem (1.22). We have assumed that the eigen-
functions are not degenerate and that

¥, ¥)) = 1. (1.24)

Although Lehner and Wing obtain an explicit
expression for E(z, p, s) [Ref. 3, Eq. (1.17)], their
analysis of the slab problem does not suggest either
the shape of the eigenfunctions ¥,(z, p) or the
character of the distribution of the eigenvalues
{a;} as functions of Z, ¢, and a. Schlesinger® has
devised a numerical scheme based on the above
results to approximate some of these quantities.

Below we apply Case’s method directly to the
results of Lehner and Wing to obtain a more complete
solution to the initial-value problem. That is, we
find “elementary’ solutions of the equations

[S - A]\b(zs Hy S) =190 (1'25)
and
s — A=, u, 8 =0, (1.26)

then construct solutions to the problems (1.21),
(1.22), and (1.23) as superpositions of these “‘ele-
mentary” solutions,

II. ELEMENTARY SOLUTIONS
The form of Eq. (1.25) suggests the solution

v, 1, 8) = ¢u,r, e ", 2.1)

where the spectrum of » and the shape of ¢(u, », 8)
for each value of s are to be determined. With this
assumption Eq. (1.25) reduces to

—.% sp(u, v, 5) + so(u, v, 8)

=§£ﬂmh@W. 2.2)

4 8. I. Schlesinger, LA-1908 (1955) (unpublished).
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The normalization of ¢(u, », 8) is at our disposal,
and it is convenient to normalize so that

1

d(u', v, s) du' = s. (2.3)
-1
We have then
v — wld(u, v, 8) = jov. (2.9
The general solution of Eq. (2.4) is
S v, ) = 5P ~—"—+ N0, 980 — ),  (2.5)
v— p

where the P indicates that the principal value is
to be taken in any integral involving this term and
8(v — u) is the usual Dirac delta function. Two
cases must be distinguished: (a) » § (—1, 1) and
(b)» € (-1, 1).

(a) Discrete solutions: For » € (—1, 1) the solu-
tion of Eq. (2.4) is

v

=8 .
¢(|ul v, S) =~ Qg u (2'6)
The normalization condition (2.3) yields
s = cv tanh™ (1/%), 2.7

and ¢(u, », s) of Eq. (2.6) will have the proper shape
only if Eq. (2.7) is satisfied. This situation can be
expressed as follows. If we define Q(», s) such that

Q@,s) = s — cvtanh™ (1/%), (2.8)

the » of Eq. (2.6) will be correct only if it is a zero
of Q(», s) which lies in the complex plane of », cut
along the real interval (—1, 1).

We now list some properties of the zeros of
Q(», s5). Since (v, s) is even with respect to », the
Zeros occur in pairs as ==»,. Consider the counter-
clockwise contour €, (Fig. 1) in the complex plane
s defined by

i ?r.ﬁtanh" %}. (2.9)

e,

C.={s=a+‘iﬁ

We label by S, the set of s values lying to the left of,
but not on the contour C,. Similarly, the set of
all s such that s € S; \JU C, is denoted by S.. The
zeros of Q(», s) may then be enumerated as follows.
If s € 8; U C,, there are two zeros of Q(y, s).
If s € 8,, the two zeros ==, do not lie in the real
interval (—1, 1). However, if s € C,, then the two
zeros are 4-v, = 28/wc and lie in the real interval
(=1, 1). Finally, if s € S,, the function Q(», s)
has no zeros. A proof of these facts is sketched
in Appendix A.

Thus it is found that Eq. (2.7) represents the
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condition for discrete solutions. In fact, from the
above results, we have discrete solutions of the form

Valz, 1, 8) = ¢, 8™, s€E S8, (2.10)
where

Yo

£
2v, F ou

¢s(u, 8) = ¢, £ 1,8 = (2.11)

and we have no discrete solutions if s & S,.

(b) Continuum solution: For » & (—1, 1), Eq.
(2.5) represents the solution of Eq. (2.4) at a point
of the continuous spectrum of ». We can determine
A(v, s) from the normalization condition (2.3), which
yields

A, 8) = s — o tanh™ ». (2.12)
Therefore, the continuum solution is
Wz, p,v,8) = ¢u,», 9", (2.13)

with ¢(u, », s) given by Eq. (2.5) and A(v, 8) by
Eq. (2.12).

The functions (distributions) ¢, (u, s) and ¢(g, », s)
(—1 < » < 1) are orthogonal on the interval
—1 < p < 1 with respect to the weight function p.
That is,

1
f pplp, v, 8)p(u, v', 8) du = 0, v =", (2.14)
-1

The proof of Eq. (2.14) follows closely that of Case
(Ref. 1, Theorem I) and is omitted here.

We can evaluate the last integral when » = .
In the case of the discrete solutions we obtain

N9 = [ ubie 9 da

2

- 253 (527 -1) €

and for the continuum case we find

(2.15)

f_. wb(as, v, 6w, ¥, ) du = A, 950 — »'). (2.16)
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Another very useful formula is

f_l u(u, v, 8) f : QW) v/, 5) dy dv’

= QN 9, (2.17)

where
N, s) = v[c*z™%* /4 + N(», 9)] (2.18)

and Q(») is some sufficiently well behaved but other-
wise arbitrary function defined on —1 < » < 1.
The functions ¢.(u, s) and ¢(u, », s) are complete
for any sufficiently well-behaved function defined
on —1 < u < 1. The restrictions on this function
seem to be very weak. However, for our purposes,
a sufficient condition is that its product with u
obey an H* condition® on (—1, 1). A function Q(u)
is said to obey an H* condition on the interval
(a, b) if (i) with g, and g, belonging to any closed
interval contained in the open interval (a, b), there
exists a constant C and a positive number £ such that

Q) = Q)| < C |u — ml*  (2.19)
and (ii) near the endpoints @ and b, Q(u) behaves as
Qlu)
(@ —d)f’

where d stands for a or b and Q(u) satisfies the in-
equality (2.19) on the closed interval (a, b).

By completeness, then, we mean that if pF(u)
(—1 < g < 1) obeys an H* condition on (—1, 1),
the following expansion is possible

Fp) = a.(9)¢.(x, 8) + a_(5)¢-(u, 5)

1
+ [ A6, 9,9 b, sE S,

0<s6<1, (220

Qu) =

= f_l. A, 9w, v, ) dv, sE S..,  (2.21)

With such an expansion we can evaluate the co-
efficients from the orthogonality relations. For ex-
ample, multiplying Eq. (2.21) by ue¢.(u, s) and
integrating on x over (—1, 1) we get

0@ = g [ AP, du, s € S, (222
where N.(s) are defined by Eqgs. (2.15).
Let us define F'(u) by
F'(y) = F(u) — a.(8)p.(u, $)
— a_(9)¢-(u, 5),

=F(), s€ 8., (2.23)

8 N. I. Muskhelishvili, Singular Integral Equations (C. P.
Noordhoff Ltd., Groningen, The Netherlands, 1953).

s € 8,
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where a,(s) are given by Eqgs. (2.22). The expansion
(2.21) is then rewritten as

F'(g) = My, 8)A(, s)
+p [ paCdy,,

sE S8, US,,
2 v—u

(2.24)
where we have used the explicit expression for
¢(u, », 8). The last equation has the form of a
standard singular integral equation. Thus the expan-
sion (2.21) is valid if we can demonstrate the exist-
ence of the solution of this singular integral equation
for arbitrary F'(u) (subject to the H* condition).
The proof® of the existence of this solution essentially
parallels that given by Case (Ref. 1, Theorem II)
and will not be presented here.

The validity of the expansion (2.21) allows us
to expand any solution of Eq. (1.25) in terms of
¢y (p, 8) and ¢(g, v, s) with coefficients depending
on z. These coefficients must be proportional to
e***”* and ¢™**’, as can be seen by substituting
directly into Eq. (1.25). Therefore, the general solu-
tion of Eq. (1.25) is of the form

Yz, u, 8) = a.(8)¢.(z, u, 8) + a-(s)¢¥-(z, u, 8
+ [ A6 e w9 b, s E S,

- [ A, Gk, p, 7o0) iy, S E. B2

-1
III. THE EIGENFUNCTIONS ,(z,u)

Since the eigenvalue problem (1.22) has solutions
only for positive real values of s, we can write its
general solution as

Y(z, u, 5) = a(S)¢.(z, u, 8) + a;()¢¥-_(z, », 5)
& f_l Ay, )Yz, p, v, 8) dv,  (3.1)

where the expansion coefficients are obtained from
the boundary conditions

¥(+a,pu,8) =0, usSO0.
These boundary conditions imply that

0 = a,(8)¢. (i, 8)8“’" - 02(3)95_(,!1, S)e_"'/"'

(3.2)

-+ f Ay, $)p(u, v, 8" dv, u >0, (3.3)
= a,(8)p(—n, 9" + ax(8)p_(—u, 5™

1
+ | AG, 9(—p, v, 87 dv, p>0. (34)

=1

¢ R. L. Bowden, Ph.D. thesis, Virginia Polytechnic In-
stitute (unpublished).
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It is convenient to let

A, 8) = A,(v, YH@) + Ax(—v, )H(—v), (3.5)
where
Hp)=1, »>0
=0, »<0. (3.6)

Then by noting that

¢+(|ﬂ. 3) = ¢—(_lu'9 S),
and defining

ow, v, 8) = ¢p(—p, —»,8) (3.7)

a,(8) £ as(s) = a.(s),
[A.(II, 3) :!: A2(”: 3)]8“,. - At(y! s)l
we add and subtract Eqgs. (3.3) and (3.4) to obtain

0 L at(s)[¢+(ﬂ, S)e'""" -4 4,_'(“, s)e—m/n]

(3.8)

+ f A(, )b, v, 9)

(3.9)

We note that for x > 0, ¢(u, —», s) is nonsingular,
so that Eqs. (3.9) are singular integral equations
whose kernels have singular and nonsingular parts.
These equations can be reduced to equivalent
Fredholm integral equations. This reduction is in-
dicated in Appendix B. The results are

Alp,s) = —hi(u,s)

+ ¢, —v, e " dv, u > 0.

- fo’ K, » 9ALr, 8 dv, 8 E 8, (3.108)
A, &) = —h(u,d)

+ j;' K, v, A0, 9 dv, s € S, (3.10b)
provided the following conditions are fulfilled:

n) = —% j; vX(—v, AL, D" dv, 8 € 8.,

(3.11a)
n_(s) = g vX(—v, )AL, e dv, sE 8.,
(3.11b)
where
a. (AL, s) = A0, 9). (3.12)
The kernel K(u, », s) is given by
K(u, v, s)
_ o — 1) — )X(—p, )X(—», plu, e

2(u + ») '
(3.13)
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and
ho(u, 8) = (o — u)s — 0)X(—n, $)p(u, 8)
X [X(@o, $)¥(—a, p, 8

=+ X(—w, 8)¢¥-(—a, u, 8)], (3.14)
ny(s) = —3ev)X(wo, )
+ Hov) X(—vo, =", (3.15)
where
plu, 8) = 1/[\(n, s) + in’c’w®). (3.16)

The function X (z, ) is analytic in z on the complex
plane cut along the real interval (0, 1) and is de-
fined by

exp I'(z, s)

1_2 ,SeSn

X(z, 8 = (3.17)

where
1 ’

Tie, o = f Wdﬁ, sES.US., (3.18)
=

_ My, ) + dimop

= Miicd) — S @49

T(u, s)
Equations (3.10) are Fredholm integral equations
of the second kind which have bounded kernels
(Re s > 0), and they determine A/(v, s). It is
apparent from the above that a.(s) are arbitrary
at this point. This is entirely proper because a,(s)
represent the amplitudes of the eigenfunctions and
should depend on how these eigenfunctions are
“excited” by the initial distribution f(z, u). We
shall assume that a.(s) are determined from Eq.
(1.24). Since they depend only on s, ¢, and a, Eqs.
(3.11) are determining expressions for the eigen-
values {a;}. In fact, we know from the results of
Lehner and Wing that these equations have solutions
at only a finite number of values of s and these
values are real and positive. However, suppose
Egs. (3.10a) and (3.11a) have a nontrivial solution
at § = a,;; then it is not apparent whether Eqs.
(3.10b) and (3.11b) also have a nontrivial solution
at the same value of s.
We proceed by setting

a(o) = Al(y,a;) = 0 (3.20a)
in Eqgs. (3.8) to obtain
a(a;) = @) = a.())/2 = a, (3.20b)
Ay, @) = Ay, o))
= A, @)e” /2 = a,, A,.(). (3.20¢)

Substituting these values into Eq. (3.1) and denoting
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Vi(z, u) = ¥(z, p, ;) yields

‘I’.‘(I’, Fv) = a’-’+{""+(xr My al’) + 'P—(xv My C!,')
+ [ AW, wv, )
+ 'P(Ir By, =V, C!,~)] d"} (3'21)

Similarly, if Egs. (3.10b) and (3.11b) have a non-
trivial solution at s = «,, then we set

aa) = Alv,a0) =0 (3.22a)
to obtain
a) = —ax(a) = a_(a)/2 = a,-,  (3.22b)
Ay, ) = —Aslv, o)
= A_(v, a)e """ /2 = a,-Ai-(). (3.22¢)

Substituting these values into Eq. (3.1), we get

‘I’k(I, M) —_ ak—-{‘]ﬁﬁh B, ak) - 4’—(17' H, ak)

+ j;l A-()[¥(z, &, v, a) — Yz, p, —v, @)l d”}-
(3.23)

These eigenfunctions have exactly the required
symmetry properties noted by Lehner and Wing,
that is,

‘I,r'(‘tl uu) = :‘:‘I’i(_z: —nu)r (324)
where the plus sign goes with Eq. (3.21) and the
negative sign with (3.23).

IV. THE ADJOINT EIGENFUNCTIONS ¥;!(z, u)

We look for solutions of Eq. (1.26) by separation

of variables in the form
V'@, w8 = ¢'u, v, 9™, (4.1)

where again the spectrum of » and the shape of
¢'(u, v, s) are to be determined for every value
of 5. We find that Eq. (1.26) becomes

‘L: s¢'(u, v, ) + 36'(u, v, §)

1

= 5 f ¢'(u', v, 8) du’, (4.2)
-1

and normalizing so that

-I: &' (u, v, 8) du = s, (4.3)

BOWDEN AND C. D. WILLIAMS

we get
b — ulo'(u, v, 8) = 3o, (4.4)

which is the same as Eq. (2.4). Therefore, the
spectrum of » is the same as that obtained in Sec. 11
and

¢'(u v, 8) = $lu, v, ). (4.5)
Thus, Eq. (1.26) has the discrete solutions
Vi@, w,8) = bulu, ot (4.6)
and the continuum solutions
V'@, v, 8) = $lu, v, )e™". @.7)

We use the completeness property of the ¢’s to
express the general solution of the eigenvalue
problem (1.23) as

¥(z, 1,8 = al@¢.(, k8 + a ¥z, 4, 8

+ 'A*(y,s)w'(x,#,v,s)dy, (4.8)

b |

where the expansion coeflicients are obtained from
the boundary conditions

¥'(£a, 4,8 =0, 20 (4.9)
These boundary conditions imply that

0 = ai(S)¢.(u, )" + ay(s)p_(u, e
S f A'G, 9o, v, 9" dv, u >0, (4.10)

and

0 = a®p(—u, e + a;()p-(—p, "
1
+ f Ar(vr s)¢(—lul vy s)e_.ﬂ/' dyl H > 0‘ (4'11)
-1

But these equations have exactly the same form
as Eqgs. (3.3) and (3.4). Therefore, the expansion
coefficients of the adjoint eigenvalue problem (1.23)
are the same as those of the eigenvalue problem
(1.22). Likewise, the eigenvalues of these problems
coincide. This agrees, of course, with the results
of Lehner and Wing. From the general form of the
solutions we readily find that

Vi(z, ) = V==, p);

this result was also noted by Lehner and Wing,
and, in fact, could have been used to find ¥)(z, u).

(4.12)

V. THE RESOLVENT R(x, 4, s)

We can obtain an expression for the resolvent
function R(z, u, s) of Eq. (1.21) from the Green’s
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function G(z, g, s; x,) which satisfies the equation

[s — A)G(z, u, 8; 7o) = 8(x — )f(z0, 1) (5.1)
and the boundary conditions
G(ta,p,s;2) =0, ps0, (5.2)
viz.,
R(z, p, 8 = f G(x, u, s; ;) dz,. (5.3)

For z # =z, G(z, p, s; x,) obviously satisfies Eq.
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(1.25). We can determine the behavior of ¢ near
z =1z, by integrating Eq. (5.1) on z over (z,— ¢, 2o} ¢)
and passing to the limit as e — 0 to obtain the jump
condition of the Green’s function:

G(@ot, 1, 8; %) — G(xo—, 1, 8; o)
= fxo, W)/u.  (54)
We look for a linear combination of the elementary
solutions of Eq. (1.25) which will satisfy the jump

condition (5.4) and the boundary conditions (5.2).
First we introduce

Gﬂ(x — To, K,y S) = 0+(IOI s)\”+(:c = Zo, K, 3) + ‘L. C(Io. v, 8)¢(I — Xo, K, V¥, S) d”» T > Zo, s e S,‘,

(1]
= —c_(xo, 8)Y¥_(x — 2o, 1, 8) — fq Clzo, v, S)¥(x — o, 1, v, 8) dr, E < Wy, s E S,

Il

and insert it into the jump condition to obtain

f(xo, u)/1 = ¢ (20, 8)p+(u, 8) + 0_(0, 8)p-(u, 8)

+ l Clxy, v, 8)p(u, v, 8) dv, s & S,

=1

= C(zo, v, )p(u, v, 8) dv, s € 8..

=1

(5.6)

For arbitrarily fixed z,, we know from the complete-
ness property that the expansion (5.6) is possible.
In fact, from Eq. (2.22) we have

1
N .(s)

Multiplying Eq. (5.6) by u¢(x, »/, s) and integrating
on u over (—1, 1), we obtain, with the use of Egs.
(2.17) and (2.18),

N(:, 5) f_, (o, Wb(u, v, 5) du,

s .8, \J 8§, (5.8)

In order to satisfy the boundary conditions (5.2),
we add to Gy(x — z,, 1, 8) an appropriately adjusted
solution of Eq. (1.25) to obtain

G(I, U, S8, Io) = GQ(I = Lo, K, 8)
+ di(zo, Y (z, 1, 8) + da(xo, HY-_(2, 1, 8)

ct(Io 3 S) =

[t mpuu 9 du, s€S.. 61

C(zl)y v, 8) =

1
+ [ Do, v, 9@, w9, 9) dv, s € 8.,

5.5)

1
f C(x()l L s)ll’(x — Zoy, Ky VY, 8) dl’, x> Lo, s e Sn
0

—f Cliis, v, OYE — &, 2, 8) @6, ELE BES.,
-1

= Gu(.'r -

Zo, M, S)
+ D(zo, v, $)¥(z, p,v,8) dv, s € 8., (5.9)

where the expansion coefficients are to be determined
from these boundary conditions. However, it is more
convenient to work with R(x, u, s) directly, which
according to the prescription (5.3) is then of the form
R(z, p, 8) = n(z, p, 8)

+ bi@ Y.z, 1, 8) + b()Y-(z, u, 9)

+ [ Bo, ¥, wr ) b, s E S,

1
= @)+ [ Bo.v@un9d, sES., (.10

where in this case the expansion coefficients b,(s),
ba(s), and B(», s) are determined from the boundary
conditions

R(+a,p,5) =0, p$0 (5.11)
and y(z, g, s) is given by
ﬂ(xl My 3) = f Go(x — Ty, K, S) d:co- (5.12)

It can be readily shown that R(z, u, s) given by
Eq. (5.10) is the general solution to Eq. (1.21).
Next we define
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n.(n, §) = —n(ZLa, Fu, ) = r.()¢_(—a, u, s

+£fumﬂﬂ—mm—mﬂ®,8€&

=f] (£, ¥(—a, g, —v,8) dv, sE 8., (5.13)

where

7.(8) = N_I(S) ./;, o 1[‘.:(%; to, 8)f(Zo, o) dxo dpo
(5.14)

and

{1
7y, 8) = N—(—v, 9

X [ [ ¥ @, v, 9z, wo) doo duo. (5.15)

If we now let
B(v, s) = B,(v, §H() + By(—v, §)H(—v), (5.16)

where H(») is defined by Eq. (3.6), the boundary
conditions (5.11) require that

n-(u, 8) = bi(s)¥(—a, p, 8) + b.(s)¢¥-(—a, u,s)
+ [ 1B, 99—, 19,9

+ B,{v,9)¢(—a,u, —v,8)}dv, p>0, s€8,,

= [ B, 9¥—a,n.59

+B2(yrs)‘ll(_a”u: —vls)l dpl n> 0| 8§ e S-r (5'17)
7.k, 8) = b ¢Y-(—a, p, 8 + b(s)¢¥.(—a, p, )

+j; {B:(v, 9¥(—a, u, —v, 8)
+ By(v, ¢ (—a,p,v,8)}dv, p>0, sES;

== L [BI(V! 3)‘/’(‘"0, K, —V, 8)

+ By, 8)¥(—a,pu,v,8)}dv, p>0, s€8.. (5.18)

Equations (5.17) and (5.18) are coupled singular
integral equations involving the expansion param-
eters b, (s), ba(s), B,(v, s), and B, (v, s) for the resolvent
E(z, u, s). We find that these equations are sufficient
to determine these parameters. However, the prob-
lem can be uncoupled if we do not solve for the
parameters directly, but for a combination of them
by a procedure similar to that used in See. III.

R. L. BOWDEN AND C. D. WILLIAMS

By adding and subtracting Eqgs. (5.17) and (5.18)
and letting

bl(s) =+ by(s) = bu(s),

(5.19)
(B, 9) % Bily, 91™” = B.(v, 9),

we obtain
n-(u, 8) &= 7.(p, 8)
= b by, D™ & b, )]

+ [ B 9iptu v, 9

+ ¢(u, —v, e ] dv, u >0, sES,,
= [ B.6, 9w, 9

+ o(u, —v, )¢ dy, >0, sES.. (5.20)

Again, for p > 0 Egs. (5.20) are singular integral
equations whose kernels have singular and non-
singular parts. These equations can also be reduced
to equivalent Fredholm integral equations. As these
reductions are quite lengthy, we state the results
here and outline the reductions in Appendix B. We
find that Eqgs. (5.20) reduce to the relations

B.(u,5) = g.(u,8) — b.(8)h.(u, s)

F [ K, 9B.0,5) s, s € S,

= 0.9 F [ Kw»9B.b,9d, sES., (.21

plus the conditions
bi(s)n.(s) = mu(s)
0 1
¥ 3 f X (—v, 9B.lv, 6" dv, s € S, (5.22)
(1]
where for s &€ S; the kernel K (g, », s) and the funec-

tions A.(u, s), n.(s), and X(z, s) are defined by
Egs. (3.13)—(3.16) and, for s € 8.,

K(u,v,s)
_ X (—p, 89 [X(—n,8) + — (i, )X (—v,8)]e "
2 +»)
(5.23)
and
X(Z, 8) = exp F(z, S) (524)

with I'(z, s) defined by Eq. (3.18). Finally,
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+ j;l X(_V, 3)[1‘(—)', 3) =+ T(Vu S)]%(_a, Ky —'P,S) dv}o 8 E Su

X j: X(=v, 9[r(—v, s) £ 7(v, 8)]¥(—a, g, —v, s) dv,
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(5.25)

s € 8,

is guaranteed by the analytic property of R(z, g, s)
in the right half complex plane of s with the set
of eigenvalues {a;} deleted from it.

V1. CALCULATION OF THE EIGENVALUES

It is evident that the above analysis does not

g:(n, 8) = (5 — w')s — O)p(u, )X(—pn, 3){X(—y°, Olr-(s) £ r.@]¥-(—a, u, 3)
= Xn(_“l 3)[’?—(“. 3) -+ ’h(,u,s)] . (3 _ G)P(}J. S)X(—,u,s)
and
my(s) = %-9 [7-(8) &= 7.(8)]X(—vo, s)e™**"*
i 5 . y[‘f(—v s) -+ -r(y S)JX(-—;; s)e_“hdv, sE8..
(5.26)

Equations (5.21) are Fredholm integral equation
of the second kind with bounded kernels (Re s > 0);
they determine B, (u, s) apart from the parameters
b.(s). Equations (5.22) then determine b, (s).

If we next define B/(u, s) so that

Bi(u, 8) = g.(u,s)
1
¢f K, v, 9B, 8) dv, s € S \U 8., (5.27)
0
then

B.(u,8) = Bl(u, s) + b.(9)AL(n,5), sE S,, (5.28)

where A/(u, s) satisfy Eqgs. (3.10). We then solve
for b, (s) to obtain

o 1
m,(s) F 2 j; vX(—v,8)Bl(v,s)e” """ dv

be(s)= - (5.29)

7’1*(3) :hé.c j;l vX(-p, 3)A*’(y. 8)'2!0/- dv

Our original expansion coefficients in Eq. (5.10) may
now be expressed in terms of b.(s) and B,(y, s)
with the use of Eqs. (5.16) and (5.19). Note that
the singularities of R(z, g, s) occur when the de-
nominators of b.(s) vanish; comparing Egs. (5.29)
with Eqgs. (3.11), we see that these singularities occur
at the eigenvalues {a;}, just as expected.

The appearance of terms containing p(g, s) in
R(z, u, s) may seem to require special attention
in the integral of Eq. (1.20), since 1/p(y, 5), s € C,,
vanishes for some value of x (depending on the value
of 5). However, this difficulty must be illusional since
R(z, u, s) is defined by Eq. (5.28) for s € S, U 8,
a.nd the requuement for the existence of the integral
in' Eq. (1.20) is that R(z, u, s) tend to a definite
limit as s approaches a point on (,. This convergence

give an explicit expression for the distribution of
eigenvalues as functions of ¢ and a. However, the
expressions (3.11) determining the eigenvalues are
quite amenable to numerical calculation. These
eigenvalue conditions can be made to depend only
on the ratio s/c and the product ce, and it is therefore
convenient to represent the distribution of eigen-
values as a sequence of curves in «;/c versus ca.
These curves have the following properties:

(1) ap/c — 0asca— 0.

(2) aj/c > 0asca —k;, j =1,2 ---, where
ki+: > k; > 0 and the sequence [k;} has no
finite accumulation point.

(3) the a;/c are continuous and increasing func-
tions of ca.

4) a;/c—1asca — =,

Properties (1)—(3) follow from the results of Lehner
and Wing. Property 4 follows from the fact that
for s/c real, A(n, s) of Egs. (3.10) vanish in the
limits as ca — « and s/c¢ — 1. This is true since
for large values of ca, the Neumann series solutions
of Egs. (3.12) converge uniformly, and in passing
to the limits above, the series converges to zero
since each term of the series vanishes. The eigen-
value conditions (3.13) are then identically satisfied
in these limits since each side of the equations

vanishes.
For s real and s/c < 1, we write
X, ) = expf ——Ldu 6.1)
where

mi/3 :' (6.2)

sfc — utanh™ p]

6(p) = %tan" [
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————SCHLESINGER'S RESULTS
PRESENT RESULTS

Fia. 2. The eigenvalues «;.

Now if we let
[t AW
5= [ S, (6.3)
o : G(F-’) ’
I: = j; Mm - v: d# N (64)
and
i u(e® — )1 — s/o) ]*
o = [t ] 6o
and define D, (y, s) by
Y y yvtea/p r’
STES D, 9 = Al 9, (69)
Y(H-, -5‘) D-(Fr s)er.hn/u s A-’(M; 8), (6.7)

u(l — wp)

Egs. (3.10) may be rewritten for the above range
of s as

Du,9) = dat, ) F [ K5, 9Du0, ) o, (69

where the symmetric kernel K'(y, », s) is given by

K'(u, v, )
— o —sa/p_—saf»

- Y(.u. S) Y("'l 3)X( 2(:"»:_))5)( ) 3)8 e (6-9)
and
4, 9) = FEDERI () — P sin o

+ ol (1 4 u) cos ole**, (6.10)
d_(u,s) = ﬂ%s)f(lv—;o;;"s—) [(u = [wol®) cos @

— ol (1 + W) sin al*™*,  (6.11)
with

o = |vo| I. — sa/l|w. (6.12)

AND C. D. WILLIAMS

We now rewrite the eigenvalue conditions (3.11) as
A.s) = 0, (6.13)
where

A,(s) = |w| coso +sine

B % fal Y(u, )X(—n, 9)Ds(u, 8) du, (6.14a)
A(s) = —cos o + |w|sine

a % fol Y(u, )X (—p, )D_(u, s) dp. (6.14b)

Equations (6.8) and (6.14) were used to calculate
the sequence {e;/c} asa function of ca by numerically
solving for the zeros of A.(s).® The results for
ca < 20 are displayed in Fig. 2. The curves cor-
respond alternately to eigenfunctions given by Eq.
(3.21) and (3.23), the first corresponding to Eq.
(3.23). For comparison purposes, the results of
Schlesinger (Ref. 4, caleulated from Table III) are
also shown in Fig. 2.

VII. ASYMPTOTIC SOLUTION

With the transformation (1.4) we have for the
actual neutron distribution at time ¢ the expansion

a
N(z,u, t) = Z (, ‘I’:)‘I’;(I, u)e—u—a,;z.g
i=0

+ t(z, u, e . (7.1)

For large values of { we expect the j = 0 term to
dominate. Therefore, in the limit of large times,
the asymptotic solution is

No(x- M, t) = fﬂ‘I’U(xr #)e_“_a.)s.ll (7‘2)

where
fo = (f, ¥o), (7.3)

and Vo(z, p) is given by Eq. (3.21) with j = 0.
Let us assume that 4;,(», ) = 0. Since this is
strictly true for ca — =, we expect this assumption
to be valid sufficiently far from the slab edges in
large systems. Then

No(z. u, B = foaos [¢,+(#' an)e"“"""’

+ ¢_(p" ao)ecgzll.]e—(l—a.)zrl (7-4)
and the neutron density
1
o@t) = [ Nwwdu @5
is given in this approximation by
oz, §) = foo,ae 08 (ae/ |vo])e™ %" (7.6)
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Letting
po(x) = foloscg cOS (aoz/ [v0]), (7.7)

we note that p,(z) obeys the standard diffusion
equation

d’po(2)/dz” + (cto/ [va])*po(x) = 0. (7.8)

where (ao/|vo|)’ plays the role of the “buckling”
parameter. Also, in this approximation the eigen-
value condition (3.11) becomes

X(Vn. Ofo)/X('_"u: @) = exp (—2aan/v,) .
Now from Eq. (6.1) we find

X(=vp, @) _ 1 — [_ (9 ]
X(vo, ao) 1 + vo , = =2 fu i L |

1+ exp[ fa(p'){ ,tanh-'“} #']. (7.10)

Integrating by parts we find
X(—VO: ao)/X(”m 9-’0) = exp (—2&02.;/%),
where

_ [Tewn]| a+o/Q — u?) -1 M
S j; 2a [?\2(}1 @) + 7'c’ ’2/4]{1;&“11 }d# '
(7.12)

so that Eqgs. (7.9) and (7.11) yield the condition
cos {[ao/ [vo|][Z(a + 20)]} = (7.13)

Therefore, z, is the so-called extrapolation distance
for the time-dependent slab problem in this approxi-
mation.

Let us now assume that the medium is free from
fissionable material so that

¢c=2,/Z,

(7.9)

(7-11)

(7.14)
where

2 =3, + =, (7.15)

with Z, and Z, the total scattering and absorption
cross sections respectively. From Eq. (7.2) we note
t!lat the time behavior of the system after a long
time can be characterized by the decay constant

Ao = (1 fg ao)Zv. (7.16)

-Let us expand «, from Eq. (2.7) in a power series
n the buckling (ao/|vo|)*:

22 (=1} o E" (&) *
3z, (fvo[) T 1527 ([yu) Ay

%Z=3, — (7.17)

Then

sz

152

No =20+ DvZ ([yul)2 (!%f) + o, (7.18)
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where

D = 3=z, (7.19)

e

is the diffusion coefficient from elementary diffusion
theory. Now since

lim ap/[v| = 0. (7.20)
we find in this limit the well-known result
Ao ~ Z.0. (7.21)

The second term in the expansion (7.18) is due to
leakage of neutrons from the slab and, in fact,
is just the result that one would expect from elemen-
tary diffusion theory. Finally, the third term is the
first transport correction term to diffusion theory
(ef. Nelkin®).

VIII. CONCLUSION

In the solution of the initial-value problem of
monoenergetic neutrons migrating in slab geometry,
as displayed in Egs. (1.19) and (1.20), it has been
shown that the eigenfunctions ¥,(z, u) and ¥} (z, u)
can be exactly represented by an expansion of
elementary solutions of Egs. (1.25) and (1.26) in
the forms of Egs. (3.1) and (4.8), respectively,
and R(z, u, s) can be represented by an expansion
of the form of Eq. (5.10). Furthermore, integral
equations have been derived which determine the
expansion parameters. In addition, exact expressions
for the distribution of eigenvalues {«;} as functions
and ¢ and a have been derived and calculations
presented for ca < 20. Finally, in the limit of long
time and large slab widths the results have been
shown to have properties expected from elementary
diffusion theory.

APPENDIX A

The number of zeros m of 2(», s) in the complex
plane of » cut along (—1, 1) is given by the principle
of the argument in the form

iy s Ao mnBln & = 51'11—[ D08, @Y
Ca

or Q», s)
where the prime indicates differentation with respect
to » and A., arg (v, s) represents the change of
the argument of Q(v, s) around the contour C,
(Fig. 3) generated by letting p — 0. This is true
unless s = ¢, in which case |v| = «. We, therefore,

7 M. Nelkin, Nucl. Sci. Engr. 7, 210 (1960).
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Fia. 3. The integration contour C*.

assume for the rest of this appendix that s # c.
Since (v, s) is sectionally analytic.
Q'(v, 8)

———=dv =0,

e T, 3) (A2

lim
0

go that
m =5 {Ace arg (s, + Ac,-arg @ (1,9}, (A3)

where Q*(u, s) are the boundary values of Q(», )
as v approaches the cut (—1, 1) from the left (+)
and from the right (—). From Plemelj’s formulas,®
we find

Q*(u,8) =8 —cutanh™ u & 3imep. (A4)
Let s = a + %8, so that
arg Q*(u, 8) = arg {a — cutanh™ p + (8 £ wop)}
(A5)
and, in particular,
arg 9*(=41, s) = arctan (0). (A6)

We first note that if « < 0 or [8] > 3wc, then
Q2(», s) has no zeros. Thus to complete the proof
of the behavior of the zeros of Q(»y, s) stated in
Sec. II, we need be concerned only with @ > 0
and |8| < }mc. Let us consider s € C, and denote
by u; and g, a zero of the imaginary and real part
of the arg ©* (u, s), respectively. Common zeros oceur
only for s & C,, which we have excluded for the
moment. We now note that if |u;| > |u,| then
Q(v, 5) has no zeros. But it is simple to show that

Jui| > |u| if and only if s € 8,. For s € S,, we have
arg Q'(5F1, s) = arg Q7 (=1, s) = Fm, (A7)

Hence from Eq. (A3), we find that
. 217 b () F == =B, 3 S 8, (AS)

Finally, we consider s € C,, in which case

Oy, 6) = 2B tanh! %% +ip

m

—otanh™ (1), s€EC,. (A9

R. L. BOWDEN AND C. D. WILLIAMS

Setting 2(», ) equal to zero and solving for 1/,
we obtain

1 2 -128 , 18
_=ta_nh{ tanh ﬂ+%}, s €C.. (Al0)

Yo v,
This equation has the solutions #v, = 28/n¢, as
may be easily seen by direct substitution, and these
two solutions, which are zeros of Q(», s) for s € C,,
lie in the interval (—1, 1). We now show that these
are the only zeros of (v, 5) for s € €,. Consider
the contour C, (Fig. 4) as p — 0 and 7 — 0. As above,
the number of zeros to the left of (', is

Q' (v, 8)

s W SEC.. (A1)

m = Ac, a1 20, 8) = j;
The contribution from the segments C,, will be zero

as before. Since @'(v, s)/Q(v, s) has simple poles
at :i:2ﬁ/1r0,

2'(v, s)

lim Q(V. 8)

70

Cr&

= —ir Re s (£28/xc) = —ir. (A12)

The contribution to the change in arg Q(v, s) from
the contour C,. is then

(—ir — im)/2xi = —1. (A13)
It remains only to evaluate
Ac,, arg 2, §) = Ac,, arg {a — cutanh™
+ B & wop/2)}, sE€C,.. (Al4)
We find that
Ac,. arg (v, 8) = x, s EC,, (A15)
so that
m=—1-+(r+m)/2r =0 (A16)

as was to be shown. We note here the well-known
result that if s is real and 0 < s/¢ < 1, then », is
pure imaginary.

~28/

i
*
N Azl
IMAGINARY AXIS
nr? i
3
-

TO

(. Cos

Fia. 4. The integration contour (.
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APPENDIX B
In order to reduce Egs. (5.20), let us define

(e, 8) = —bu(tulu, 8) + n-(u, 8) £ 71.(s, 9)
¥ fol B.(v, )¢(u, —», ™" dv, s € S,
= n-(u, 8) == n.(u, 8
F L‘ B.(v, )p(u, —v, )" dv, s € 8, (BI)

where

Eu(u,8) = @u(u,8)e"™" £o_(u,8)e "™, sE8;. (B2)
We can then write Eqs. (5.10) as

Colu, 8) = Mu, 8)B.(g, s)
+Pf ch*(u s)d

These types of singular integral equations may be
solved with a method ftreated extensively by
Muskhelishvili.* We shall assume that s € S, \U 8,
only. Let us also assume that B,(u, s) exist and
obey an H* condition on (0, 1) and introduce the
sectionally analytic functions

sE 8, US.. (B3

% ‘c»B(vs)
i ts 2 v—2 o

H* (2, 8) (-B4)
which vanish as 1/z as |z] — «. Applying Plemelj’s
formulas to H,(z, s) we get

1
B, o)+ HO W) = = p [ 22800, @s)

H{(u,8) — H (u, 8) = youB.(u, 9). (B6)

We can write the singular integral equations (B3)
in terms of H{*' (4, s) as

T(u, )H () — H (», 8)

_ _eut.(u, 9)
Mu, 8) — dimop '

where T'(u, 5) is defined by Eq. (3.19). Thus the
problems are reduced to the following nonhomo-
geneous Hilbert problems in the case of an arc®:
to find the sectionally analytic functions H.(z, s)
vanishing as 1/z at infinity which satisfy the complex
boundary value problems (B7).

Let [X (2, s)] " be the sectionally analytic function
which is the solution of the homogeneous part of
Egs. (B7):

(B7)

T(u,8) = X"(u, 8)/X (u, 9). (B8)
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The solution of this problem is readily found to be
that given by Eqgs. (3.17) and (5.24). We can now
write Eqs. (B7) as

X, SH (uy 8) — X (o, OH (1, 9)

= v(u, 8)¢:(u, 9), (B9)
where
_ ¢ uX (48
7(’-"1 S) = 2 )\(M. S) __ %'i?l'ﬂ}.l ] (BIO)

and look for functions X(z, s)H.(z, s) which are
solutions of Egs. (B9). From Plemelj’s formulas,
we see that the solutions are

X(z, 8)H .(z, )

y(u’ .8)35(# 8) Pi.(2)
21rzf W+ Xz g

_ X, 9’ (B11)

where P,.(z) are arbitrary polymonials. Therefore,

11
H.z8) = 50 X0 9
.u- :S).(.*(# 3) Pu(z)
X f W+ g% (B1Y)

We have arrived at Egs. (B12) by assuming that
B.(u, s) existed. On the other hand, given our
X(z, s), if H.(z, s) defined by Eqs. (B12) are sec-
tionally analytic functions which vanish as 1/z at
infinity, then B, (g, s) defined by Eqgs. (B6) will be
the solutions of the singular integral equations (B3).
The only property which gives us any difficulty is
the behavior of H,(z, s) at infinity. In order that
H.(z, s) vanish as [z| — =, we must set P..(2)
equal to zero. We also find that for s € S; the follow-
ing conditions must hold:

1
[ 9569w =0 @13
Assuming this is true, we use Egs. (B6) to write
the solutions of Eqs. (B3) as

B.(u, 8) = Nu, 9)p(y, $)¢u(n, 8)

— gl 9P [ WL g By
where p(u, 5) is given by Eq. (3.16),
qlu, ) = {X " (u, )N(g, 8) + dmen/2]}™ (B15)

and Eqs. (B13) must hold if s & S..

The functions {.(z, s) contain the unknowns
B.(s, s) and b.(s) and we can write the proposed
integral equations for the expansion coefficient by
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substituting Eqs. (B1) into Egs. (Blji) ar.ld (B13).
However, the final form of the equations is greatly
simplified by the following identities. Similar results
were used by Mitsis® in the solution of the one-

velocity critical problem.
The first identity is

Xe9 = [ X, 2 € 0,1, sE€S,

_ f‘ I(u;si du' +1, 26 (0,1), s € S.. (B16)

To show this, we note that the function

Rz, 5) = X(z,8) — f EEL_'_S:);d#’, s E 8.,

0

- Xz, 8 — f'“’g“—:‘%dm —1, s€8., B

o

is analytic in the complex plane of z except perhaps
for a cut along (0, 1). We then find that

R'(u,8) — R (4,8 = X (u, 9

ITCU

X'w,8) o _ ___]=0
- [X_(u.s} Au, ) — tmep/2 . (B1§)
and
lim R(z, s) = 0, (B19)
so that R(z) = 0 and Eq. (B16) is proved.
The second identity is
Qz, s)
X, 8)X(—z,8 = _———#(vﬁ s -0’
ZGE(O, 1), SES.)
_ 89 g0, sES., (B2)

5—0°
where 2(z, s) is defined by Eq. (2.8). To show this,
consider the function

2z, s)
X(z, )X(—2, 8wy — 2)s —6) '

J(Z,S) = SES“

o= Q(z, s)
= X(Z' S)JY(—Z’ s)(s o C) ] 8 e S.'

& G. J. Mitsis, ANL-6459 (1961) (unpublished).

(B21)
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which is analytic in the complex plane of z except
perhaps for a cut along (—1, 1). We find then that

I (wy )/ (1, 8) = 1 (B22)
and

lim J(z, ) = 1,

2@

(B23)

so that J(z) = 1, and the identity is proved.
Let us define

PX(u,s) = P f%dp w€(0,1). (B24)

We then find from the second identity that
A, 8)

X(_M. s)PX(Iul s) = (Vg e l"‘2)(8 — C) y 8 e Sl'r
= M9y, s€S., (B
(s — ¢
and
qu, 8) = (o — w)s — OX(—u, dpl, 8), s E S,
= (s — o) X(—p, 9)pu, 8), s&€ 8.. (B26)

When we substitute Egs. (B1) into Egs. (B13) and
(B14) we find integrals of the following forms which
are evaluated by decomposing by partial fractions
and applying Eqs. (B16) and (B24):

P L(#_#i)g%i) ' = ¢u(, 9PX(u, 3)

- X(:‘:V(h s)]' 8 E S-‘t (B27)

¥ -[J ::E“"-' s,t.)t ]; Qw(n, —v, 5) dv dy’

=f0 QWe(k, —v», 8)[PX(u, ) — X(—v, 9)] dv. (B28)

Equations (5.21) and (5.22) now follow by using
the corollaries (B25) and (B26) and canceling
common terms.

Finally, we note that Eqs. (3.19) are just Egs.
(5.18) with 5.(g, 8) = 0 and s & S;, and their
reductions to Eqgs. (3.10) and (3.11) follow directly
from the above results.
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On Scattering of Waves by Objects Imbedded in Random Media:
Stochastic Linear Partial Differential Equations and Scattering
of Waves by Conducting Sphere Imbedded in Random Media
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A new inhomogeneous linear partial differential equation satisfied by the mean value of the solution
of the corresponding inhomogeneous stochastic linear partial differential equation is derived. This
new equation has the interesting phenomenon that the differential operators couple with the inhomo-
geneous terms to form new inhomogeneous terms of the equation. Physically, this means that the
randomness of medium and source are coupled together to form new sources. The above approach is
then used to derive the equation characterizing wave motions in random media due to random sources.
Finally, the problem of scattering of a plane wave by a perfectly conducting sphere of radius a im-
bedded in a random medium is considered. By utilizing a “‘pseudopotential” to incorporate the effect
of the boundary condition into the reduced wave equation and by the above result, for both ka large
and small it is found that up to and including terms of order € (e = perturbation parameter) the
mean value of the scattered field can be calculated from the same deterministic scattering problem
with k replaced by an effective propagation constant kfi. The specialization of the new formulation
to the problem of scattering of a plane wave by a perfectly conducting semi-infinite space checks
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with a previous result of Chen.

1. INTRODUCTION

HE subject of wave propagation in random

media plays an important role in many branches
of modern science and engineering concerning wave
motions. It may be used to study the following
problems in wave propagation. First, if one may
wish to consider the case in which the known
medium is very complex and the determination of
the associated wave motion is impractical, one can
choose a random medium in which certain statistical
properties of wave motion may be closely related
to the actual properties of the wave motion. Secondly,
if one may wish to consider the case in which the
medium is not known precisely, but in which the
probability that the medium is any one of the family
of media is known, then one can determine the
probability that the wave motion is any one of the
associated family of wave motions. One can also
determine the mean wave motion and its other
statistics. These statistical informations can be then
utilized for estimating what is likely to be the wave
motion.

Up to now, wave propagation in radom media
has been studied quite extensively by many math-
ematicians and physicists. Some of the interesting
results on continuous approach have been obtained
by Keller,"'* Chen,** Karal and Keller,® etc. Only

Y J. B. Keller, in Proceedings of the Thirteenth Symposium
on Applied Mathematics, (American Mathematical Society,
New York, 1960).

*J. B. Keller, Proceedings of the Sevenleenth Symposium on
%Pplit’eiiqgic)zthemics (American Mathematical Society, New

ork, 1064).

the most recent works on continuous approach are
referred here and the complete bibliographies can
be found in the above references. Very little, how-
ever, has been done on the subject of scattering
phenomenon in random media by the “honest”
methods.'

In this paper, scattering of waves by an object
imbedded in a random medium is investigated by
the ‘““honest’”” method. A result on the mean value of
the solution of stochastic partial differential equa-
tions more general than that of Ref. 2, is obtained.
Then by utilizing the method of ‘““pseudopotential”
which incorporates the boundary condition into the
stochastic partial differential equation, the above
result is applied to the case of scattering of plane
waves by a perfectly conducting sphere (the total
field vanishes on the surface of the sphere) imbedded
in a random medium.

2. STOCHASTIC LINEAR PARTIAL
DIFFERENTIAL EQUATION

The stochastic linear partial differential equation
L(g) v = g(q) is a family of linear partial differential
equations depending upon a parameter ¢ which
ranges over a space {2 in which a probability density
P(q) is defined. The probability density P(g) de-
termines the probability of a given value of ¢ and,
therefore, that of the corresponding linear partial

3Y. M. Chen, J. Math. & Phys. (to be published).

4Y. M. Chen, J. Res. Natl. Bur. Std. (U. 8.) “D-Radio
Propagation” (to be published).

" hﬁ cl;‘) C. Karal and J. B. Keller, J. Math. Phys. (to be pub-
shed ).
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differential equation of the family. If the unique
solution u(g) of the linear pfx.rtaal differential equa-
tion is a single—vﬁIUEd function of g, then u(q) is a
random variable and its probability density is P’(g).
The mean value or the expectation value of u(q)
is then given as (#) = Jo w(@)P’(g) dg.

Now, if L(g) and g(g) can be expanded into power
series in ¢, where € is a small parameter measuring

the randomness in L(¢) and g(g), then we have

(Lo + eLi(g) + LoD

= go + 0(@ + €00 + 0. ()
Our main purpose of this section is to derive the
— differential equation satisfied by (u)

up to and including terms of order €. In the follow-

ing, we will achieve this by using Keller’s approach.”
Upon letting

Lguy = go (2)

and assuming that Lo is defined, we solve formally
for u from (1) and (2) as
u = u + eLy'(¢r — Lyw)

+ €L3'(ga — Law) + O().  (3)
It is also reasonable to suppose that u can be

represented as a POWEr Series i e,

w = uo + @ + €us + 0. 4)
Upon inserting (4) into the right-hand side of (3),
we obtain

w = uo + Ly'(gr — Lato)

+ Engl(gg — Ly, — L) + O(ea). (5)

In order to find the expression of u, in terms of uy,
we substitute (4) into both sides of (3) and equate

to zero the coefficient of each power of ¢, then

U = Ly'gy — Lo'Lyu,. (6)
By combining (5) and (6) we arrive at the following
result,
u = u + eLy'(h — L) + €Ly ' (g2 — Lyu,
— LL'e + LL'Lw) + 0.  (7)
Now the expection value of w is

) = uo + eLy*((gn) — (Lnhwo) + € L5 ((g2) — (Layuo

= (L1Ln_lgl) = (LIL:)-ILI)TA’-Q) = O(ea), (8)
From (8), it is found that
wo = @) + e(Li' I — Li'(gn) + O). ©)
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Upon inserting (9) into the terms of O(e) and O(¢")
of (8) only, we obtain

@ = uo + eLo ({9} — (La)w))
+ €La"((L)La (g1) + (g2)
— (LiLs*gy) — (Ln)La (L))
— (L)) + (L Lo ' Li)w) + O(€).

Finally, by applying L, to both sides of (10) and
collecting terms, we obtain the “key” equation of
this section as

[Lo + L) + (L) + (L)L (L)
— (L L5 Ly) w)
= go + @) + €(g2) + (Li)Lo {g1)
— (LLs'g) + O(). (11)

The above result contains that of Keller’s,” which
can be obtained by simply setting g, and g, to zero.
However, an interesting phenomenon arises here
because of the presence of g, and g,. It is well
known that if the solution of a partial differential
equation describes a certain physical phenomenon,
the inhomogeneous term in general corresponds to
the source of the particular physical problem under
consideration. By examining Eq. (11) one finds that
the source term is not just g, + e{g,) + €(g.) as
one might have guessed but there are additional
terms of O(€*), (I,)Ly " (g:), and (L, L5 'g,). This shows
the coupling between the differential operators and
the source terms. If I, and ¢, are statistically
dependent, it can be decoupled if and only if one
or both of L, and g; equal to zero. If L, and g,
are statistically independent, it can be decoupled
if and only if one or both of (L,) and {(g,) equal
to zero.

(10)

3. EQUATIONS CHARACTERIZING WAVE MOTION
IN RANDOM MEDIA DUE TO RANDOM SOURCES

Let us now consider a simple application of (11)
which deseribes the wave motion due to a random
source in a random medium. Consider the following
inhomogeneous wave equation,

Vu — ¢l + €f(r, DI[1 + ewr, £, @)1 ue
= golr, £) + equ(r, £, @) + €0, t, @) + O(). (12)

Then upon comparing (12) with (11), Ly, L, and L,
are given by

L,
L,

(13)
(14)

v — ¢ %,
—207*(f + w)a;,
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and
L, = —c7(f + 4fw + w")di. (15)
The inverse operator of L, is given as
Ly'F(x, t) = —(4m) ™ [+ 'F(r, ') dr',  (16)
where r — /| = randt —r(e)™' =t — s = t.
With some manipulation we obtain
(LiYw) = —207(uh, (17)
(L)) = —¢*(f" + @ N, (18)
(LoLg (L)) = —(we")™'f(x, 1)
X [ [foelr, €)u, ) + 2fux, V), 1))
+ 1, )ul’, )™ dr, (19)
and
(LLs' L)y = — (@) ((fx, &) [ (', ¢)
+ wle’, U’ ) + 20107, 1)
+ w, (', UDuE, ) + G, )
+ wo(r', VN, 1))l dr’)
+ [ [Clr, sl £}
+ 2C.(0r, 8)0u(r’, )i
+ C,.(r, s){u(’, ') )r " dr’
+ (i, §) [ [f@’, ), )
+ 2fi (", )’ 1))
+ fuld’, ¥)u@, )™ dr')}, (20)
where
Clr, |t = U']) = (w, Dw(’, T)) (21)

i8 the correlation function for the medium being
statistically homogeneous and isotropie in space and
stationary in time, and also

(L)L5Xg,) = @nc”)7'f(x, &) [{gi@’, ¢))ear™ dr’, (22)
(LLs'g) = 2rd") [fr, £) [ {g:(’, 1)) ™" dr’
+ (w(r, 1) [ g (d’, V)" dr')]. (23)

Upon collecting above results and substituting them
in (11) we finally obtain

(V' — @70 + &f + ¢ + @1at)w)
+ @) [ [Clr, ), )}
=+ 2C.(r, s)ule’, )
+ C..(r, )(u(x’, t)),.]-r™ dr’
+ [ [(f@, huw(’, ') + 1@, )w(, 1)
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X @', ) + 2(, Hw ', )

+ fult’, w(r, D, 1))

+ (f(x, Hw. (@', ') + f.', )w(r, )

X @, )™ dr’ = go + g1)

+ €[{ga) — (2me”)(wix, 1)

X J g, )7 dr')] + O(€). (24)

The above result gives Eq. (8) of Keller® if
{, go, 0:, and g, are set to zero. Also, if one lets
flr, t, @) = 1(x), w(r, ¢, @) = w(r, q), (u(r, L, Q)) -
(o(r, 9))e™ ™", go = —8(r), and g, = g, = 0, then (24)
gives the same result as Eq. (24) of Chen.” It is also
interesting to notice that the coupling between the
randomness of medium and the randomness of source
constitutes a new kind of source.

4. SCATTERING OF A PLANE WAVE BY A PER-
FECTLY CONDUCTING SPHERE IMBEDDED
IN A RANDOM MEDIUM

The problem of scattering of a plane wave by a
perfectly conducting sphere of radius a imbedded
in a random medium is considered here. Let the
center of the sphere be the origin of a spherical
coordinate system (r, 6, ¢) and the incident field
be independent of ¢. This physical problem can be
formulated mathematically as the following bound-
ary value problem.

The total field satisfies the reduced wave equation

Viu + 1 + ew(r, ¢)]'u = 0, for r < a, (25)
u@®) =0, for r < a, (26)
and
Jim r[g—;‘ — k(1 + ew}u:l = 0, @7)
where

r=(,0,¢ and |r] =r.

For simplicity (w) = 0 is assumed. In order to use
the result of (11) of Seec. 2 we must incorporate
the effect of boundary condition (26) into the partial
differential equation (25) such that the new partial
differential equation with no boundary condition
gives the same solution as that of (25) and (26) in
the exterior region of the sphere. For this purpose
we shall employ the “pseudopotential” as an equiv-
alent for the boundary condition (26).
Pseudopotential was first introduced by Fermi®
in scattering problem, but he limited its use to the

¢ E. Fermi, Ric. Sci. 7, 13 (1936).
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Born approximation. Huang and Yang’ generalized
it to include all the partial waves, but the form
of their pseudopotential is rather complicated. Later,
Liu and Wong® have derived a simpler form of the
generalized pseudopotential. From above results it
is obvious that the representation of the pseudo-
potential is not unique in general and one can always
make the choice which suits him best.

Now, let L,z be the pseudopotential which in-
corporates the effect of the boundary condition (26)
into (25), and then we obtain

{[V* + Los + k] + e2k’w(r, g)

+ €k'w'(r, @)lulr,q) =0, for 7r>a  (28)
and
lim r[g—:f — k(1 + ew)u] = 0. (29)
{If w(r, ¢) = w(r,g),
then
Lop = —a™'8(r — a)[(8/3r)r]), -,
where
a, = lim(a+ 8 and &> 0.5}
&—0
By comparing Eqgs. (1) and (28) we obtain
Li=V'+ k" + Los (30)
L, = 2k2w(rt q)s (31)
and
Ly = Fw’(r, ¢, (32)
therefore,
(L) =0 (33)
and
(Ly) = k*w?). (34)
Then (u) satisfies
(Lo + €((Ly) — (LiLg'Ly)Ju) = O() (35)

and its appropriate radiation condition. The Green’s
function of differential oerator L, is well known as

G(rl r’) i Gin(rl T’) + Go(r; r’)l (36)
where
Ginlr, 1) = ™" fAr [t — | 37

is the part of the Green’s function due to incident
field and

m)!
m)!

G, 1) =

n=0 m=0

ZZE.,.(2?1+1)( jr

X cos [m(p — ¢')]1P7(cos 6)Ph(cos 6)

LK. Huang and C. N. Yang, Phys. Rev. 105, 767 (1957).
8 L. Liu and K. W. Wong, Phys. Rev. 132, 3, "1349 (1963).

YUNG MING CHEN

X [a(ka)/ " (ka)Jh" (krs )k (kre),  (38)

rs = max (r,r'), 7. = min (r,7’),

=1 €& =€ =¢=-- =2,

is the part of Green’s function due to the scattered
field. Then

Ly'F@) = (Ls;, + Lo)F@), (39)
where
L F(r) = -—f Gio(r, r)F(r’) dr’ (40)
and
L3F(r) = _f G, (r, t)F(r') dr’. (41)
Upon using above results, we have
(Ly Ly Ly)(w)
= —ak* [ Gulr, )0 — rDute’, @) dr
— 4k [ G, )0 — D, D, (42)
where
C(lr — ') = (wEwE")) (43)

is the correlation function for the medium being
statistically homogeneous and isotropic in space.
By employing the mean-value theorem for any solu-
tion of the reduced wave equation,'™ we find

B [ Gule, )0 — ) dr

= —izk"l:fw e — 1)C(a) da](u) (44)
with
@ = Jr - r’i.
Then (35) becomes

[V* + k7" + Los))

+ 4k’ f G.(r,0")C(Ir — ' ul’, @) dr’ = O(), (45)
where
it = 14 () — 2k [ @~ 106 da)- 19

The integral operator of (45) represents the effect
of interaction between the boundary of the scatterer
and the random medium. Obviously, it is a function
of (r, 6, ), and because of h{" (kr) it behaves like
1/r for kr > 1.
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For kr > 1 and ka < 1, we can asymptotically
expand j,(ka)/h{" (ka) into power series of ka, and
then (38) yields

G,(r, 1) = (dx) 'K ahs’ (kro)h’ (kr.) + O(K*a®). (47)
Upon inserting (47) into (45) we obtain
[Vz + E*A® + Luu]('u)

+ ér'k’a f RV (ker)hSY (kr.)

X C(lr — ') u(r)) dr’ = O(). (48)

From Eq. (48) it is obvious that if ka — 0, the
integral operator can be neglected. Or better, if the

G,(, 1)
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correlation distance is short in comparison with the
wavelength and ka = O(e), it can be again neglected.

TFor r > a and ka >> 1, we can utilize the well-
known Watson transformation or Poisson sum-
mation formula to change G,(r, r') into a new series
representation such that the leading term of the
asymptotic expansion of the new series is enough to
give an excellent asymptotic representation of (38).
Without loss of generality we shall assume that
G,(r, 1’) is independent of ¢ and ' = (¢, 0), because
we are only interested in the functional behavior of
@G,(r, r') with respect to ka. Now, upon applying
Watson transformation to (38) and evaluating it
asymptotically”™"' we obtain

a’ sin 2y, 3

1
:ka, ?"’2 1" H ?’2 3 '] 2 i/ 12 ) 4 )
{[(H —3—2 " cos ;bl) (EE—SIII :P;,) —(14%2-—2 ’é cos %) (%—smz 1,!;3) 2rr sin (Y, =+ )

X exp {tk[(r® + @® — 2ar cos ¢u)! + "° + a® — 2ar’ cos ¢,)])

i

-+

1 (36)*[ w :|
12[A" (P \ka/ |2 sin 607 /a® — 1)'0"%/d® — 1)}

y exp [w,,(68 + 27) — tir] + exp [w.2r — 6) + Lix]

for (r, ) in the lit region, and

I —36\} ™
G,(I', r) = lz[Af(Pm}]z ( ka ) |:2T'T" sin 6(7'2/0-2 o 1)5

1 + eiﬂrvm
X exp {ik[(r® — a®)! 4+ (' — a®)!]}) — dvnlcos™' (afr) + cos™' (a/r)]

]é(rﬂ
P

(49)

1)_i

" exp [+, (—6 + 2r) — 2ix] + exp [w,0 + Lix]

1 + eiE:rvm
X exp {ik[(® — @} + ¢ — a)}]} — z‘vm[cos*l (%) + cos™ (;“)] (50)

for (r, 8) in the shadow region, where v,, = ka +
e *p,.(ka/6)}, p. is the smallest root of the Airy
function, A (p,). The physical meaning of ¢,, ¥,, and
¥s are given in Fig. 1. By carefully examining Egs.
(49) and (50), we find

G.(r, 1) = O(ka)™. (51)
Then upon inserting (51) into (45) we obtain
[V? 4+ E°A® + Lonlu) + €0(ka)™ = O(). (52)

It is obvious from (52) that if ka — o, the term
involving integral operator can be neglected or even
better, if the correlation distance is short in com-
parison with the wave length and ka = O(e™), it
can be also neglected. The case of scattering of a

plane wave by a perfectly conducting semi-infinite
space is equivalent to (52) with k@ — o . Then the
solution of (52) is

(u) = exp [ikiiz sin 8 — ikay cos 6]
+ R exp [ikiiz sin 8 4 ikiiy cos 0] + O()
with

(53)

R = —1. (54)

This is exactly the same result given in the last
section of Chen® (Fig. 2).

*B. R. Levy and J. B. Keller, Commun. Pure Appl.
Math. 12, 159 (1959).

10 W, Franz, Z. Naturforsch. 9a, 705 (1954).

1 H. Bremmer, Terrestrial Radio Waves (Elsevier Pub-
lishing Company, Inc., New York, 1949).



Fig. 1. The ge-
ometry of the scat-
tering problem is
shown. In addition,
the physical mean-
ing of 7, 1/, @, ¥, ¥y
and y; are given.

In summing up our results above, we have at-
tained for both small ka and large ka that up to and
including terms of order ¢, the expectation value
of u can be calculated from an equivalent deter-
ministic scattering problem with the propagation
constant k replaced by the effective propagation
constant k.

For the case that the term in (45) involving
integral operator is small but not negligible, we can

P4
u; F1a. 2. The direc-
Y Ug tions of propaga-
tion of incident and
k reflected waves are
wiq) @ shown.
%Y T x
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again employ the method of iterations to obtain
the solution. We shall assume that

1 [ 6.0, )0 — Dt 9) dr’ = M) (55)

depends upon a small nondimensional parameter g.
Upon expanding M (8) in powers of 8 and omitting
the O(¢®) term we may write (45) as

[V71 + KA + Los)(w)
7t Ez(Mo + B8M, + B’M, + O(ﬁa))(u> = 0. (56)

It seems also reasonable to suppose that (u) can
be represented as a power series in 3,

(u) = () + Bu) + ), + 0(8°).  (57)

Upon inserting (57) into (56) and equating to zero
the coefficient of each power of 8, we obtain

(V? + K" + €M, + Lop)uw) = 0,  (58)
(V' + k7" 4+ €M, + Losl(u) = —'M,(u)o, (59)
and
[V? + k*° + €My + Los)(u)
= —My{u), — €M, {u),. (60)

Now, the differential-integral equation (45) is trans-
formed into a system of many differential equations,
therefore in principle we know how to solve (45)
systematically. In our case the parameter g can be
ka if ka < 1 or can be (ka)™" if ka > 1.
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results to the theory are discussed.

INTRODUCTION

N an elegant paper, Newton' has developed a
theory for determining a potential from a knowl-

VOLUME 5, NUMBER 11 NOVEMBER 1964
Some Remarks Concerning a Pathological Matrix of
Interest in the Inverse-Scattering Problem*
PetEr J. REDMOND
Defense Research Corporation, Santa Barbara, California
(Received 4 February 1964; final manuscript received 30 June 1964)

A Hermitian matrix which oceurs in the theory of the quantum-mechanical inverse-scattering

problem has apparently contradictory properties. It has a well-behaved inverse in spite of having

zero as one of its eigenvalues. The properties of the matrix are investigated and the relevance of the

exists which is annihilated by N. That is,
2 Ny = 0. (4)
et (IN50)

edge of all phase shifts at a given energy. Newton
showed that the solution of this problem is not
unique and that there is at least one nontrivial
central potential which leads to zero phase shifts
at all energies. The lack of uniqueness follows from
the properties of the matrix

2 __ 1 T
Nl.p (l l l ! odd (1)
0 r—1 (N38)

introduced by Newton.” Newton exhibited a matrix
N~' which was both a right and left inverse of N.
The components of N~ are®

even

12
[%IT-Z—_IM leven, I’ odd, [0
2
%ii'—lz _l 2 lodd, " even, I! =0
=1 8
NN = |—= 1=0, I’ odd ®))
" (N39)
+§5 ! =0, ! odd
m
0 otherwise.
Newton also showed that a column vector
1 I=0
6, =131 [ = even 3)
0 [ = odd (IN51)

* This work was supported by the U. S. Army Research
Office (Durham).

1 R. G. Newton, J. Math. Phys. 3, 75 (1962).

* Equations and definitions which are taken from Newton’s
Paper are also identified by the equation number which
appears in that paper, e.g., (N38).

The inverse as given by Newton is incorrect. Newton's
Eq. (39) should have an over-all minus sign and this has
been corrected above. It is easy to verify that Newton’s
expression is incorrect by considering a diagonal element
of (N-1 N). With Newton’s expression for N this is a
negative definite form.

These properties impressed the author as being
rather extraordinary. The matrix —4N is Hermitian.
Normally one expects an Hermitian matrix to
have a set of eigenvectors associated with the
matrix which are orthogonal and which can be
used to resolve the unit matrix and the original
matrix. If none of the eigenvalues of the matrix
are zero then this complete set of eigenvectors
can be used to resolve the inverse of the matrix
whereas, if zero is one of the eigenvalues the in-
verse of the matrix will not exist. The Hermitian
matrix —iN, however, has a well-behaved inverse
and a state which it annihilates.

It was felt that these paradoxical properties
were worthy of further investigation. The results
of such an investigation are the subject of this
paper and can be summarized as follows:

(1) The secular equation, f(A®) 0, for the
eigenvalues 7\ of the matrix N is found. The func-
tion f(\*) has an infinite set of simple zeros and
associated with each such zero there are two
normalizable column vectors A,(\) and A,(—)\).
The point A* = 0 is not in this set. The function
f(\") has an essential singularity at A* = 0. Al-
though f(0) is not defined, f(A*) — 0 as \* — 0
along any straight line except the positive real
axis. As \* — 0 the ratios of the components A,(\)
approach the vector o, and it can be verified di-
rectly' that N6 = 0.

(2) The set of vectors A(=)\) is complete and
any normalizable vector can be expanded in this
set. The unit matrix, the matrix N, and the matrix
N~" are resolvable in terms of this set and we can
calculate the elements of N~ in terms of such a
resolution.

(3) The vector 6 is orthogonal to every member
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of the complete set of vectors A. It therefore cannot
be expanded in terms of this set. This does not
contradict the remarks under 2 since 6 is not
normalizable.*

(4) The vector & satisfying N6 = 0 is unique.

(5) It is shown that the existence of the unique
vector & gives rise to a one dimensional infinity
of potentials corresponding to any set of phase
shifts specified at one energy.

THE SECULAR EQUATION

The equation NA = +44\A when written in

detail becomes

AN = 2 2k + 1) — 201" A0,  (5)

k=0
and

Do) = 3 (20 = @m + DT 4u0). 6

1=0

The A, with odd ! can be eliminated and we obtain®

MA, () = fj FomAzu(N).

m=0

@)

The symmetric, real matrix F has components
given by

F,.= i [k + 1)* — @)™

X @+ 1" —@m)'". @8

The summations over Lk can be evaluated using
the formulas in the Appendix.® In particular, when

n #= m, Fn.m = %('HF - mz)ﬁl'(Un - Um)l

where

U, = 3 1@+ 1" - @

and this can be evaluated by substituting z = nx

4 As we see, the source of the paradox is the existence of
an eigenfunction é which has many of the expected properties
of an eigenfunction (e.g., it is orthogonal to all otﬁar eigen-
functions) but which is not normalizable and which lies
outside of a complete set of eigenfunctions. From this point
of view the fact that the eigenvalue is zero is not essential,
(consider the matrix N + 1 for example). However, since
the eigenfunctions of a matrix are unchanged by adding a
multiple of the unit matrix, the paradox can always be
expressed as we have in the text.

5 In order that the eigenvalue equations (5) and (6) be
meaningful, it is necessary to define the infinite sums in a way
that forbids unrestricted rearrangements of the terms. When
this is done it is possible to prove that the change in the
order of summation involved in going from 5 and 6 to 7 is
always allowed. A proof of this is contained in an Appendix.

¢ We evaluate such sums by relating them to trigonometric
functions. Newton had to evaluate similar sums in his in-
vestigation which he summed by purely algebraic methods.
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into Eq. (Al) of the Appendix with the result
that w, = 0if n # 0 and u, = (#°/8). Whenn = m
the expressions in the Appendix can be used di-
rectly with z = nx and the result of the calcula-

tion is
—@*/32m*) n=0, m#=0
—(x"/32n%) n#*0, m=0
P o i (x*/64n°) n=m%0 (9)
(x*/96) n=m=0
0 otherwise.

The matrix F has a very simple form and the
associated eigenvalue problem 1is easily solved.
Explicitly we have

n = 0N A, 0N = (0 /64n7) A, (N) — (73/3207) Ao(N)
(10)
and

MA,(\) = (x'/96) A,(\) — Zj; (x*/32n") A, (N). (11)

By eliminating 4., (n # 0) from these equations
we find a necessary condition for the existence of
nontrivial solutions is that the secular equation

) = 0 (12)
is satisfied with
f0) = 2 — (x*/96)
— @39 ' - @/o4n, (130)
2= /9 T (@0 — @6, (3
= (*V'z/4) cot (r*/8V7) — z, (13¢)

where we have used > n* = (z/6) and Eq.
(A3) from the Appendix.

From Eq. (13a) it is readily seen that if z is
complex that Im f(z) and Im z have the same
sign and that Im f(z) = 0 if Im z # 0. The roots
of f(z) = 0 are therefore all real. From Eq. (13b)
it is obvious that if z is negative f(z) is negative
so that all the roots A* are positive. Since there are
an infinite number of poles of f(z) in the vieinity
of z = 0, {(0) is not defined. However, direct sub-
stitution of z = 0 into either Eq. (13a) or Eq. (13b)
would give the result f(0) = 0. Substituting A = 0
into Eq. (10) yields the vector 6 and the equation
N6 = 0 is readily verified with the help of (A3).

Qur derivation of Eq. (7) is not valid when
A = 0. The result is still true, however, as can
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be seen by multiplying Eq. (6) (with X = 0) by
[(2n)* — (2m + 1)*]" and summing over m. When

= ( the 4, with ! odd and [ even are decoupled
o it might be possible that there is another vector
annihilated by N containing only components 4,
with [ odd. We now prove that no such vector exists
and that the vector & is therefore the unique solu-
tion of N6 = 0. Since little additional labor is
involved by doing so, we derive an equation satis-
fied by A,..:(A) for any eigenvalue A.

By eliminating the A,, we get an equation of
the form

A A2k+1 Z G& lA I-HI(R) (14)
=

where the symmetric matrix G has components
given by

Gi = > (@) — @6+ 1711 — @+ DT
As in the even case, the summations can be ex-
pressed in terms of trigonometric functions with
simple arguments and

Gi.. = 32+ D'QL+ 1), k=1
=32k + )™ + (=*/16)(2k + 1)7%,
k=1 (@15

The matrix G is the direct sum of a diagonal matrix
and a separable matrix, so that the eigenfunctions
are readily found. Explicitly,

M) = @/16)(2k + 1) AN

+ 2k + 1)K, (16)

with

KO = 3 3 @+ D7 4an®). ()

Comparing these equations we find that the secular
equation

g\ = (18)
must be satisfied with A~
9 = 1 — Z-: e+ 1)~
X {z — [@*/16)21 + 1))} (19a)
= 2 — [8(2)}/x"] tan [x"/8(2)"]. (19b)

Since
9@ = [8/7°@)"] tan [*/8(@)}If(@),

the roots of g(A*) = 0 are the same as those of
f(A\*) = 0 except that g(z) — 2 as z approaches
zero along a path which avoids the real axis. If

1549

we substitute A = 0 into Eq. (16), this implies
that all the 4,;,,(0) are equal. Direct substitution
[and Eq. (Al1)] shows that this is not annihilated
by N. Although this is more than enough to prove
the uniqueness of the vector & previously found,
we also point out that the form @ is positive definite
with

%

Ms

G.I:.!BI

<

2 L

B.
Z«:Zk—i—l §2k+1

ORTHONORMALITY OF THE 4 ()\)

It is a straightforward matter to verify that
the A’s form an orthogonal set. It is convenient
to consider the components A, with ! even and
with [ odd separately.

Thus,

2

1
5 (20)

> A AuV) = Ao(nAo(wJ{l + (/32"
X )i KN — (/4R ] N — (:’/64:;’)]-'}
and if A* #= A7,
AN AN
= (.

= A" we get

= JV/(N = A7),

When A*

> 4500 = 4300700,
where f'(\*) = [(d/d2){(2)], (z = \*). We choose
AN = 27N @1)
For the A,;(\) with odd I, one finds that Eqs. (6)
and (8) imply that
E Agesa(N) A% (V)

= V)7 Y Y AnFanAan(V).

n=0 m=0

We may now summarize the orthogonality prop-
erties:

> AnNALQ) =3, A =27,
n=0
— 2 ’”2
0, A s=2\2 @)
5_,; Az ALLQ) = §, X=X,
= _%! A == —A’,
=0, A a1,
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A very simple expression for A4,,(\) is obtained
by using Eq. (10). It is then possible to use Eq. (6)
to obtain an expression for A,,.,(A). This will
involve a fairly complicated sum. On the other
hand, Eq. (16) suggests that A4,.,,(A) depends on
k in a very simple way. We now demonstrate that
these results are consistent.

From Egs. (6), (10), and (21), we obtain

(21 (\)] AriN) = /N {(2n + D7+ g (=" /32k")
X [(2k)* — 2n + 1’7"V — (12/0416’)]"},

— 2 ﬁ (@B — @0 + DN — (*/64k)],
= (/2N [(x*/4)) cot (x*/8N)][(2k + 1)* — (=*/ 16?\)]_1)-
(23

In going from the first line to the second, we have
used

3 (@0" — @k + D = 4@k + D7,

which can be obtained from Eq. (A3). The last
line is a consequence of the identity given by
Eq. (A5). Finally, the first quantity in square
brackets is unity since A must be a root of the
secular equation. The result is seen to be consistent
with Eq. (16).

In summary we now have the simple equations
for the A,

2P 4.0 = 1,
2 O] 4500 = —(x*/32n°)[\* — (*/64n%)] 7",
n#0 (24)
and
2 ) AgniiV) = (N/2)2n + 1)
X [\ = @/16)2n + D7
COMPLFTENESS

(25)

In order to verify co}npleteness it is necessary
to consider sums over the eigenvalues A. These
sums may be evaluated by the method of contour
integration. The necessary summation formula are
listed in the Appendix. Because 4,,(\) = A4,.(—}\)
and Az;(N) = —Aza(—)) the sums can be
changed into sums over A\’ and several terms are
zero by parity arguments.

The completeness relationship we wish to prove is

0100 = :.E Ar(?\)Ar'(R)- (26)
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Now

T AMAR)
[0, T~ odd
Co, l = l’ = 0
—@/3mCeny, |1T0 V=

] l=2n V=0
10,2+ 1,2k+1), I =241, I!' =2k+1
(n2/320%)(n?/32m7)Col2m, 2m), ' = 70
I =2m # 0,

(27)

and by referring to the results in the Appendix
it can be verified that these are equivalent to
Eq. (26). Hence, the set is complete.

The set of vectors resolve N if

Nigo=1 2 M MNAED). (28)
A
We find that
( 0, " — 1 even
—(ADCs(2k+1), 1 =0, U =2k + 1
Nio =1|+@G)Cs(2k+1), I=2k+1, =0
(39)(x*/32n°)Cy(2k + 1, 2n),
l=2n U=2k+1
— (%) (=" /32n°)Cs(2k + 1, 2n),
l=2%+1, I'=2n,
(29)

and this is equivalent to the definition of N/
given by Eq. (1).
Finally, it is expected that

Niho= —i 2044, (30)

and by inserting the expressions for 4, in the right-
hand side, we obtain

0, I'!’ — 1 even
—3)C.(2k + 1), I =0,
o= [+G9DC(2k + 1), 1 =2k+1,
|+ Gie/3200Cx2) + 1, 20),

U!'=2k+1
V=20

l=2n0 I'=2+1

— (@)@ /32n")C4(2] + 1, 2n),
1=2+41, I'=2n3%0,
(31)

and this agrees with the known result.
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The completeness of the set A,(\) implies that
a vector b, can be expanded in terms of the A;(\)
it it is possible to change the order of summation in

b = ; A 2 AT (32)

It is easily seen that & does not belong to this
class. In fact, 6 is orthogonal to the A’s since

2 640 = PO = 0. (33)

It is interesting to note that by adding & to the
basis, the domain of vectors which can be expanded
is enlarged.
DISCUSSION

The uniqueness of the solution of N6 = 0 permits
a determination of the dimensionality of the family
of potentials consistent with a given set of phase
shifts at one energy. The general solution of the
matrix equation Nz = y is

z = N7y + ab. (34)

One of the steps in Newton’s argument involved
the inversion of such a matrix equation. The solu-
tion is then used to determine a set of members
C; which define

. = ,'Z;; Cor*ju()ir(r").- (35)

(ND)

The potential V(r) is then obtained by finding
the function K(r, r') which is uniquely determined
once f(r, ') is known by solving the integral equation

K(r,r") = f(r,r") — f' ar''r’ T K(r, )@, '), (36)
! (N5)

and then
V() = —2r'(d/dr) [ K(r, 1)]. (37)
(N7)

If one takes note of the form we have obtained
for the solution z of Nz = y and traces Newton’s
argument back, it is found that C; has the form

Ci. = (X + aY)/(Z, + aW)). (38)

There is therefore a one-dimensional infinity of
potentials V(a, r) and it is evident that the po-
tentials depend on the parameter a in a rather
complicated way.
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APPENDIX A

In the course of the analysis it was necessary
to evaluate several infinite sums. We present below
a list of formulas sufficient to perform all the sums
encountered.

S (@i + 17 - @/ = (/8 tanz,  (AD
3 lj + 17 — /e
= (=°/82")"(z" sec’ z — z tan 2), (A2)

3 (@) — @/ = /8 — 2 cota), (A3)

> 1@ - @/

= (x*/82)(z cot z + 2* ¢sc’ z — 2), (A5)
Z} )2 — 2k + 17'((2)" — @2’ /=")]™
= 1z cot z[(2k + 1)? — 42 /=) (A5)

The proof of the above results is straightforward.
For example, the last result is derived by consider-
ing the contour integral

f dw{w® cot wldw® — (2k + 1)’ [w* — 2']7'}.

It is easy to show that cot w is bounded on
a rectangular contour with vertices at the points
4+ (2N + 1)(x/2) = iV. By letting N — o« through
integer values and V — « it is easy to see that
the integral vanishes. An evaluation of the inte-
gral by the method of residues immediately gives
Eq. (A5).

It is also necessary to perform sums over the
eigenvalues of N in order to demonstrate com-
pleteness. In the following, the summations range
over all values of \*,

G = 2 [HAoR) =1, (A6)
C,(2n) = X (PO — @*/64n")] = 0, (A7)
C.(2n, 2m)

= 3 (O — (*/64n")] N — (7 /64m)]

=0 n# m
= (32n*/x"), n = m; (A8)
Cs(2n, 2m) = 2 N[N — @"/64n7)]"
X N = (@*/64m")]™",
=0, n# m
= 16n*/7', n=m (A9)
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Cu2k + 1) = 3 [FOI] [k + 1)'\* — (=*/16)]"
= (16/x°), (A10)
Cs(2k + 1) = 2 N[O [k + 1)°N
— @/16)]" = 22k + 1), (Al1)

Co2i + 1,2k + 1) = 22 N[FA)I'(25 + 1)°A
— (@' /16)]7'[(2k + 1)°A* — (x*/16)]™"
=0,
=4, j=k,
Cx{2j + 1,2n0) = 3 [FON)I7'((25 + DN
- @/16)]7'\* — (@"/64n7)]"

= (2§ + D’@n)"[(2n)" — (2 + 1)°]7'(16/x"),
(A13)

ik
(A12)

Ca(2j + 1, 2n) = 20 N[O + 1)\
— (@*/16)]'[\* — (x"/64n")]™"

= (2m)*(16/x7)[(2n)* — (2j + 1)’]™".
(A14)

The above results are easily proven. The proper-
ties of f(z) needed are the following:

(1) Asz — o f(z)/z — 1.

(2) It is possible to find a sequence of contours
Cu, such that |z| — 0 on the contours as N goes to
infinity and cot [«/8(z)!) remains bounded on
each of the contours. An example of such a contour
Cy is one made up of two segments of cardoids
defined as follows. On the first segment

Re [/8@)'] = (N + ¥r
[Im [=*/8@)}]| < (N + P,

and on the other segment

[Im (/8@ = (W + =

and
Re [#*/8@)} < (N + ¥)r.

On such a contour f(z)/(z)* remains bounded.

We can now consider an integral over a contour
consisting of a large circle of radius Ry such that
limy.. Ry = « which is traversed counterclock-
wise and the contour Cy traversed in a clockwise
sense. By integrating appropriately chosen func-
tions over this contour and then evaluating the
integrals by the method of residues, the above
results are obtained.

For example: consideration of
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[ @elf@re - /0@ + v
X = @*/64n")]™" =0

gives the expression for C7(25 + 1, 2n). The inte-
grand has poles at the roots of f(z) = 0 and at

z = (7°/16)(2j 4+ 1)™* but not at z = ="/64n’.
APPENDIX B
The eigenvalue equation
z NJ.J'A:'()\) — iAA:(R). (BI)

1*=0

is not meaningful if an unrestricted rearrangement
of the terms in the infinite sum is allowed. For one
could choose any vector A,(\) such that the sum
converged but did not converge absolutely. Since
such a series can be assigned any walue by re-
ordering the terms’ one could choose any A and
make Eq. (B1) valid by taking a suitable rearrange-
ment of the terms for each value of [. In order to
make the eigenvalue meaningful we adopt the
following definition of the infinite sum

(B2)

When such a definition is adopted all the manipu-
lations in the paper can be rigorously justified. In
particular, with this definition of the infinite sum
the solution of the equation

Z Nl.!’bl' =0

t"'=0

(B3)

is unique and b, = 4.

In order to justify the formal manipulations
performed in the paper it is necessary to show that
the change in the order of summation in going
from Eqgs. (5) and (6) to Eqgs. (7) and (14) is allowed.
We show how to rigorously obtain Eq. (7), the
proof for Eq. (14) is similar. In order to do this it
suffices to prove the following theorem:

Theorem.
Hypothesis: The sum

o= 3 [+ 1 — @)

i=0

(B4)

converges.
Conclusions:

1T, J. I'a Bromwich, Theory of Infinite Series (The
MacMillan Company, New York, 1949), 2nd ed., p. 74.
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Let us define T,,(n) by

m = > 3 (2 + 17 — @)

i=0 k=0

X @2k + D' = @) "a;.  (B5)

Then

(i) limuw lim, o T, (n) exists; call it T'(n);
(i1) lim, =) T..(n) exists and is equal to T'(n);
(iii) lim,-. lim,.. T,,(n) exists and is also equal
to T'(n).

We prove parts (i) and (ii) of the theorem. Part
(iii) of the theorem follows immediately from part
(i) according to Pringsheim’s theorem.®

Notice that no restriction is placed on the a,°
other than the convergence of the sum (B4). We
need Abel’s test which provides a powerful tool
for discussing the convergence of series.

Abel’s Test. A convergent sequence »_ a, (which
need not converge absolutely) remains convergent
if its terms are multiplied by a factor w,, provided
that the sequence u, is monotonic and that |u,|
is less than a constant k.

This result is proven in all standard texts on
infinite series'’ so we omit the proof.

We also need a lemma which is a slight general-
ization of Abel’s Lemma."

Lemma. Given a sequence of positive numbers
v; which is initially monotonically increasing and
finally monotonically decreasing so that it reaches
a8 maximum value when j = J, and given a se-
quence a; such that

H> > a>h for n<p,

=1

then

Ho; — h(v; —v,) > Z via;, 2 —H@p, —v,) + hv,.
=1
Proof. The proof is straightforward. We consider
p > J. The modifications necessary when p < J
are trivial.

. ! Pringsheims theorem states that if the double limit
(u, » — =) 8,, exists, and if the single limit lim (» — =)
8,, exists, then the iterated limit lim (4 — w) lim (» — )
«» 8ls0 exists and it has the same value as the double limit.
ference 7, p. 58.
¥ In the following, we take all quantities to be real. The
following theorem can be proven with a; complex simply by
considering real and imaginary parts.
10 Ref. 7, p. 58.
1 Ref. 7, p. 57.
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Let
8 = @y, 83 = @, + ay, ete.
Then

Doaw; = s+ (58— s + oo+ (8, — Soi)ty,
(510 — va) + -+ + 5,000 — vJ)]

+ [0 — v + 0 80,

= A + B.

In the first square bracket, the coefficients of
s, are all nonpositive so that a lower (upper)
limit on A is obtained by replacing the s, by H(h).
Thus

I

—h@, —v) 2 A > —H@, — v).

Similarly,
HUJ 2 B 2 hU_r

and the Lemma follows.

We now return to the proof of the theorem.
We proceed as follows. The sum over k in Eq. (B3)
can be done explicitly and defines a function which
has the properties of the function »; of the lemma.
Abel’s test can be used to prove the convergence
of the remaining sum over j and the lemma is
used to place limits on the difference between the
two methods of summation to show that the differ-
ence vanishes.

We now proceed to prove the theorem. Now

lim lim T, ,(n) = i ) S T (B6)

pow pre m=0

where F, . is given by Eq. (8) of the main text.
The sum over m contains only two terms if n # 0
and therefore converges. When n = 0

> Fosa; = (/908 — 3 @*/32a;. (BT

i=0 =1
Comparing this with Eq. (B4) we see that the
terms in the sum for (B7) can be obtained by multi-
plying the term of (B4) by the factor

(/32" [(2k + 1)* — (2))*].

Sinee this factor defines a monotonic and bounded
sequence, Abel’s test implies that the series (B7)
converges. The first part of the theorem is proven.

To prove the second part of the theorem we
first note that

Tou) = 3 Fasas = a,0)

I

+ 2o a;[20)* = 2n)'17 [w0) — w(),

i=0

(B8)
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where
we) = 3 [k + D = @, (B9)
= (e - @+ )T i i %0, B0
- @@~ 2 = D+ @ = %+ )
+ -4+ @+22+D7 (Bl
if 3 % 0, and
W)= 3 @+ 1)~ @)".  (BI2)

k=w+l

We obtain (B10) by noting that the right-hand
side of (B9) is equal to u; of the main text when
the lower limit of the sum is zero, and that u; = 0
if j # 0.

The prime on the summation sign in (B8) indi-
cates that the term with n = j is to be omitted.
It is now necessary to show that the right-hand
side of (B8) goes to zero as u and v go to infinity
independently. We have indicated the asymptotic
behavior of W,(»)."* The contribution a,W,(») is
independent of u and goes to zero as v — «©. We
next show that the contribution

Un(v) ?:’ a;[(2)* — (2n)']" — 0.  (B13)

-0

For large v, and n # 0, u.(») ~ (3») since all but
2n of the terms in (B11) cancel and each of these
terms behaves like (4n)7'(2v)~'. It is easily seen
from (B9) that uo(¥) ~ 3(2» + 3)7". Also the sum
over j in (B13) converges since the general term
is related to the comparison series (B4) by a factor
[k 4+ 1)* — (2)%1/1(25)* — (2r)*] which is bounded
(j # n) and is ultimately monotonic so that Abel’s
test applies. Since the infinite sum converges the

2 We obtain estimates of the asymptotic behavior of the
sums here, and in the following, by replacing the sum by an
integral. Such a procedure is easily justified in the cases
considered.
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partial sums have finite upper and lower bounds
independent of p and the product in (B13) goes
to zero.

To complete the proof it is necessary to show that

(B14)

2" a;(2)" = @n)°]'u,() — 0.
i=0
To do this we show that w;(») is a function of the
type considered in the lemma. The lemma provides
upper and lower bounds on the sum and it is found
that these go to zero in the limit.

For 7 < » + 1, Eq. (B9) represents u;(v) as a
sum of positive terms. When j < », it is easily
seen that increasing j increases each of these terms
so that w;(v) is initially an increasing function of j.

For j > » + 1, Eq. (B10) represents u;(v) as a
sum of positive terms. It is easily seen that in-
creasing j decreases each of these terms so that
u;(v) is ultimately decreasing. The maximum value
of u;(v) oceurs when j = » 4+ 1 and

1

U) = oy U7+ @3]

(B15)

1
e In »,

where we have used (B11).
We have already noted that

H> 3 a,l@) — @] > h,

with H and h independent of u. The lemma then
gives
Hu, () — h(4,4:(0) — u(¥))

> 2 a2 — )] u ()

i=0

= hu, () — H@, () — u@))
and the upper and lower bounds both go to zero
as u, v — @,
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A recently found solution to the problem of a random walk over a lattice with reflecting boundaries
is used to evaluate the resistances of several passive electrical networks. The solutions are particularly
simple for rectangular planar networks and various types are considered. The extension of the solution
to the corresponding three-dimensional array, the simple cubic lattice, is given.

INTRODUCTION

RECENTLY found solution' to the problem

of a random walk executed on a lattice with
reflecting boundaries makes possible the calcula-
tion of the effective resistances of several interest-
ing passive networks. It is the purpose of this
article to exhibit the method of solution.

The method is applicable to a large class of
networks, but here attention will be concentrated
on the physically meaningful example of a finite
planar network made up of squares bounded by
resistors; the two cases where the horizontal and
vertical resistors have equal and unequal values
will be considered.

A brief discussion of the extension of the method
to three dimensional networks is presented. In
particular, the three-dimensional analogy to the
square planar network, that is, the simple cubic
lattice, is discussed in some detail.

1. RANDOM WALK WITH INTERNAL TRAP

Consider the movement of a walker over an
array of n rows of m lattice points surrounded by
8 border of points from which there is no return;
let the border consist of the points (p, 0), (p, n + 1),
(0, g), and (m + 1, q). If F(p, q) is the expectation
that the walker will visit the point (p, ¢) after
release from the source point (a, b) before capture
at a boundary point, it is clear that the partial
difference equation

Fp, q) = 8,80 +iF@ — 1,9 + Fp + 1,9
+Fp,g— 1)+ Fp, ¢+ 1] (1D

iB. satisfied. Since the expectation that the walker
will leave the boundary is, by hypothesis, zero,
the accessory conditions

FO,9) =Fm+1,9 =0(0<¢<n+1) (1.2)
Fp,0 = Fp,n+ 1) =0 (0<p<m+1),
"~ *Based on work gerforg}ed under the auspices of the

U. 8. Atomic Energy Comimission.
! The pertinent solutions are given in the Appendix.

must be satisfied. Solutions to Eqs. (1.1) and (1.2)
have been given by MecCrea and Whipple.”

Now let it be supposed that there is an internal
trap at the point (k, I) in addition to the traps at
the boundaries; Eqs. (1.1) and (1.2) apply with
the additional condition

Fk, ) = 8uabs- (1.3)

It may be shown® that the probability of capture
of the walker at (k, [) is given by

Fk,l;a, b) — 8.8

Fk, l; k, 1) '
where it is now necessary to indicate explicitly
the position of the source. The expectation of
visit to (p, ¢) in the presence of a trap at (k, )
is given by

F(p, q;k,l;a,b) = F(p, g;a, b)

As relations (1.4) and (1.5) show, these solutions are
expressible in terms of previously known solutions.***
In situations where the solutions F(p, g; a, b) tend
to infinity, as when the boundaries are reflecting
or the lattice is of infinite extent, it is necessary
to analyze the manner in which P(k, I; a, b) ap-
proaches unity and Eq. (1.5) must be modified to
read

Fip,a;k,l;a,b) = F(p, q;a,b) — Fk, l;a, b)

Pk, l;a,b) = (1.4)

2. AN ELECTRICAL NETWORK ANALOG

The solutions discussed in Sec. 1 are closely
related to the effective resistance of a passive net-
work, as will be demonstrated forthwith. Let an
electrical network be constructed by connecting

* W. H. McCrea and F. J. W. Whipple, Proc. Roy. Soc.
(Edinburgh) 60, 281 (1940).

3 . W. Montroll, in Proceedings of the Sizteenth Symposia
in Applied Mathematics of the American Mathematical Society
(to be published).

1 E. M. Keberle and G. L. Montet, J. Math. Anal. and
Appl. 6, 1 (1963).
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all the lattice points through resistances K and let
current I be introduced at the source (a, b) and
removed at the sink (k, [). [Note that this require-
ment limits the discussion to cases of an infinite
network or a finite network with all boundaries
reflecting; otherwise, not all the current is removed
at the sink. It is evident, therefore, that (1.6) is
the pertinent relation.] The passage of the current
results in a potential distribution in the network.
If V(p, q) denotes the voltage at point (p, q), the
current flowing from (p, g) to (p 4+ 1, ¢) is given by
R'V(p, 9 — V(p + 1, g)]; since the current
flowing from any point, other than (a, b), must
be zero, the difference equation

R [Vp,9 —Vip+1,9 + VP, 9

- Ve—-1,9+ V9 — Ve g+ 1)

+ Ve, 9 — Ve, g— D] -+ =180 (2.1
results. Comparison of (2.1) with (1.1) shows that

Fp, g3k, 10, b) = 4RD™V(p, 9. (2.2

Now V(a, b)) — V(k, 1) is the potential drop from
(a, b) to (k, I) and, since the current I flows through
an effective resistance R, in going from (a, b)
to (k, 1), it is evident that

V(a, b) — V(k, ) = IR, = iRI[F(a, b; k, l; a, b)
or
R, /R = iF(a, b; %, l;a,b). (2.3)

In obtaining (2.3) use has been made of the fact that,
according to (1.6), F(k, l; k, I; a, b) =
3. THE INFINITE SQUARE NETWORK

The simpler case of (2.3) oecurs in considering
the passage of current from one point to another
in an infinite network; Egs. (2.3) and (1.6) then
yield

R./R = }|F(a, b;a,b) — F(k, I; a, b)]

= }G(lk —al, [l — b)), (3.1

a result first found by Van der Pol.® Similar results
have been given by Davies,® who also discusses
the corresponding formula for a simple cubic grid.
Values of the difference function, @, are known for
the square net® and for the triequiangular net.*
For both these arrays the resistance diverges loga-
rithmically as the distance between the source
and the sink tends to infinity.

¢ B. Van Der Pol in Probability and Related Topics in
Physical Sctences, edited by M. Kac (Intersclence Pubflshera,
Inc., New York, 1959).

$'H. Davies, Quart. J. Appl. Math. 6, 232 (1955).

GEORGE L. MONTET

4. THE FINITE SQUARE NETWORK

The more interesting case, and the one which
corresponds more closely to reality, is that of a
finite electrical network; this is analogous to an
array with four rectilinear reflecting boundaries.
In applying (1.6) to this situation, care must be
exercised in regards to the relative magnitudes of
! and b; choosing b < [, it is found that

R./R = {[F(a, b;a, b) — Fyk, I; a, b)

+ Fk, 1;k, ) — Fi(a, b5k, )].  (4.1)

The functions F(k, [;a, b) are given in the Appendix;
F.(k, l; a, b) is the solution when I < b, F,(k, I; a, b)
is the solution when I > b. Eq. (4.1) holds for all
values of the variables: 1 < a < m, 1 < k < m,
1 <b<11<1< n; however, the discussion will
be limited to the important case where the current
enters and leaves at diagonally opposite corners
of the rectangle and the valuesa = b = 1, k =

I = n will be chosen. For this configuration it is
evident that the resistance may be written as

Roee 1 + cos (vr/m)
I +m.z.;l—cos(wr/m)
sinh (m — 1)8, + (—1)"sinh B.]
X [1 = sinh B, @2
where
cosh 8, = 2 — cos (vr/m), v =1, 2, ,m — 1.
(4.3)

For small values of m and n the resistances may
be evaluated explicitly; values so found are given
as fractions in Table 1. For somewhat larger values
tables of trignometric functions may be used; values
found in this manner are listed in decimal form in
Table I. It is obvious, however, that an asymptotic
formula is desirable. For large n the quantity in
brackets in (4.2) becomes 1 — cosh 8, -+ sinh 8,,

—

so that
AR
R nlarge m - m o 1 + cos m

+ — . 21_1+COS (o) [(1—-003 %)(3—003 %)]'

Ref{ n

m 1—cos (vr/m)
m—1 3 — cos (vr/m)
=214 :/.‘;:(H'COS )[T——coﬁm]
(4.4)

Values found using (4.4) are given in Table II.
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Tasre L. Values of R.n/R [from Egs. (4.2) and (4.3)].

6 B 2.488 2.628 2.778 2.935 3.096 3.259
5 33 Hﬁ-} 2.457 2.642 2.833 3.028 3.226 3.425
4 32 2088 31873 2504 2.747 2.994 3.242 3.492  3.741
3 3 1A E 108 FLAR $384r  3.733 3.707 4.040 4,3737
2 LoE R H M HE W M ke 58w
1| 0 1 2 3 4 5 7 8 9 10 11
1
m/n—1 2 3 4 5 6 7 8 9 10 11 12
TasLe IT. Asymptotic values of R.¢ /R [from Eq. (4.4)].
6 2.248 2.415 2.582 2.748 2.915 3.182 3.248 3.415 3.582
5 2.017 2.217 2.417 2.617 2.817 3.017 3.217 3.417 3.617 3.817
4 1.735 1.985 2.235 2.485 2.735 2.985 3.235 3.485 3.735 3.985 4.235
3 1.373 1.706 2.039 2.373 2.706 3.039 3.372 3.706 4.039 4.372 4.706 5.039
2 0.866 1.366 1.866 2.366 2.866 3.366 3.866 4.366 4.866 5.366 5.866 6.366 6.866
Tl 0 1 2 3 4 b 6 7 8 9 10 11 12 13
m/n—1 2 3 4 5 6 i 8 9 10 11 12 13 14

5. A GENERALIZATION

A slight generalization of this result may be
obtained by considering a square mesh made up of
two different resistances, R, for the resistances in
the horizontal rows and R for those in the vertical
columns. Reasoning similar to that in Sec. 2 shows
that the voltage distribution is governed by the
equation

RV, 9 — Vo — 1,9 + V(p, @

+ Vip, 9 — Vip, ¢ + D] = 15,.80. (5.1)
The random walk analog to this equation is found
by considering a random walk over a rectangular
lattice in which the walker has a probability v, of
moving in the p direction and a probability
Yo = % — v, of moving in the ¢ direction. The

expectation of visit F(p, ¢) is then given by the
difference equation

Fp, @) = 8,000 + 7,[Fp — 1,9 + Flp + 1, 9]

1 m—1

2_5:\0

+ v[F(p, ¢ — 1) + F(p, ¢ + 1)]. (5.2)
Equations (5.1) and (5.2) are equivalent if
RI
Vo, 9 = 5ri o Flo, a; %, 1 @, B),
- R T
Yo = 2(1 + p)l Ya 2(1 + p)'
where the notation has been simplified by intro-
ducing the ratio p = R,/R, and setting R, = R.

The effective resistance between the point (a, b)
where the current is introduced and the point (k, 1),
where it is removed is given by

Ro"
R ~20+p + p)

The function F(a, b; k, I; a, b) is obtained by carry-
ing out calculations similar to those given in the
Appendix for the case v, = v, = }. After some not
quite trivial computations [see also Ref. 3] it is
found that

Fla, bik, La, b). (5.4

Fla,b; k, l;a,b) =

4Tqm A=0

{Siﬂh Bx(cosh By — 1) sinh ng,

X;[(I + cos (2a — 1) %)(sinh b8, — sinh (b — 1)8)(@inh (n + 1 — b)8, — sinh (n — b)B))

- 2(003 (k — a) % + cos(k+a — 1) "—n’:)(sinh b6, — sinh (b — 1)8)(sinh (v + 1 — 1B, — sinh (n — DBy

+ (1 + cos (2k — 1) %r)(sinh 18, — sinh (I — 1)8)@sinh (n + 1 — ), — sinh (n — l)ﬂx)]}.

(5.5)
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TasrLe 111. Values of Ryi/R [from Egs. (5.8) and (5.9)).
& 3 6+48p+p* 9+40p+50p?+20p*+2p* 3+425p+63p*+463p3+25p4 43"
4(14p) 9+430p426p%44p? 44-24p+42p2+24p%+4p*
3 9 2+44p+p? 2410p+4+10p24-2p° 2420p+50p24+40p%+9p4 2+4-32p+4130p2+4172p34-82p4+-12p%
2+3p 3+10p+3p? 4+26p+30p2+9p? 5+450p+91p*+54p%+9p*
144p42p 14-8p+46p* 14+14p+422p%*+8p?
1 it i 0 el et i 60 SRt 25 ot e, 1o B! 5 [, i
2 1 %0+ 342 4(1+p) 5+10p+45°
![ 0 p 2p 3p 4p
m/n—1 2 3 4 5
where where (5.8) continues to apply. Some values of
the resistance obtained where m and n are small
coshfy = — 2o X =0,1,.-,m—1, a

2‘7« Ya
Y+ Yo = %. (5.6)

In using Eqs. (5.4) and (5.5) only the specialized
case,a = b = 1,k = m,l = n, will be considered.
It is readily shown that
R¢r1=L"§{ 2 — &

R 2m % (Cosh .G;. — 1) sinh ﬂﬁ,\
X [(1 + cos Mr/m)(sinh nB), — sinh (n — 1)8,

— (=1)*sinh B,Q]}, (5.7)

where

coshfB, =14 p— pcosir/m, p=v/v. (5.8

It is instructive to consider the two extreme cases
of (5.7); that is, p = 0 and p = . In the former
case, there are n resistors, each of resistance (m—1)R
in parallel so that R, = [(m — 1)/n]R; in the
latter case, there are m resistors each of resistance
(n — 1)pR, in parallel so that K., = [(n — 1)/m]pR.
It is easily seen that (5.7) reduces to the proper
results in these two limiting cases.

For the purpose of computation it is convenient
to evaluate the term A = 0; the result 2(n — 1)p
is obtained so that

Ry cos A/ m

e S P
e (l sinh (n — 1)8, + (—)*sinh ﬁl)il

sinh ng8,
TasLE 1V. Values of Ry¢/R [from Eqs. (6.1) and (6.2) with
!l = m = 2] [asymptotic values from Eq. (6.3)].

(5.9

n 1 2 3 4 5 6
Req/R 1 5/6 1 167/134 811/551 3407/1980
Rers/R 0.470 0.720 0.970 1.220 1.470 1.720

are given in Table III. An asymptotic formula
analogous to (4.4) may be derived; it is

Bt s (o) + D5 (14 oos )

x [2-1— p— pCOSM'/m:|
1 — cos Mr/m '

(5.10)

6. THREE-DIMENSIONAL LATTICES

The method is readily extended to the three-
dimensional counterpart of the plane square net;
that is, the simple cubic lattice of points (p, ¢, )
withl1 <p<l1<g<m1<r<n. Theneeded
functions F(p, q, r) are given in Ref. 3. Work along
the lines used in Secs. 2 and 4 leads to

{(2 — &0)(2 — d,0) -

5 Sinh 7y, — sinh (0 — Dy, — (—1)*** sinh m}

sinh ny,.(cosh v\, — 1)
(6.1)
where

(6.2)

This expression is easily evaluated for small values
of the parameters [, m, and n; results for [ = m = 2,
= 2 to 6 are given in Table IV. An asymptotic
formula is easily derived for this simple case; the
result is
Ru/R—> i — D+ j2A0V3 -1+ V2 -1]

larpe

= i(n 4 0.87824), (6.3)

Resistances found by use of (6.3) are also listed
in Table IV.

It is a simple matter to extend these considera-
tions to determine the effective resistance of a

cosh vy, = 3 — cos Ar/l — cos pur/m.

l=m=2.
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simple cubic lattice of infinite extent. When this is done the value
R./R (simple cubic) = 0.252731

is found in agreement with the results of Vineyard” who has also evaluated the resistances of the body-
centered-cubic and face-centered-cubic lattices of infinite extent.

APPENDIX

To evaluate the effective resistance of a finite electrical network, the solutions to the problem of a random
walk on a rectangular array with four rectilinear reflecting boundaries are needed. Using the expectation
of visit as defined in Sect. 1 and the lattice described therein, an extension of the methods developed by
Kerberle and Montet (Ref. 4) leads to

P 0= L5 {2 - sfcos 0 - 0T+ conp +-a - 1]
N s s [sinh QB — sinh (q - l)ﬁk][Sinh (m + 1 — b)B. — sinh (n — b)ﬁk]} (AI)
sinh Bi(cosh B, — 1) sinh n8, !
with
coshp, =2 —cosknr/m, £k=0,1,2,--- ,m— 1. (A2)

This solution is equivalent to the solution® found for a random walk on a rectangular (m X n) net with
periodic boundary conditions

F(p,q) = F(p + m, q) = F(p, q + n),

if m and n are odd integers. If m or n is even, the solutions have somewhat different forms; however, these
differences become negligible for reasonably large values of m or n.* Now, when k¥ = 0, Eq. (A2) shows
that 8 = 0, and it is evident that the first term in Eq. (A1) varies as 87 for 8 small; hence, the expecta-
tion [Eq. (A1)] diverges when all four boundaries are reflecting. This divergence is similar to that found when
absorbing boundaries are allowed to recede to infinity.

Using (Al) in (1.6) shows that, for the case ¢ < I < b,

. . o “!:-m'—l 2 — 6'0 .
F\p, ¢;k,1;a,b) = m Esinh B.(cosh B8, — 1) sinh ng,

. {[sinh (n + 1 — b)B, — sinh (@ — b)A.]

x| (cos 0 — &% + con p + 0 — 1) -~ sinh g8, — sinh (g — 1B

- (cos (k — a) % +cos(k+a—1) '%)(sinh I8, — sinh (I — I)ﬂ.)]

+ [sinh ( + 1 — DB, — sinh (n — 1);9.][(1 + cos 2k — 1) 2 --- (sinh I8, — sinh (I — 1B,)

- (cos (p — k) % +cos(p+ &k — 1) E)(s‘mh g8, — sinh (g — l)ﬁ.)]}, (A3)

m

with (A2) applying.
Equation (A3) reduces to (4.2) of the text when the designated values of the variables are inserted and
some simple trigonometric identities are applied.

7 G. H. Vineyard, J. Math. Phys. 4, 1191 (1963).
8 G. L. Montet (unpublished).
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The general formulas found in a preceding paper for the characters of irreducible representations
of simple Lie groups are developed in the case of the classical groups: the four series 4, By, €, Dy,
plus the exceptional case (3. Groups of rank 1 and 2, plus A; =~ D; are studied in detail.

INTRODUCTION
N a previous paper,’ hereafter referred to as I,
we have given a geometrical construction of the
characters of irreducible representations of all simple
compact Lie groups. In the following paper, we apply
this procedure to the classical groups; in particular,
we specialize our general formulas for the characters
[formulas (19), (20), and (21) of I], to the four
geries A, B, C;, D;, and to (.. Furthermore, we
examine in detail all groups of rank 1 and 2 and
one group of rank 3 : A; >~ D,. Indeed, these groups
seem the most important ones for present day
physics.
A. GROUPS OF TYPE A; (~SUy.1)

If referred to an orthonormal basis {e;} in the
space E,,,, the roots of A, are the vectors®™*

— &, thus m = 3l + 1).
They all belong to the l-dimensional hyperplane:

€ = €

E z; = 0. (1)

This space E, contains the diagram T.

We now construct the affine coordinate system
P, -+ p: adapted to ¢° by the method indicated
in I (Sec. 3A),

Ry =% E“-’
=3L1—-2,1—4,- ---,—=142, =-D; (2)
thus,
Ro); =3l—3+1, j=1,2 , L+ 1.
Singular hyperplanes
Oan=z;,— 1z, = 0, 17 k.

(19:3‘.’]5 P. Antoine and D. Speiser, J. Math. Phys., 5, 1226
* K, Cartan, thesis, Paris (1834); Bull. Soc. Math. 41,
53 (1913); Ann. Math. 4, 209 (1929) ([in Qeuvres camplétes
(I), Czaumthler—Vll!ars, Pans, 1952.]
L. 8. Pontrj agm, Topologische Gruppen (Teubner,
mezlg, 1957), 2n
4 G. Racah, “(Jro‘x-slg Theory and Spectroscopy.” Princeton
Lecture Not,e.s CERN (unpublished)

s H. Weyl

Distance from the extremity of R, to ¢
6.’}.(Ro, !’ik) ] 1/‘\/-2- Ik - il,

and thus

=1,2, .-+, 1L

Hence, the surfaces of D, are the hyperplanes
Z; — Zi4, = 0 and one finds

min &;; = &, 41,

i = MN(Zi — Tiwa),
where A\; = 1 because of (2). Thus, finally,
(3a)

This means that the [ roots e, ;,, are the outermost
or elementary roots.
Inverting the system (3a) one obtains

Pi = i — Tiyae

_ l l—1 1
r = l+1pl+z+lp2+."+‘+1plr
_ 1 l—1 |
:2_."_l+ 1pl+l+1p2+ +l+1pl!
s B e 1 __ & _ _ l
141 ‘l_i_lpn _I +'1P2 —""l+1p|.

(3b)

The group S is generated by reflections in the
hyperplanes 9, ie., by permutations z, < z,.
Therefore, it is the symmetrical group S,,; (group
of all permutations of I 4+ 1 elements) which acts
here on the coordinates z;. The order of S;,, is
a4+ 1!

Avector V = 2, z,e, is called dominant if V€ D,,
ie., if z; > z;,, (of course, only vectors which
fulfil the supplementary condition »_; z; = 0 are
considered).

The dimension of the irreducible representation
D(K,) is given by Weyl’s formula®

Il zale. @

Math. Zs. 23, 271 (1925); 24, 328, 377, 789
(1926); See Iﬁ' Article 3 in Selecta (Blrkhb.user, Bmel 1956)

dim D(K,) =
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For A,, (4) yields
dim D(K,) =

H&

1|21 . — ),

or

dim D(K,) =

5 Lot

The irreducible representations of A, fall into
I + 1 classes, which form a group, isomorphic to
the cyclic group Z,,,. Indeed, consider the rep-
resentation SU;,, (set of all unitary unimodular
matrices of dimension [ 4+ 1), by which 4, is usually
defined. From Schur’s lemma and the unimodularity
property, it follows that the center of SU,;,, consists
of all elements a-I, a'** = 1. Thus it is isomorphic
to Z;4:1. The lattice g%, therefore, may be decomposed
into (I 4+ 1) sublattices similar to ¢° (see Fig. 3).
That is, the crystal class of every sublattice is the
group S (of course, a different origin has to be
assigned to each of them). The points of the different
sublattices represent, respectively, the elements 1, ¢,
€, -+, ¢ of the toroid (see I, Sec. 2). We call these
sublattices the classes 0, 1, 2, 3, , . We now
define the association

0 —1

pi— €

© =+ Piss). (B)

(sublattice ¢°),
j=1, -+, L

:class 0
: class 7,

(This association is not unique, we could have
defined as well: p; — €' : class j.)

Thereby, the class of every lattice point is de-
termined. Indeed, to the sum P, 4+ P, corresponds
in the toroid the product ¢*-¢ = ¢**, thus, to the
vector P = p'P;, the element

t*n
emezv- —— Elal - GI ,

which belongs to class j if and only if D kp, =
jmod (I + 1). Thus clearly the I 4 1 classes form
a group, isomorphic to the cyclic group Z,,, =
{1, ¢ ¢, -+, €'}. It follows that also the classes
of irreducible representations form a group with the
direct product as group operation, since to every
lattice point inside D, one and only one representa-
tion is associated.

Let the representation D be characterized through
the vector (= lattice point) K, = (p, --- pi).
Its highest weight then is the vector L, = (p, — 1

- py — 1). We say: D belongs to class j if its
highest weight does so, i.c., if

ZMm—D—Ehn LSS

Formula (I.6) then shows that all its weights belong
to the same sublattice, because the same property

j mod (I + 1).

REPRESENTATIONS. II 1561
ey 3 Lt
(b) - 'R¢=P
«) b 3 H b * qo——

-1 0
=(,: (a) root diagram; (b) A; (¢c) 1/A

-3 -7 =5 -3
Fi1G.1 The case A, = B,

holds for the points of A and of X(K,), by (I.7)
and (I1.9).

Thus, the unit representation belongs to class 0,
the jth fundamental representation (p, = 1, k # j,
p; = 2,1ie., L, = P;) to class j; the adjoint rep-
resentation (1, 0, --- , 0, 1) again to class 0, and
S0 on.

1. 4, = B, = C,

Positive root : e,; [see Fig. 1(a)],

R, = }e,, = P.
Coordinates : z, = ip,

= 1
T2 = —3pP,

A = [1] — [—1] [see Fig. 1(b)].
;-1 = T -2 -1,

Construction of a character:
X() = [p] — [—p],
2. X@[-1D)

€31

2 ¢ — 1 = [=p~ 1D,

[see Fig. 1(c)].

Il

Il

- 1+0— 3+

« o [=pik 1)

Fia6. 2. Root diagram and A of A;.
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______ cass 0

__________ fo_
_____ e e w 2

_____ .____..._2.7___. class 0
TOEREEE  MaNSIRse . S —— w1

& NP SO ' TSI
—————————— — class 0

FiG. 3. 4., the repartition of the three classes of representa-
tions into Dy; next to every lattice point K, of g° stands the
dimension of the representation associated with 1t (d denotes
the complex conjugate representation of d).

In more traditional notation, putting p = 2m-+ 1
and ¢ = 3y, this becomes

x = [m] + -+ + [—m],
im+ddy e—-‘(mﬂw N +m e‘.“‘
- e—"(wn)

k=—m

_e
X = JR2ZY

Dimension of D : dim D(p) = p = 2m + 1
As is well known, there are two classes of representa-
tions :p — 1 = 0 or 1 mod 2:

class 0 : p odd, m integer,

class 1 : p even, m half integer.

2. 4,
Positive roots : e,s, €13, €:5, Where e, = €2 + €23,
thus Ru = €;3.
Coordinates:

z, = 32p: + pa),
23 = 4(—=p: + pa),
T = 3(—p1 — 2p,).

A is a regular hexagon (Fig. 2).

Dimension’: dim D(p,p.) = 3p.p:(p: + po).

There are three classes of representations. [This
classification is basic for the Sakata model : class 1
describes baryons; class 2, antibaryons; and class 0,
the mesons in accordance with B ) B ~ M, ete.
The eightfold way® uses only representations of

¢ One often writes: p; = 1 + A; in the dimension formula
(e. g., when the representations are presented as tensorial
re]::r(isex}tations); i are the components of the highest
weight L.

7 8. Sakata, Progr. Theoret. Phys. (Kyoto) 16, 686 (1956).
M. Ikeda, S. Ogawa and Y. Ohnuki, Progr. Theoret. Phys.
(Kyoto) 22, 715 (1959); 23, 1073 (1960).

8 M. Gell-Mann, (unpublished); Phys. Rev. 125, 1067
(1962). Y. Ne’ eman, Nucl. Phys. 26, 222 (1961). D. Speiser

and J. Tarski, Possible global symmetries (unpublished);
J. Math. Phys. 4, 588 (1963).
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class 0.]:
P+ 2p; = jmod 3,
or

P — p; = jmod 3, i=10;1,2:

Figure 3 shows the repartition of the 3 classes into D,.

Note: A and 1/A belong to class 0.

The diagram 1/A is constructed in the standard
way in Fig. 4. However, it may also be considered
as the “sum” (superposition) of an infinite number
of similar diagrams w, (Fig. 5). All weights on the
w, are simple. w, has the same position as 1/A,
w, is shifted by the length —R, in the direction
es;, ws by —2R,, and so on. This interpretation
permits to write down at once every character
explicitly.’

Indeed, let X (p,, p.) be a characteristic. Comput-
ing then the product X(p,, p.)-1/A one sees that
the character x may be considered as the super-
position of a finite series of hexagonal figures
(precisely: figures invariant under S), all points of
it having multiplicity 1. Symbolically:
x(p.,pz) =F(p, — 1,p. — 1) + Flp, — 2,p, — 2)

+"‘+F(P1_‘P2,0) (PlZP:)-
Here F(i, k) represents a diagram which contains
the point (7, k), its five equivalents by S and all
points of the same sublattice located inside or on
this hexagon, all of them with multiplicity 1. The
sum on the rhs then means the superposition of
the different diagrams F(z, k). A better under-

standing of this procedure may be provided through
an example; Fig. 6 shows the construction of x(6, 3).

(e32)
Fra. 4. The 1/A of A,.

»J. P. Antoine, Ann. Soc. Sci. Bruxelles 77 III, 150
(1963).
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o1

61

w1+w2+w3

F1a. 6. Decomposition of 1/A of A;into the diagrams w;.

On this example, one also sees the following property
of the WD’s: The boundary of a WD consists of
2 types of edges: one finds—starting from the highest
weight—two edges, one of type p, (perpendicular
to P,) carrying p, weights and one of type p.
(perpendicular to P,) carrying p, weights. This
property is in fact valid for all A, (see below).

3. A3 - Dg

The root diagram is the set of vectors pointing
to the centers of the 12 edges of a cube (oriented
this way, the diagram shows the characteristic
properties of the group D, rather than of 4;) (Fig. 7).
Positive roots:

€12, €13, €14, €23, €24, €34,

where
1 <ji<k;

e+ e = ey

thus,

i
1
|
FiG. 6. Construction of the WD of D(6, 3) of A (dim = 81)
x(6,3) = F(5, 2) + F(4, 1) + F(3, 0) (see the text).

Coordinates:
2 = $Bp: + 2p. + pa),
z, = 1(—p1 + 2p. + ps),
i(=p — 2ps + i),
H=p1 — 2p, — 3p,y).
A is a convex polyhedron with 24 corners, 36 edges

Ty =

Ty =

€24
€23
313 l1‘
821 e
{ . Fia. 7. Root diagram of A4,.
€43 212
¢ =
e, A €32

€42

and 14 surfaces. 8 of these are regular hexagons and
6 are squares (I'ig. 8).
Dimension:

dim D(p,p.ps)
= T4pPps(01 + P22 + ps)(pr + P2 + Ps).
There are 4 classes of representations according to:
P + 2p; + 3ps — 6 = jmod 4, i=0,1,2, 3.

Their distribution into D, is shown in Fig. 9.

F16. 8. A of A5 as viewed
along P (projection on a
plane ;).
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- O W N = O w

O W N = O Wl o= o

Fia. 9. A; the repartition of the 4 classes of representa-
tions into Dg; one %roceeds as for A,, taking one by one the
intersections with the planes p, = constant.

1/A is an infinite pyramid with 3 edges and 3
surfaces. The edges are parallel to the elementary
roots e,, €32, €4s.

surface m;, = (e43, €32) L P,

the angle between e,3 and ez, = 120°,
surface my = (s, €43) L Ps
the angle between e,3 and e;, = 90°,

(€32) €21) L Py
the angle between e;, and e,; = 120°.

surface m; =

(e32!

J.-P, ANTOINE AND D. SPEISER

Fra. 10. The 1/A of A; General view.

All weights on the edges are simple. The multiplic-
ities of the weights depend only upon the angles
between the different roots, as was shown explicitly
through the construction of 1/A in I; whence follows
that all weights on surface 7, have multiplicity 1
whereas surfaces =, and ,; are identical to 1/A of
A,. (Fig. 10).

Here one may also decompose 1/A in successive
“shells” or trihedra, all similar but with increasing
multiplicity. The summits of the trihedra lie on a
ray pointing along the root e,,. On each “shell” the
multiplicities are ordered similarly to the outermost
“shell.” Figure 11 shows the projections of the 3
first “shells’” on planes parallel to 7,. When 1/A is
presented in this geometric way, the characters may
be easily obtained also as geometric figures, e.g.,
by proceeding through successive layers parallel to
w2 One finds a result analogous to the one found
above for A.: x(p,p.ps) is a polyhedron invariant
under S, with 3 types of surfaces (x; L P,):

figure x (p.ps) of A,, its edges having
respectively, p, and p; weights.

Il

surface m,

surface m; = rectangle, its edges have respec-
tively, p, and p; weights, and all
weights on it are simple.

surface w3 = figure x(p,p.) of 4., its edges having
respectively, p, and p, weights.

(e43)

m

(2) (3)

Fic. 11. The 1/A of A;, projection of the first 3 “shells’” on the plane .
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(b)

outer 'shell

Thus from every corner start 3 edges, the edge
(m;, x;) having p, weights (7, ,k = 1, 2,3 + cycl.).

The weights inside this boundary are distributed
on “shells” in much the same way, but the multiplic-
ities are higher. All weights of course are on lattice
points of the same class. As an example, Fig. 12
shows x(3, 2, 2) cut in layers parallel to =, and
then decomposed in successive “‘shells”. For more
examples of WD from A, see the work of Wigner.'®

4. A,, The General Case

It is clearly impossible to use a graphical method
for treating groups of rank > 3. Therefore, the
general formula must be expressed in the coordinate
Bystem (xy, 2, *** , ;41) best suited for groups 4.,
but geometrical analogies will provide valuable
Buidance. In order to do so the m summations in

10 E. P. Wigner, Phys. Rev. 51, 106 (1937).

inmer " shell ”
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F1c. 12. Construction of the WD of (3, 2, 2) of 4, (dim =
140) (a) x(3, 2, 2) cut in layers parallel to =; (b) x(3, 2, 2)
decomposed into successive “shells.” (Only multiplicities > 1
are noted on the figure.)

(I. 18) may conveniently be carried out in two
stages of, respectively, l and (m — [) summations.

In the first stage, we sum along ! independent
roots: this yields a pyramid o, which has [ edges,
! surfaces [(I — 1)-dimensional hyperplanes] and
multiplicity 1 at all its points. These roots will be
selected in such a way that the I surfaces of w obey
equations as simple as possible.

We choose to sum first alonge;,,,;,7 = 1,2, -+, L
This yields for the surfaces of w the I hyperplanes:

$f=(_R0)I=_I/2+j_ll j=1:2:"°’lr
which all pass through the point — R, (summit of w).

Indeed, by definition: (m;, is the parameter in-
dicating the summation along e;;):

©=w(—R) = X2 2 (=R,
= ¥ . 3 I:—Ru+ ana,.em.;]'
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For every j = 1,2, --- , I, one has
!

(“Ro + z m:u..‘etn.i)_

= (—R,); — Mppr,i < (_‘Ro)n

where, as in all formulas below, the inequality sign
means that both sides of the inequality differ by
an integer. Thus, w(—R,) is the set of all lattice
points @ whose coordinates z, --- z;, satisfy the [
inequalities (with the convention on inequality signs)

z; < (_RU):’: J = 11 21 SR I! (6)
ie., the pyramid described above.

Note: For A,, we did not follow this prescription
in order to get w, we summed along e;, and e,
rather than along e;, and e;,; in this particular
case, the geometric construction was somewhat
simplified in this way.

Performing the m — [ = 3I{I + 1) remaining

summations, one gets:

1/4 = Z Z w(—R,),

faa 1. l=a

W @

2,

mi 1=y =0

w(—R, + muey + -

+ My —a8r0-0)-
We write this relation in the following form:

1/ = 3 - 2 wimy -

myy=0 mi, l—3=0

)

© My o).

In this summation (= superposition, as usual), the
term w(ma, -+ my ;-,) clearly represents a pyramid
identical to w, with its summit shifted up to the
point:

—Ry + maes + -0+ mym800.

Forevery j = 1,2, ---, 1 we have

("‘Ro + Myl + -0 + m:.i—nez.r-l),‘
I=j=1 i

-1
= (—Ry); — Z M, + E My, -k
b0 k=1
Thus, as above, we may write

My,1-y) = ; [@(myy -~ -

where the right-hand side means the set of all
lattice-points @ satisfying the ! conditions (j =
l: 2: BT I)

Qi(mgy - my ,y) = z; < (—Ry);
t—j—1 i-1
= Z My, T Z My, j=k-
k=0 k=1

y 0) =

w(mg, --- my.1-1)], (8a)

(8b)

Obviously «(0, --- w(—R,). Summing up

J.-P. ANTOINE AND D. SPEISER

conditions (8b) for j = 1,2, -+ , [, one gets

I
i : ie, Zinz2 % )
since every index m,; appears in exactly two lines:
in the line o with sign 4 and in the line g with
sign — (@ > g > 0).

Remembering now that S = S,.,(z, -+ Zi4)
(permutation group), a characteristic X (K,) will be

written as
X(K,) = Zs: 8.[sK,] =
where

(PK,); = (Ko);; with P = ’

2. 3:[PKd],

1 2141

g, Uy

|- o

i1

This gives for the corresponding characters:

x= % - > (X &lPK):
* ml.l—l)]})

myy=0 mi, j=3=0 perm

X Z [Q(mzl J

P oo B 1N

myy =0 mj,i—y=0 perm

X QEZ(B:” [Q + PK,]}.

(10)

Xo is of the same form, with the additional condition
‘ Q + PK, € D,
ie.,
where 2z, = (Q + PK,),
=z + (Kn)u- (11)

Conditions (8b) and (11) restrict the range of
the m;,, such that—to obtain the character—it
suffices to enumerate their possible values. To show
how the method works, we shall construet the !
fundamental representations of A;:

K:IM = (1: 1; B 112: 1: St ll)
(one 2 at the Ath place, all others 1).

2 2 Zaa,

According to the place which 2 occupies, ie.,
according to whether A = 1, 2, --- |, I, one obtains
the Ath fundamental representation.

The (I 4+ 1) Cartesian coordinates of K are
by (3b)

— 1 ;
if g=1, 00,2

if d=X41,---,l4+1L
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Condition (11) together with D :*' 2z, = 0 implies Indeed, let

that 2z, > 0 and z;,, < 0. Let in (9)

{ I—A+1
(Ks)i, = 5t Thil_ =g (g = 0),
whence
_ L, =241
zl—x1+2+ﬁl+l
With the help of (8b) and z, > 0 one finds
1 l—x+1 i &
—2_ l+1 +qgmlghz_§ml—k.l-
This equation yields
g=0,

My =0, for £=0,1, --- ,1 — 2.
Thus, z; = —3landz, = ({ — A+ 1)/ + 1).
On the other hand, let

) _ b l=x41
(KO)I'M:_ 2+ £+1 1+p @20)
and thus:
l I—A+1
21+1=Ii+|—§+T—;_-—“— 1+ p.

Therefore, again with the help of (8b) and z,,, <0
one obtains

L L_l=hd1l
2 LT £ 2 % +1 P
from which follows that » = 0, whence
1 I—x+1
T4y = é’ ) aﬂd 21 T _i'__i% — 1.
Thus one has
2y — 2141 = 1.

Since z, — 2., is a positive integer one finds

Il—x4+1
R Rt == wa
I — A 1

Dany =By B sl =zl+l=T-;-—l'

The condition Y, z; = 0 shows that & = A.
Then proceeding step by step one gets, first,

Lo l=A41
4 == l_'_li

(Ks")iy = (KoV)s, and 2 = —3l + 1,
whence

Mg = 0, k=0,1,---,1—3.

I , I=—Xx+1 :
EP)o =g+ g1 0 vith g2,
whence
B Lyl=x+1 1= x+1
ZQ—I2+2+ l+1 7= I+1
With the help of (8b) then follows
l l -3
H§+q=xas-—§+l_zml—k.=)
k=0

and, therefore, since ¢ > 1,
(KM)y = (K5,

q=1, i.e.,

My—p.s = 0, k=0,1,---,1—3.

Then in the same way one finds

g = Lo A1

l+1

(Ks")ie = (Ko")s and 2, = —3l+ 2,
whence

My_ps = 0 k=0,1,---,1— 4,

and so on for z, -+ - z;.,.

Finally, one finds a unique choice: m;, = 0 for all
admissible j and &, and therefore exactly one weight
vector in Dy:

z__(l—h—}-l Al .0 G L0 .
B I+1 " I+4+1 ' I+1 '
_ z—)\+1_1)
1} l+l )
=(0,0,---,0,1,0, ---,0) in coordinates g;.

The WD thus contains the vector z and all its
equivalents by S, so that the dimension of the Ath
fundamental representation is (*}").

This special example, of course, is somewhat
trivial. For by comparing the dimension of the rep-
resentation (which is known already before this
computation) with the number of weights equivalent
to the highest one, one sees that there are no other
weights. In particular, there are no multiple weights.
Nevertheless, the example illustrates the principle
as well as the main details of this method.

B. GROUPS OF TYPE B; (~01,1)

Referred to an orthonormal basis {e;} in X, the
roots are the vectors

+e;, te; *e (cf. Refs. 2-4).
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8

F1a. 13. Root diagram and A of B,.

Thus,
Ro=13%2a=%21—1,21—-3,:--,1),

ie.,

(Ro): = (21 + 1 — 2). (12)

Affine coordinates. A computation similar to the
one effected for case A; yields

Pi = Ti — Tiwys g=1,2 % 1= 1,
P = 2z,
whence by inversion
T =p+p+ o+ o+ P+ 30,
T, = Patpat ot Pt i (g9
Li-1 = Pi-1 + 3p1,
z = ip,.
The group S is generated by reflections in the

singular hyperplanes ¢ 5 (z; & z; = 0) and ¢;(z; = 0),
i.e., by transformations

;< +x, and z; « —zx;.

Thus S is the group of all permutations of the
coordinates x;, plus permutations of the coordinates
supplemented by an arbitrary change of their signs:
its order is therefore s = 2!

A vector V = E z;e; 18 dominant if z, > z, >

-2 x 2 0.

The dimension of an irreducible representation is
given by Weyl’s formula (4), which here gives

dim D(K,)
9t H (x; — z)(x: + ) H T
= - TS =i —  i14)
20— 1nt II @ — 2i)
where K, = (x,, 2, -+ x,).

Classes of representations. The representation 0,,.,

J.-P. ANTOINE AND D. SPEISER

(set of all orthonormal matrices of dimension 21 + 1;
by this representation B, is usually defined) has
only the unit element in its center, but its underlying
space is doubly connected. Whence the universal
covering group has two elements in the center, and
the vectors of ¢°, therefore, belong to either of two
classes. These classes form the group Z,. The same
holds for the representations which the lattice points
determine.

0,;., and the adjoint representation belong to the
same class which is spanned by the roots (class 0).

Thus, one sees immediately the distribution of
the lattice points into the two classes (sublattices):

class 0: z; integer, ¢ = 0 mod 2,
class 1: z; half-integer, ¢, = 1 mod 2.

A representation D(Ky(p, --- p.)) belongs to class
0 (1) if its highest weight Ly(p, — 1, -+ , p. — 1)
belongs to class 0(1). Thus one sees, that the ([ — 1)
first fundamental representations belong to class 0,
but the Ith, the “‘spinor’ representation, to class 1.
Expressed in Cartesian and affine coordinates, its
highest weight is the vector:

L((!",) = (%, %: Ty %) = (0; 01 et 501 1)-
1. Bz = C2
Positive roots: e, =+ e, ¢, e..
Coordinates: z, = p, + ip,
: tetragonal lattice.
Ty = 3P»

Root diagram and A: See Fig. 13.

Dimension: dim D(plpz) = %:D:Pz(p. + Pz) (21”: -+ 'pﬂ)-
Classes: eclass 0: p, odd,

class 1: p, even.
The 1/A is given in Fig. 14.

YN

{-eq) ™~

t-ey)

Fia. 14. The 1/A of B.. Note that except in the sector be-
tween the rays (—e;) and (—e, —e;) the multiplicities are
constant on the lines parallel to the roots ( —e.) and ( —e; +e2);
respectively.
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In order to construct a character x one may

(a) either construct x, applying 1/A on every

point of the characteristic with the appropriate

sign, and then superpose the different con-
tributions to Dy,

or even simpler, use formula (I1.20): in this

case only four summations occur,

(¢) or use the following rule (found empirically
but rigorously based on the structure of 1/A)
which is analogous to the one given for A.,.
Let F(j, k) be defined as for A,. F(j, k) is
here an octagonal figure. One finds for the
character x(p,, p.) [all F(j, k) must be
superposed]:

1. p, odd (class 0):
x®,p) = Flp, — 1,p. — 1) + Flp, — 2,p, — 1)
= 5 43 +F(0,P:|_' 1)
+ Flp, — 1,p.—3)+ F(p, — 2,p, — 3)
+ e + FO, py — 3)

(b)

+ F(p, — 1,0) + F(p, — 3, 0)
4 -+« 4 F(y, 0).
n = 0 for odd p,, 7 = 1 for even p,.
2. p, even (class 1):
x®1,p2) = Flp,— 1,p. — 1) + F(p, — 2,p, — 1)
+ -+ F(0,ps — 1)
+Flp, — 1,p. —3) + Fp, — 2,p. — 3)
+ e+ FO,p — )

+F(pl_lrl)+F(pl_2:l)
g o A 0, 1R

This procedure may be better pursued on the lattice
(py, ) [see Fig. 15(a, b) for two examples].

2. B,: The General Case

General formulas must be used if [ > 3, as was
done for the groups A,. First we sum over the roots

—e,, —ey, -+, —e;. This yields a domain w bounded
by the hyperplanes
;= (—Ry); = —-3@Ql+1-27), j=1,2,---,1

If mj; now denotes a parameter corresponding to
the summation along the root —e; 4= ¢, (1 < j <

1569

(04 (14)  (24)

'
~

L SRp——

—

(<)
Fre. 15. Construction of WD of Ba: ga) The general rule in

the case of D(3, 5); (b) ud. for D(3, 4); (¢) the WD of D(3, 4);
like the WD of Az, x(py, p2) has two sorts of edges: an edge
p1_| P, carrying p» = 4 weights and an edge p. _|_P:carrying
P1 = 3 weights.

k <1), we get
I/A =t Z L) Z W(mr;l P ml-—l.l) (15)
-:,-0 -u_-..l-o
with (0 --- 0) = o,
w(mfg cee Mioy) = ZQ [Q(m:z cee mi- )], (16a)
where the right-hand side means the set of all

lattice points @ whose coordinates satisfy the I
conditions:

Qi(miy -+ mi_y ) = x; < (—Ry);
- E (mjx + mj) + Z (my; — mg;);  (16b)
i<ksi 1sk<i
e.g., for I = 3 these conditions read
T, < —% — my; — my; — my; — my,
T, < —F — My — My + miy — my,
z3 < —3 + mi + my — my — ma.

The condition that x, belongs to D, yields, like in
case A, lower bounds for the values of the z,’s.

C. GROUPS OF TYPE C; (~Sp(l) =
SYMPLECTIC GROUPS).

Referred to an orthonormal basis in ¥, the roots



1570

are =2¢;, =e; #+ e, (Refs. 24), thus

Ro:%zai=(lll_l!"'!l)l
i.e‘. (Ro).‘ = I - l. + 1. (17)
A ffine coordinates. The same method, used for the
groups 4, and B, yields

p,—=$,—2:¢+|, i=1,2,"',£—1.

m o= .
Whence by inversion

ann=p+p+t+ - +m,
e e o

Ty =

(18)

T = P

The group S of C, is the same as the group S of B,.
The dimension of an irreducible representation is
given by

II (. — z)(@: + x) H T
dim D(K,) = “~— -
II @ — 2i + 1)1

iw=]

(19)

z:).

Classes of representations. The center of the rep-
resentation Sp(l) (whose underlying space is simply
connected) is Z,. The same reasoning made for
case B, shows also here that the points of ¢° belong
to either of two sublattices:

Kn = (xlzl A\

class 0:
z:: z; =0mod 2, i.e., Z': gavsr = 0 mod 2;
class 1:
‘; z; =1mod2, ie., Z Qav+: = 1 mod 2.

A representation D(K,(p, --- p:)) belongs to class
0 (1) if its highest weight L,(p, — 1, «+- , pr — 1)
belongs to class 0(1). These two classes form a
group (~Z,), class 0 being its unit element. The
! fundamental representations (L, = (0 --- 0, 1,
0 --- 0)) belong alternatingly to class 1 and 0.

1- Cg = Bg
The diagrams are the same up to a rotation of 45°.

2. C;, The General Case

1/A is constructed in exactly the same way as
for B; [cf., (15), (16)]. The only difference is that

J.-P. ANTOINE AND D. SPEISER

the equations of the surfaces of @ are now
= (—Re)y = —(—37+ 1.

D. GROUPS OF TYPE D; (~0y)

Referred to an orthonormal basis {e;} in E, the
roots are the vectors: =4=¢; =+ ¢, (cf., Refs. 2-4). Thus,

Ro=é2a;=(l—l,l—2,"',0),

i.e., (Rp); =1—1. (20)
Affine coordinates.
Pi = Ti — Zisny t=01,2 s  1=1;
D= T + 14,
whence by inversion
T =p+ P+ o F pres + o+ ),
Tz = pat o+ Piea + 3@ + P), (1)
Ty = i + pi),
z = H—pir + o).

The group S is generated by reflections in the
hyperplanes & ;(z; & z, = 0), i.e., by transpositions
Z; > =z,: it is the group of all permutations of
coordinates supplemented by an arbitrary but even
number of changes of signs, whence its order is
i

The dimension of an irreducible representation is
given by the formula

H (z: — x)(@: + )

i<k

dim D(K,) = . (22

= 1l ﬁ(Zl—?i— n!

i=]

where

17;).

Classes of representations. Here a distinetion must
be made between odd and even .

1. 1 odd: The center of the representation 0.,
whose underlying space is doubly connected, is Z,.
The center of the universal covering group therefore
is of order 4. Since the direct product of a spin
representation with itself does mnof contain the
identity, the group of the classes contains an element
of order 4. Thus this group is Z,. Class 0 is spanned
by the roots (3, z; = 0 mod 2). This yields for
the 4 classes:

Ky = (123 -~

[}
classj: 2 >z, =jmod4, j=0,1,2, 3.
1



CHARACTERS OF IRREDUCIBLE

Distribution of the fundamental representations:

1231 —-21-11,
l=4k +1:class: 202 ... 2 3 1,
l=4k + 3 :class: 202+ 2 1 3.

The last ones are the two (complex conjugate)
spinor representations (half spinors).

2. 1 even: Also in this case the center of the uni-
versal covering group is of order 4. But since the
direct product of either spinor representation with it-
self contains the identity, the group has only elements
of order 2 (besides the identity). Thus it is the
Klein 4-group. This group admits no faithful irre-
ducible representations. Therefore also the universal
covering group of D, (I even) whose center the
4-group is, does not have faithful irreducible rep-
resentations.

The remaining 4 classes of irreducible representa-
tions are conveniently labelled e, a, b, c. Class e (0)
is spanned by the roots.

The classes are:

class e: z; integer, >z, = 0mod 2,
class a: z; integer, > z; = 1mod 2,
class b: z, half-integer, > z, = 0 mod 2,
class ¢: z; half-integer, J_ z, = 1 mod 2.

One verifies the multiplication table of the 4-group:
@' =b"=¢c"=e ab=ba=c+ cycl

Distribution of the fundamental representations into
the classes:

A 12301 =-21-11
=4k : class:
l = 4k + 2 : class:

aea-- e c b
aea-- e b e
The two last ones are the two spinorial representa-
tions (half-spinors).

1. Da = Aa

If (¢,¢.9s) and (y,y2ysy.) are affine and Cartesian
coordinates, respectively, related by (3), one may
pass from A, to D, with help of the transformation

Pr = Q2, Y = %(551 + z: 4+ z,),
P2 = gs, Y2 =}z, — 2, — ),
Pa= G, Ya= %("Il + Ty — xa):

Yo = 3(—2, — 2, + 2,).
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Fia. 16. Root diagram and A of G..

This shows that the group S is the set of permuta-
tions of the y.(4;), as well as the permutations
of the z; together with change of an even number
of signs (D).

2. D,, The General Case

Here it is less straightforward to calculate 1/A
in the same simple way as was done for 4,, B, C;;
for one cannot construct in the system z; a pyramid
w with faces parallel to the coordinate hyperplanes.
The method can still work but calculations will be
more intricate.

E. EXCEPTIONAL GROUPS OF TYPE G.

Referred to the orthogonal basis {e;} in the
space E,; the roots are the vectors: e; — e, e; —
2e; + e, which all belong to the hyperplane Y 2; = 0
(cf., Ref. 2-4) . Thus, R, = 3 > o = (3, —1, —2).

Affine coordinates.

P = Iy — Ty, z, = +p + 2g¢,
T, = —q, (23)
g = —1s Ty = —p— g

The group S is dy (= dihedral group of order 12,
symmetry group of a hexagon). -

The root diagram and A are shown in Fig. 16.
Dimension:

dim D(pg)
= thopelp + @) + 29 + 39)(2p + 39).

Classes of representations. The center of the uni-
versal covering group consists of the unit element
alone. Therefore, all representations belong to the
same class,

(29
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F1a. 17. The 1/4 of G,

The 1/A is shown in Fig. 17. It has the same
structure as the two diagrams obtained for A, and
B, = (,, since they are all constructed in the same
way. Here also as for the other groups of rank 2, the
simplest way to construct a character is to use
formula (I. 20).

-P. ANTOINE AND D. SPEISER

Note added in proof: After thiswork was completed,
we discovered a paper by B. Kostant,'" where this
author solves the multiplicity problem stated in I,
but by purely abstract algebraic methods and with-
out consideration to concrete examples. For this
reason his paper is complementary to the present
one and does not interfere with it.
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OR the last few decades, the expression for
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been well established by Kubo® and others. How-
ever, in the derivation of expressions for transport
coefficients in the case of thermal disturbances or
internal disturbances, an additional assumption was
necessary. For instance, Kubo et al.’ made use of
Onsager’s assumption concerning the average re-
gression of spontaneous fluctuations, and Nakajima*
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golved the stationary Liouville equation by making
use of the local equilibrium distribution function
determined by the entropy-maximum principle as
the zeroth approximation. By this reason, the
formulas for the thermal coefficients expressed in
terms of correlation functions were regarded as
questionable. Whether such formulas exist or not
is one of the fundamental questions in statistical
mechanics. Montroll® has made attempts to re-
place thermal or internal disturbances by some
mechanical interference.

Recent development of the kinetic approach has
led us to a point, from which we can shed some light
on this question. Indeed the nonequilibrium sta-
tistical mechanics due to Prigogine and his co-
workers® has been extended by Severne’ to include
the case of nonuniform systems. In this way we
have now general kinetic equations for the one-
body phase-space distribution function and we may
discuss the transport processes by a method similar
to the Enskog-Chapman method used in con-
junction with the Boltzmann equation. Using these
results Prigogine, Severne, and Résibois® have dis-
cussed the wvalidity of the correlation function
formalism in the case of classical mechanics. In
particular, Résibois® has given a general proof for
the equivalence between the formal expressions de-
rived from the kinetic approach and those given by
the correlation function method. According to the
idea of the Enskog-Chapman method, the local
equilibrium distribution function is determined by
the kinetic equation itself. We need neither the
introduction of generalized entropy, the functional
form of which is not precisely known, nor the
assumption of the entropy-maximum principle. We
do not make use of the local distribution function
as an initial form, starting from which we trace the
temporal change of the distribution function for a
short time interval as was done in the work by
Mori." The local equilibrium function is the zeroth

SE. W. Montroll, Rend. Scuola Intern. Fis. “Enrico
Fermi” 10, 217 (1959).

% 1. Prigogine, Non Equilibrium Statistical Mechanics, (John
Wiley & Sons, Inc.—Interscience Publishers, Inc., New York,
1962); R. Balescu, Statistical Mechanics of Charged Particles,
(John Wiley & Sons, Inc.—Interscience Publishers, Inc., New
York, 1964{' P. Réaibois, “Irreversible Processes in Classical
Gases,”” in Many-Particle Physics, edited by E.
(Gordon & Breash, New York, to appear in 1964).

- 7 (. Severne, thesis, Brussels, 1963; G. Severne, Physica
(to be published).
8 I. Prigogine and G. Severne, Physics Letters 8, 173 (1963).
I. Prigogine, P. Résibois, and G. Severne, Physics Letters, 9,
to be published in 1964); I. Prigogine, P. Résibois, and G.
verne, Proceedings of the International Seminar on Trans-
1175& frocesses (Brown University, Providence, Rhode Island,

" P. Résibois (unpublished).
10 H. Mori, Phys. Rev. 112, 1829 (1958).
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approximation for the solution of the kinetic equa-
tion in the hydrodynamical stage. We do not dis-
cuss the validity of the Enskog-Chapman method
in this paper.

We assume for the sake of mathematical simplicity
the following model: a system of noninteracting
particles contained in a sufficiently large volume,
which are scattered by randomly arranged obstacles
represented by static potentials. The density of
obstacles is assumed to be not very high, so that we
may neglect the correlation of positions of any two
obstacles. This type of model is often used in the
simple theory of conductors: for example, free elec-
tron gas scattered by impurity atoms. In Part I
(this paper), we assume that our system is governed
by the classical mechanics, and that there is no
magnetic field, for the sake of simplicity. Kasuya
and Nakajima' already pointed out that the Ein-
stein relation does not hold between the antisym-
metric parts of electric conduetivity and of diffusion
coefficient for a quantum system in a magnetic field.
It is important to generalize our theory to the case
of a quantized system under a magnetic field. We
shall do this in Part IT (to be published).

In Sec. 2 we formulate our problem, and in Sec. 3
derive the kinetic equation for the one-particle dis-
tribution function averaged over all possible ar-
rangements of scatterers. This averaging would be,
in principle, not necessary, but we postpone a form-
ulation without the averaging procedure to a future
occasion, because the inclusion of averaging pro-
cedure is considered as to make our theory have a
simpler appearance. In Sec. 4 we solve the kinetic
equation by a method based on the idea of Enskog
and Chapman. We limit ourselves to the linear-
response theory thereafter. We find in Sec. 5 that
the linear relations between currents and gradients
hold, and that the transport coefficients appearing
in those relations are expressed in terms of corre-
lation functions of currents in the same way as
in the Kubo formula for the electric conductivity.

2. AVERAGED DISTRIBUTION FUNCTIONS

As was stated in the introduction, we consider a
system of noninteracting particles with one-particle
Hamiltonian of the form

5e(r, p) = p*/2m + AU(r). (2.1)

m denotes the mass of a particle, p the momentum,
and r the position. The scattering potential AU(r)
is composed of those due to scattering centers located
atR,, =12 --- N,:
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Na

Eu(r —

-1

Ulr) = 2.2
A is a parameter, which measures the intensity of
scattering potential, and is assumed to be suffi-
ciently small to allow the use of perturbation theo-
retical expansion. Our system is contained in a
volume €, and the positions of scattering centers
are arranged in this volume © randomly and uni-
formly. We assume that the density of scatterers
n, = N./Q is not very high, so that we may neglect
correlations between any two R,’s. The temporal
behavior of our system will be nearly the same for
almost all arrangements of scattering centers, if
our volume contains a very large number of scat-
terers, i.e., in the limit

N,— o, Q— o with n, = N,/Q fixed. (2.3)

We may trace in place of individual behavior for a
specified arrangement of scatterers the averaged
behavior, assuming that R,, R,, --- , Ry, are a
set of independent stochastic variables with uni-
form probability distribution over the volume €.
We calculate the average of an observable dynamical
variable g(r, p, ; R, , Ry,) by the formula

wa,p 0y = [T [T

Xf&“g(f.lh t;Rll
o 2

Since we neglect the particle-particle interaction,
a state of our system at a time ¢ is described by
the one-particle phase-space distribution function
f(r, p, t), which contains R,, R,, --- , Ry, as param-
eters. The temporal behavior is governed by the
one-particle Liouville equation

yRe).  (24)

18,f = L£f, (2.5)

where £ denotes the Liouville operator defined by
£ = £, + \ig, (2.6)

£, = —iv-V, e =1{VU@}-2. (2.7

v = p/m is the velocity of a particle. We have
introduced usual notations

= afat, — a/or, @=20/dp. (28)

Tor the use of perturbational expansion it is con-
venient to make the Fourier transformation

fe,p, ) = zf‘_. e‘k.rfk(pl 1), (2.9)

o 0 =5 [ ae i@ p,0, @10

HASHITSUME AND S. FUJITA

assuming the periodic boundary condition as usual.
Then the Liouville operator can be expressed by
the matrix

[.C]]k e 2: (k l£|k')fkw (2-”-)

where [ -] stands for the k component. In fact,
corresponding to Eqs. (2.7), we obtain
(k |Lo| k') = k-Vdy «, (2.12)
(k |02] k)
Na
= Q™ Z e TR ek — K)(k — k7)-9, (2.13)
am]
where
- f dre™ " "“u(r). 2.14)
']

We may assume without loss of generality that
(0) = 0. (2.15)

The observable quantities which we want to
discuss are the diffusion current and the energy
flow. Both occur because of the migration of particles
through the scattering centers. The corresponding
microscopic variables are the particle velocity and
the energy flow vector

w = v{p’/2m + AU(r)}, (2.16)
and hence the diffusion current is given by

i, 0 = [aovife,p, 0)  @a17)
and the energy flow by

at, 0 = [ dpwite, p, 0. (2.18)

We see that for the calculation of diffusion current
we need only the averaged distribution function
{f(r, p, 1)). By making the Fourier transform

1 —ikr
ﬁf dre”"“"q(r, t)

dpv{2 m.

we find that a kind of averaged ¢ two-body” dis-
tribution function

gl.k(p: t) = (? EH-R'fnl(P, t))

is sufficient for the caleulation of energy flow.
3. KINETIC EQUATIONS

Let us first construct an equation satisfied by
the averaged ‘“one-body” distribution function

Qi (f)

(p, 1) + Z

(2.20)
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{f(r, p, t)). The formal solution of Eq. (2.5) is
given by

fu(@, 1) = [e7"**{(0)]x

21:'1 § deg’*

where the contour I' should encircle the whole real
axis in the complex z plane counterclockwise. We
have to allow in general an initial distribution func-
tion f(r, p, 0) depending on the stochastic variables
R,, R,, --- , Ry,. From Eq. (3.1) we obtain the
equation

@ + EkV)fulp, ) = 2‘;195 dee Y

><):<

L), 0, D)
4

k' )fy (p, 0)>
3.2)

where we have made use of the well-known formula
for the perturbation theoretical expansion of the
resolvent operator (£ — 2)7".

To see the structure of the sum on the right-hand
side of Eq. (3.2), it is convenient to make use of
the diagram technique. We write a solid-line seg-
ment horizontally corresponding to the unperturbed
resolvent operator (£, — z)~', and a vertex corre-
sponding to —AéL, from which a dotted line starts
and ends at a dot representing the location of 8
scattering center. As was illustrated by Edwards,"
the average over our stochastic variables R,
R,, --- , Ry, means to connect at least two dotted
lines at one dot; the contributions from dotted
lines ending singly vanish because of our assumption
(2.15). By this procedure we can write a diagram
uniquely corresponding to a summand in the sum
of Eq. (3.2). When the initial distribution function
f(r, p, 0) depends on R,, R,, --- , Ry, through the
potentials, we write a vertical solid-line segment
upward at the right end of the horizontal-line seg-
ment at the extreme right, and a set of dotted lines
starting from some points on the vertical solid line.
We have to connect the free ends of these dotted
lines with each other or with those starting from
horizontal solid line. A typical diagram is given in
Fig. 1. Since the matrix of £,, Eq. (2.12), is diagonal
in the k representation, the propagator (£, — 2)7
transfers the particle from a “‘state’” k to the same
“state” k, and we can attach this k value to a
horizontal solid-line segment in the diagram. The
vertex —A8L transfers the particle from a “state”
K = Kk + 1to a different “state” k, 1 > 0. Since the
—_——

U 8, F. Edwards, Phil. Mag. 3, 1020 (1958).

?\6&3 )

n-D
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3 f.-l'*‘ 2 N “»  TFia. 1. A typical diagram.
ik AN,
PRV ~

matrix element of,—X6£, Eq. (2.13), depends only
on the difference k — k'’ = —1, we can attach —1
to the dotted line starting from that vertex. The
sum of such wave vectors attached to the dotted
lines ending at the same dot should vanish."

We can distinguish two classes of diagrams ac-
cording to whether we can separate a subdiagram
by cutting a single horizontal solid-line segment or
not. In Fig. 1, we can separate a subdiagram by
cutting the segment on the right side of the vertex Q.
This separated subdiagram is “connected”, i.e., con-
nected through the dotted lines; we cannot further
separate the subdiagram by cutting horizontal solid-
line segments. The matrix corresponding to such a
connected subdiagram should be diagonal in the k
representation. It is convenient to make the partial
sum of such separated connected subdiagrams and
to introduce the operator

W (k, 2)
(k ‘(—Aa.s = L. z)'(— )\543)‘ k)>°m . 3.3)

- X
The sum of the remaining parts of the diagrams has
the same structure appearing in the perturbational
expansion of Eq. (3.1). The partial sum over dia-
grams of the second class contributes to the “de-
struction part

£ (5 o £ )

-2k
Since all the diagrams corresponding to the sum-
mands of the sum in Eq. (3.2) belong either to the
first class or to the second class, we obtain

@, + k-v){fu(p, 0))
- “fﬂ‘ dt'Gk, !){fx(p, t — 1)) + Dy[t, 1(0)] (3.5)

k' Jfu: (@, 0)>
(3.4)

or
@0+ v, 0) = — [ av [ arKe, v

X (f(l' - !", t— t’)) + D[l", L, f(o)]s

where we have introduced

(3.6)
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DI, t, {(0)] = Z e D[t 1],  (3.7)

Dult, fO) = 55 e inis, O], 38)
and

K, t) = ;e"k"c(k, 1), (3.9

Gk, &) = %r;l 9§r de "0k, 2).  (3.10)

The kinetic equation is the equation, which is
valid in the kinetic stage, i.e., after the initial
mixing is finished. If the scattering potential wu(r)
is of short-ranged nature, the integral kernel
K(r, t) vanishes for a distance of the order of force
range a and for a time of the order of duration of a
collision t, ~ a/v. This can be inferred from the
diagram in the r representation, in which the un-
perturbed propagator corresponds to the free path
and the vertex to the position, where the particle
feels the scattering force from a center expressed
by a dot in the diagram. Then the length of a dotted
line should be at most of the order of force range a,
and a connected part of the diagram corresponds
to a process, which has spatial extension of the
order of a multiple of the force range a. If we
neglect bound states of the particle around a scat-
terer, such a process terminates within a time of a
multiple of the order of collision time t,. Since we
are interested in the distribution function, which
does not differ much from the equilibrium distri-
bution function, particles with small speeds v do
not contribute appreciably to the diffusion current
and to the energy flow. We may thus assume that
t, is finite. By a similar but a little more complicated
argument we can see that the ‘““destruction” term
D in Eqs. (3.5) and (3.6) vanishes after a time
of the order of ¢, provided that the initial distri-
bution function f(0) is suitably chosen. Thanks to
these properties of K and D, we may drop D, and
replace the upper limit of the time integral in Eqs.
(3.5) and (3.6) by + « for a time such that

t>>t,. (3.11)
We thus arrive at the equation
@ + k-v){fc(p, 1))
= —lim ¥(k, 9, + 2e){fu(p, 1)), (3.12)
or T
@ + v- V)@, p, )
= —lim ¥(—1iV, 19, + we){f(r, p, 1)). (3.13)

e—=+0

These are the required kinetic equations.

HASHITSUME AND S. FUJITA

As was mentioned in the preceding section, we
need the function g, .(p, f) defined in Eq. (2.20)
in the calculation of energy flow. Inserting the
formal solution (3.1) into Eq. (2.20), we have the

expression
= 1 § —igt
2‘!!‘1‘. T o

¥y ( NGL < ) k’)fk (p, 0)> (3.14)
n=0

Comparing this with the right-hand side of Eq.
(3.2), we see that only the first —i)\é£ in Eq. (3.2)
is replaced by >, e "®*. The structure of diagrams
corresponding to the summands in Eq. (3.14) is
the same as that for Eq. (3.2), except the first vertex,
i.e., the dotted line at extreme left (PR in Fig. 1).
Thus we introduce in place of ¥(k, z) defined by
Eq. (3.3) another operator

el k,z) = i > e R

etz o[

Then by the same argument used to derive Eq.
(3.12) we arrive at the relation

g1.x(p, 1) = lim e(l, k, 79, + 2e){f(p, 1))

e—++0

g1k, ) =

X (k + 1 (3.15)

(3.16)

for ¢t > (..
4. LINEAR-RESPONSE SOLUTION

In the hydrodynamic stage the phase-space dis-
tribution function {f(r, p, t)) becomes a functional
of hydrodynamical variables, such as temperature
and chemical potential or particle density, and its
temporal change is governed by the hydrodynamical
equations determined consistently with the kinetie
equation. This is the basic idea of the method of
Enskog and Chapman.'? For the present model those
equations are the laws of conservation of mass and
of energy

an(r, t) = —V-jr, 1), (4.1)

0.E(r, t) = —V-q(r, 1), 4.2)

12 5, Chapman and T. Cowlin, g The Mathematical Theory
of Non-Uniform Cases, (Cambridge University Press, Cam-
bridge, 1939).

N. N. Bogoluboy, “Problems of a Dynamical Theory in
Statistical Phymcs,” (1946). The English translation is given
in Studies in Statistical Mechanics, edited by J. de Boer
and G. E. Uhlenbeck (North-Holland Publishing Company,
Amsterdam, 1962), Vol. 1.
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where n(r, {) stands for the number density of
particles

ne, ) = [ dpiie, p, ) (4.3)

and E(r, t) for the energy density

Er, t) = fdp<{-§% + )\U(r)}](r, P, £)>- (4.4)

Equations (4.1) and (4.2) can be derived from the
Liouville equation (2.5). Equation (4.1) can also
be derived from the kinetic equation for {f(r, p, £)),
Eq. (3.13). The derivation of Eq. (4.2) from Egs.
(3.13) and (3.16) is more complicated, and is not
given here.

Hereafter, we limit ourselves to the linear re-
sponse theory, and keep only such terms as are
linear with respect to the gradients of hydrody-
namical variables. When we solve the kinetic equa-
tion (3.13) or (3.12), we may put

(ﬁ=fo+f’s

where the zeroth approximation f° is the local equi-
librium distribution function and the first~-order cor-
rection f' is a linear homogeneous function of the
gradients. f° is determined so as to satisfy the
equation

(4.5)

lim ¥(0, e)f’(r, p, &) = 0

=+ 0
and the condition that the currents (2.17) and (2.18)
should vanish, if we calculate them by making use
of f°. We construct such an f° as follows. First, let
us notice that the averaged equilibrium distribution
function {f**(r. p)) is a stationary solution of
Eq. (3 13):

ke w(fTE) = ~lim ¥k, iOf20), ©.7)

so that (f3*(p)) is a solution of Eq. (4.6). We can
take any functional of our one-particle Hamiltonian
(2.1) as f*(r, p), but we select the Maxwell-Boltz-
mann function

(@, p) = exp [{¢ — 3@, p)}/kT], (4.8)

by taking into account the fact that in the real
conductor the particle system interacts, for instance,
with the crystal lattice vibrations. Since the com-
ponent with k = 0 is nothing else than the spatial
average, f3%(p) is essentially the Maxwellian distri-
bution function. The averaged function {(f*'(r, p))
is obviously independent of r, so that

(4.6)
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‘@) = (", p)). (4.9)

On the other hand, the operator ¥(0, 7€) contains
neither r nor V. Thus the general form of the local
equilibrium function f° is given by

'@, p) = (exp ({¢(r, 1) — 3, p)}/kT(x, O)]), (4.10)

where {(r, t) and 7'(r, t) denote the local chemical
potential and the local temperature, respectively.
Keeping only terms linear in the deviations from the
true equilibrium value

Af(r, ) = f(l', t) =, AT(r, 0) = T, ) — T, (4.11)

we may use the expression

" <sc(r,kg% = P p)> ATE;:, 0 41z)

or

R@, 0 = Gren] o + (40l

+ <|L‘1c—p—~(r’ “), = £ o, p) ]O>[—~LA7'7(,‘) k. (4.13)

We see that the k dependence of f¢ appears only
through the k dependence of [A{], and [AT)k, so
that f¢ has its appreciable value only for small k,
provided that A{(r, t) and AT(r, ) are assumed to
be slowly varying with respect to r. Since the P
dependence of f° is Maxwellian, f° is actually an
even function of p.

Now let us determine the first-order correction
" from Eq. (3.12). According to our assumption
that the time dependence of (f) is only through the
hydrodynamical variables 7" and ¢, which is assumed
to have the same functional dependence on n and T
as the equilibrium one, a,(f) can be expressed in
terms of d,n and 9,T. d,n and 3,7 are in turn ex-
pressed by the divergence of the currents j and q
by means of the hydrodynamical equations (4.1)
and (4.2). Keeping terms linear in the gradient
operator V, we may use the zeroth approximation
for the currents, which vanish. Thus we may put

a(f) =0 (4.14)

in our kinetic equation (3.12). This means that our
method of solution is a quasistatic formalism at
least for our model, and that the non-Markoffian
effect completely drops, because it comes out from
the z dependence of Ww(k, z). Remembering Eqgs.
(4.5) and (4.6), we obtain at once
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; 3w 1 e o W, 1)
fi’ (p, ) = lim 30, {v lim 2 ok’ }

=40 k=0
-(—k)fi(p, ¥)
L 1 i .awgl_:',_z‘e_)}
= lim 30, {" m =

-{(I&“‘(p)) =Vt

+ <[&$——r 1*(r, p):L)

X[-VIn T(t)]k}- (4.15)
The k dependence appears again only through the
gradients.

In the same way from Eq. (3.16), by keeping
only linear terms with respect to the gradients, we
obtain

gl.k(p: t) = lim {e(lr 0: “)fh(pl t)

+him i 20KLD e, ) @ie)

5. THERMAL TRANSPORT COEFFICIENTS

For the actual evaluation of the thermal trans-
port coefficients from the viewpoint of kinetic ap-
proach, the expressions (4.15) and (4.16) could be
more convenient. However, for our purpose of ex-
pressing transport coefficients in terms of correla-
tion functions it is convenient to rewrite them in
the following way.

First, let us rewrite the k' derivative in the first
curly brackets of Eq. (4.15). Since the matrix ele-
ments of —AéL, Eq. (2.13), depend only on the
difference of wave vectors, they become inde-
pendent of k', if we measure the wave vector ap-
pearing in a “intermediate state” of the expression
(3.3) from k’. We have only to differentiate the
matrix elements of intermediate propagators

1
£n—

al‘.l

zl k' + l') = m (5.1)

(1 +1]

We see that the differentiation with respect to k'
is equivalent to the replacement

1

| 1
—z(_v).B.,—z’

-—3
-co -2 .Bo

(5.2)

and we obtain

N. HASHITSUME AND S. FUJITA

— 11 'aq’(k’! i‘) - - 3 ( ‘(_
111_1:10 T = ; E 0 AL o=

X { = — (—-aa.c)}'“"" o)>°-m (5.3)

In Eq. (4.15), this operator acts on either the Max-
wellian (f;%(p)) or the same function multiplied by a
linear combination of the unperturbed energy p*/2m
and a constant, (((3I¢ — O)f*(r, p)lo)/kT. Let us
write these operands simply ¢(p®/2m), and intro-
duce

Fu(p, 2)
T — )

n=0

)
z

(5.4)

This quantity is a solution of the equation
Fh(p: 2)
1 [\ég| K
- ‘P(L)ak'o - kz. (kk-v —_z ) Fk'(p:l Z), (5.5)

2m

and hence lim,.,, Fi(p, 7€) is a solution of the
stationary Liouville equation

;‘, (k |£| k) Iin: Fy.(p, i€ =0 (5.6)

such that it reduces to ¢(p°/2m) as A — 0 and
satisfies the normalization condition

2
L).
[ aodlE
We know that such a solution is the equilibrium
function

lim Fy(p, i)

e—=+0

- 1@ o [ OB =Sy, p) |

f dp lim Fop, ie) = G.7)

«—++0

T £ (5.8)
The right-hand side of Eq. (5.7) is the average of
the left-hand side, and to take the Fourier zero-
component is equivalent to taking the spatial
average. Thus the left-hand side of Eq. (5.7) is
either the total number of particles divided by @
or the total energy (minus the total Gibbs free
energy) divided by © (and kT). These quantities
should be independent of the arrangement of scatter-
ing centers and equal to their averaged value. Thus
Eq. (5.7) is satisfied. If our system is assumed to
be ergodic, our solution (5.8) is unique.

Inserting the results (5.8) and (5.3) into Eq. (4.15),
we obtain
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.Q(p)>““ =V vm

k')v[—(l—ﬂ——— e, p)] DEEITN

k)[{ = Tl 2=

g wme] Y
ool

i 9= fl'f‘m(o )ZZ{« ’( Noe 3
+< — b2 I_z)
o 2::\1:(0 9 Z; ( ’(—"5-‘3 o L ,)n
B ERIN
N !i‘f‘, a3 (o0 e o L0

Here we have made use of the theorem that, if the
limit of a product of two functions exists and if
the limit of one factor exists, we may take the limit
for both factors separately.

In the same way, we can carry out the k' dif-
ferentiation in Eq. (4.19), and arrive at

7., 1)

= lim n"u!t’e“" Z Z <e“'““(l le™ %" | k)
g rgmcseny])

(5.10)

By making use of Egs. (5.9) and (5.10), we can
easily write down the expression (2.19) for the
Fourier component of energy flow vector in the form

lim

() = lim " e fdp Qf dr<f“w“”'
X {v-tvaﬂ" Tt . 40 R T].,}> (5.11)

and for the Fourier component of diffusion current

() = 5 [ a7, o

" e fdp S f dr<f“‘v -ise

[ Vile
kT

= lim

=40

x{r

e W.[_v 1,11'],})- (5.12)

+ ¥ -V n T]}F]> (5.9)

In these expressions (5.11) and (5.12), the k de-
pendence on the right-hand sides comes only from
the gradients. Therefore, the linear relations

ir, ) = —Lpp-V¢(r, ) — Lpe-V In T(r, 1),

(5.13)
Q(l', t) = fj(f: t) = _LQD'V.(-(rr l)
= LQ‘)'V In T(rs t)1
hold with constant transport coeflicients
L., =lim [ e i
- 7 1 kTQ
[[ dp axis g gy, (5aey
where u and v are either D or @, and
I = {v’ fa=8 &in
w— v, if p=Q.

Our result (5.14) has just the classical form similar
to the Kubo formula for the electric conduectivity,
and hence satisfies the Onsager relation.
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For molecules with degenerate internal states, the single-particle distribution function must be
replaced by a density matrix, or better, if the translational motion is treated classically, by a Wigner
distribution-function density matrix. The modified Boltzmann integro-differential equation for this
quantity has been previously derived but so far only limited solutions of the resulting equation have
been obtained. Methods are herein discussed which enable the standard methods for the solution of
the classical Boltzmann equation to be applied to the solution of this equation. Complications in-

volving commutation properties are resolved.

I. INTRODUCTION

HEN degenerate internal states are present,

it is no longer sufficient to describe a free
particle in a gas by a probability density. One
must rather use a singlet density matrix. This
has the advantage that it correctly accounts for the
phase relations between the degenerate states. For
a dilute gas the equation of change for the singlet
density matrix, or better for the Wigner distribu-
tion function-density matrix is a generalization of
the classical Boltzmann integro-differential equa-
tion." This equation has been derived by Wald-
mann® and independently using a different method
by the present author.?

Only for the case of spin-} particles has a solu-
tion of the full matrix equation been considered.*
In this case, Waldmann* found it convenient to
express the distribution function-density matrix as
a linear combination of the Pauli spin matrices
and the identity matrix. For higher spin values this
expansion will likely be cumbersome. Moreover,
this form of expansion may be contrasted to the
usual classical perturbation method that considers
firstly a deviation from local equilibrium and
secondly an expansion in the independent vectors
or tensors of the system. In Sec. III methods are
discussed which allow this latter order to be utilized.
It is the purpose of Secs. IV and V to adapt the
formulation of the linearized Boltzmann equation
so that the recently reviewed variational methods

1 J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molec-
ular Theory of Gases and Liquids (John Wiley & Sons, Inc.,
New York, 1954), Chap. 7.

* L. Waldmann, Z. Naturforsch. 12a, 661 (1957); 13a, 609
(1958); Handbuch der Physik, edited by S. Flugge (Springer-
Verlag, Berlin, 1958), Vol. 12.

iR. F. Snider, J. Chem. Phys. 32, 1051 (1960). Some
minor errors of this paper are corrected in Appendix A.

4+ L. Waldmann, Nuovo Cimento 14, 898 (1959); Z.
Naturforsch, 15a, 19 (1960); 18a, 86 (1963), . I Kupatt,
ibid. 19a, 301 (1964).

for solving the classical Boltzmann equation® may
be applied to the quantum case.

The mathematical problems involved are due to
the noncommutation of the local equilibrium dis-
tribution function-density matrix and the pertur-
bation. For this purpose the first and second deriva-
tives of the exponential function in a noncommuta-
tive algebra are discussed in Appendix B. The
thermal conductivity of a gas with internal ro-
tational states® has recently been considered and
is based on the above method.

II. THE MODIFIED BOLTZMANN EQUATION
AND ENTROPY PRODUCTION

Quantum mechanically, the probability of a
state of one molecule in a gas is given by a one-
particle density matrix. However, for the purposes
of the kinetic theory of gases it is more appropriate
to utilize a position-momentum distribution func-
tion for the translational motion much like the
classical case and this is most easily accomplished
by using a Wigner distribution function-density
matrix. This is a distribution function of position
r and linear momentum p for the translational
states of the molecule while retaining its behavior
as a density matrix for the internal states of the
molecule. Since the intermolecular interactions in
a gas are usually short range (the only case treated
here) the collisions may be considered (for a dilute
gas) to be localized and thus to occur at one point.
In this manner the Boltzmann equation that de-
scribes the change of the singlet Wigner distribu-
tion function-density matrix involves only one
position. Thus an alternate interpretation of the
Wigner distribution function-density matrix is
that it is a density matrix in internal states and a

& R. F. Snider, J. Chem. Phys. 41, 591 (1964).

Eq (47) of this article should read Jir
F. R. McCourt and R. F. Snider (bo be pubhshed)
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diagonal density matrix in momentum space while
being paramelerized by a position r. It is this latter
interpretation which will be used exclusively in
the succeeding arguments. This will enable one to
make use of operator formalism and to designate
the trace over internal states and integration” over
momentum by the one symbol, trace (tr). In
particular the singlet Wigner distribution function-
density matrix f will be normalized as

tr f(r, 1) = nfr, 1), (1)

where n(r, t) is the local number density at posi-
tion r and time {. An immediate generalization of
Eq. (1) when the system under consideration is a
v-component mixture may be treated by thinking
of f and n as y-component vectors in a chemical
species space besides f having all the properties
already mentioned in this paragraph. In this last
case, wherever the mass m or relative mass u
appears, these must be considered as diagonal
operators in the chemical species space.

On assuming that f is always diagonal in the
energy, the Boltzmann equation for f when there
are degencrate internal states may be written®?

o , p.of of L -
3 + prog + F ap + (Haof fH a0

= (20 tr, [tfh 8P — P)3(E — K)I'

1 t
+ 5 (h — fht ):I. 2

where Planck’s constant & is set equal to 1 and
Boltzmann statistics have been assumed. Tr, refers
to a trace over the states of the 2nd molecule,
which is labelled by subseript 1 with f, also referr-
ing to this molecule. The external force F changes
the linear momentum of the molecules while Hi,,
is the one particle hamiltonian for internal states
which may include external forces acting on the
internal states (e.g., a magnetic field when mag-
netic dipoles are present). The ¢ operator is the
relative coordinate { operator which may be defined by

t=V 4+ lim V(E — K + 17 't, (3)

0

where V is the intermolecular potential and K is
the kinetic energy (including internal energy) all
in relative coordinates. The reason for stressing

7 More correctly, this should be the appropriately nor-
malized summation over momentum states or rather over
the wave numbers for a box of unit volume, see the normaliza-
tion of Eq. (1). As is usual in the kinetic theory of dilute
gages, this unit volume must be of macroscopie size.
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relative coordinates is so that no & function for
conservation of momentum will appear in { or its
quantum mechanical adjoint {'. Another way of
expressing this would be to say that ¢, V, and K
are equal to the corresponding quantum mechani-
cal operators in pair-space divided by a & function
for momentum conservation. Lastly, E is the eigen-
value of K on which ¢ (or (') operates while the
total linear momentum operator for a pair of mole-
cules is P with eigenvalue P on which ¢* operates.
The two é funetions in Eq. (2) thus signify the con-
servation of linear momentum and energy. On
the energy-momentum shell, that is, for matrix
elements between states with the same relative
energy and total linear momentum, the following
operator equations are valid:

t'— 1 = 2rit'S(E — K)s(P — P)t
= 2xild3(E — K)s(P — P)¢'. (4)

The standard expression for the entropy density
ps in a one-particle picture is

ps = —ktrfin (), ®)

in which p is the mass density and s is the entropy
per unit mass. From the Boltzmann equation, it is
then easily shown that the equation of entropy
change is

dps d

W —elesvot J) + o,

at Jr ®)

where v, is the local mass stream velocity, J, is
the entropy flux, and ¢ is the entropy production
given by

o= —(2m)'k tr In f[tﬁ,&(P — P)o(E — K)t'

1 t
+ 5 (f = it )]. ™

A mathematical property of a density matrix
is that it is an Hermitian (self-adjoint), positive
definite operator on the Hilbert space $ of quantum
mechanical state vectors. Furthermore it has a
finite trace which together with its positive definite-
ness and self-adjointness implies that it is in the
trace-class®® of operators on a Hilbert space ©
which in turn requires that it belong to the Schmidt-
class® (oc¢) of operators with finite Schmidt norm

(A A= (trd'A)} < =, (8)

8 R. Schatten, Norm Ideals of Completely Conlinuous

Operators, Vol. 27 of Ergebnisse der Mathemalik und Ihrer

gebiete (Springer-Verlag, Berlin, 1960), Chaps. 2 and 3.

9 J. von Neumann, Mathematical Foundations of Quantum
Mechanics (Princeton University Press, Princeton, 1955).
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(4 e(gc)). In particular, the Schmidt norm of f will be
less than n(r, {) and thus an element of the Hilbert
space (oc). Again, this has the consequence that
f is a completely continuous operator on 9 and
thus has a discrete (real and positive) spectrum
with spectral representation®"*

f= 'E p.Py = ZP( o)l C)
in which p; is an eigenvalue and P, = [i){7] is the
corresponding projection operator onto the eigen-
function |7) (element of §) of f. (It is hoped that
no confusion will arise between the linear mo-
mentum variables p and eigenvalues p; nor be-
tween the total linear momentum P and the pro-
jection operator P; since two of these are vectors
written in bold face while the others are in italics
and no magnitudes of the vectors will appear.)
The eigenvalues p; must satisfy the equations

)_:p; =n and E’pf <n’ (10)

Boltzmann’s H theorem is to show that the
entropy production is always greater than or equal
to zero. This was proven by Waldmann® by es-
sentially the following method. Define the super-
operator'® 3 which is a linear operator on the
Hilbert space'’ (oc) X (oc), as

JA = tASE — K)s(P — P)¢'. (11)
Then on symmetrizing the In f term in Eq. (7)
and making use of Eq. (4) and the scalar product
analogous to the metric defined in Eq. (8), the
entropy production ¢ can be written as
—3@2m)'%[(In f | 3) — (1 | 3(f In )], (12)

where 1 is the identity operator, f is the pair density
matrix ff; (both in pair space) and although not
explicitly expressed, the scalar product is again
in pair space. With the help of the second identity
of Eq. (4) it also follows that

(Fla@) =] a. (13)
The spectral representation of j will be denoted by

f = 'E p-“B-‘- (14)

o =

The matrix elements of J with respect to the pro-

10 A superoperator is an operator which transforms an
operator on § to a new operator on 9. This terminology was
introduced by J. A. Crawford, Nuovo Cimento 10, 698
(1958). For a survey of some of the properties of super-
operators and bibliography see H. Primas, Mol. Phys. 6,
225d(1gg3) ; Rev. Mod. Phys. 35, 710 (1963). See also Ap-
pendix B.

11 3 operates on operators in pair-space (pairs of molecules)
rather than on (o¢) so is an operator on the Cartesian produect
of (gc) with (O'Ch, (O'C) X (0'6)1
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jection operators P, are then

3 = (Be | 3(B)
= §E; — E)sP, — P) |G| ¢t [H* 2 0, (15

which follows from the definition of 3, Eq. (11) and
the fact that f is diagonal in the one-particle energy
so that f and P, are diagonal in the K representa-
tion. In fact, the collision cross section o;.; for
the scattering of a pair of molecules from state
j (pair-state) to state 7 is given by

5(E-' - Er‘)a(pi - Pf)‘ff—n'
= (27").#,‘#:'(’“:/155) K""l l |J>i2 6(E-' . E,-)tS(P,- - P,
= (2m) ' uini(k: / k) 3is, (16)

where k,, k; are the corresponding wave numbers
in relative coordinates. It then follows from Egs.
(12)-(15) that

o= —3@2n)'k E 3:(p; Inp; — p; In p; + p; — P,
i (17)

which is greater than or equal to zero because the
quantity in parentheses is negative for all real and
positive p; and p;. The above proof is much simpler
if detailed balance holds (3,; = 3,; or it = {), in
which case the positiveness of o arises by symmetri-
zation between 7 and j in the first two terms of
Eq. (17) and no use is required of Eq. (13).

A state of local equilibrium is said to exist when
the entropy production o is zero. It is easily seen,
Eq. (17), that this occurs only if'* p{® = p{” for
values of 1 and j such that J3;; # 0. From the
product property of f(f” = f9f”) it follows
that ¢ = —In f must be a summational invariant,’
in other words a linear combination of mass, linear
momentum, angular momentum, and energy opera-
tors.

III. LINEARIZATION OF THE BOLTZMANN EQUATION

The local equilibrium Wigner distribution func-
tion-density matrix f’ satisfies the Boltzmann
equation (2) with no left hand side. In the next
approximation,'® the Boltzmann equation becomes

f(D)X = _(21)4 tr. [S(fw)ﬁ” + f!”f{Ol)

b g 4 1) — o+ e |,
(18)

12 Superseript (0) stands for local equilibrium value or
function.

138, Chapman and T. G. Cowling, The Mathematical
Theory of Non-Uniform Gases (Cambridge University Press,
London, 1952), Chap. 7.
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where X is obtained from ' by
(0) (o)
X =4 [_f. I X

m dr
af(O)

+ & + $(Huf” ~ J'"”H-.ne)] (19)
with the t.i.me derivative 9f”’ /ot eliminated by
means of the hydrodynamic equations evaluated in
an approximation consistant with . In this
way, f = [ + f is a steady-state solution of the
Boltzmann equation to terms linear in the macro-
scopic gradients. It is customary'' to write
f" = {4, but in this case both {® and ¢ are
operators on $ and hence, in general, will not
commute. Is this then the best way of writing the
perturbation? The following considerations are
aimed at answering this question.

There are three obvious forms in which one can
write f or f'"', namely:

@ = 1%, (20)

®) 1 =31 + 1), (1)
or

(¢ f"=f—fY=e""-¢". (22

Form (a) looks much the simpler but since f, f'”,
and f* must be Hermitian, then ¢ must be such
that its adjoint ¢t is given by

¢t = OO = e’ = ¢ . (23)

In this expression use has been made of the in-
verse 7' of '’ which trivially exists from its
definition and the superoperator A is the commuta-
tion superoperator which takes the commutator
of g with the operator upon which it acts, ie.,

Ap = gb — ¢g. (24)

On the other hand, the Hermitian property of f
and ' are built into the form (b) and (c); in
form (b) by the ¢! term while in form (c), by a
Hermitian ¢.

It is easily shown that ¢ in form (b) may be
restricted to being Hermitian by first assuming ¢
to be Hermitian and then showing that it is de-
termined uniquely by f“’. By simple algebra, ¢
is shown to be given by

(1)

¢ = =, (25)

1 + e’
which always has a solution for any f*’ as long as
the superoperator 1 + ¢* has an inverse. This is
true since g is Hermitian and thus the spectrum
of A is real.
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Since physical observables are Hermitian it
might be felt that forms (b) and (c) may have a
more physical interpretation because of their
hermiticity of ¢. This should be contrasted with
the apparent simplicity of Eq. (20).

The linearized Boltzmann equation (18) may
be written as

X = @p (26)

with the superoperator ® given as follows for
form (a):

®¢ = RV = —(2m)* tr, E‘”[a(¢ + ¢)

1
+o e+ ) — @+ w':]. (27)
in which use has been made of the fact that
i = 9% ecommutes with the collision operator
{. For the choice (b), Eq. (21), it follows that

M6 = RV = IR (P + ¢, (28)

while for the choice (c), linearization of f with
respect to ¢ requires an expansion of the exponential
which is accomplished in Appendix B. Thus to
first order in ¢,

A —_—
$ = et = fm a f(u) 3,_A_1¢ g, (29)
and, consequently,
A
R = R$ = R % ¢. (30)

In order to find expressions for the entropy
density ps and entropy production o, it is neces-
sary to have expressions for both the first and
second order terms in the expansion of exp and In
for a noncommutative algebra; these expressions
are derived in Appendix B. As usual in perturbing
the Boltzmann equation, the expectation value of
all of the summational invariants are required to
be determined entirely by . Thus "’ must be
orthogonal to all the summational invariants in
the scalar product of Eq. (8). These auxiliary con-
ditions on f*’ are useful here in that they simplify
the expressions for ps and o. Form (c¢) will be
considered first:

]

3
ktr[g— hlh;——«t:le"“

- ktrl:g— ln"—:l — ktr ¢e**,

(1)
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in which use has been made of the orthogonality
of ¢ (a summational invariant) to f*'. With the
help of expansion (29) and keeping only terms
quadratic in ¢,

e —1

08 = ps® — k tr ¢ é,

A (32)

where ps® is the local equilibrium value of the
entropy density. The corresponding entropy pro-

duction is
a(c) - ktl'¢ m(qub. (33)

By a similar though more complicated argument
(see Appendix B), form (a) yields an expression

A
e —

ps = ps” — 1k tr f e B9

for the entropy density and for the entropy pro-
duction

o = ktr {¥% —2— 0. (35)
et —
Finally, since form (b) with ¢ Hermitian can be
written in form (a) with ¢ = (1 + e*)¢",
substitution of this into Eqgs. (34-5) gives
A -4
ps = s — trgf® HEHEE B, )
and
-A
e = 1k t.r¢:f(°) Aglj‘ id ) R%¢ (37)

for the corresponding entropy density and entropy
production in this case.

The above formulas are quite complicated and the
relations between the respective entropy densities
and entropy productions will be considered in the
next section on variational methods. Blount' has
also worried about the commutation problems in
expressing the entropy production in general quan-
tum mechanical systems but has not given any
explieit formulas for this quantity.

It may be noticed that in the classical limit
(no commutation problems), the following re-
ductions hold: firstly, ®” = & = &' together
with all the entropy production terms being of
the form (33); secondly, the entropy density for
forms (a) and (b) reduce to

ps = ps” — 3k tr {9, (38)
whereas Eq. (32)
ps(c} T ps(ﬂl — ktr f(0,¢2- (39)

4 E. I. Blount, Phys. Rev. 131, 2354 (1963), Appendix.
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The difference between these last two equations
is due to the different orthogonality properties of
¢. In the classical case the perturbation is usually
written in form (a) so that Eq. (38) results.

IV. VARIATIONAL METHODS

The variational methods for solving the Boltz-
mann equation in the classical case have been
recently reviewed.® Consequently, the development
presented herein will be restricted to introducing
a suitable notation so that the classical results can
be applied to the quantum case.

The essential feature of the classical case is that
there is an operator ® in a (real) Hilbert space
which is positive definite but not necessarily self-
adjoint (symmetric), the variational methods being
then designed to solve Eq. (26) for such an opera-
tor. In this section appropriate Hilbert spaces are
considered for each form of the perturbation, the
positive-definiteness of ®& demonstrated in each
case and appropriate definitions made so that Sec.
II of Ref. 5 may be taken over as far as possible
to the quantum case.

That the Hilbert space is over the real field in
the quantum mechanical case follows immediately
from the fact that f’ must be Hermitian. How-
ever the appropriate scalar product is different for
each of the forms of the perturbation. Classically,
the norm of the Hilbert space is related to the
expression for the entropy density, so that classically
¢ must satisfy

tr ¢’ < o, (40)

which by Eqs. (38)-(39) yieldsa finite entropy density.
On the basis of the entropy density, for form (a),
the appropriate scalar product is

A
GA__I'I/:

@ ¥ =trfV
(41)

= tr (ufiﬂ)-fj-(ﬂ)qbf(ﬂl—})(uf(ﬂ)—}f(OJ wf(ﬂ)—i),
which is real since ¢, /¥ and (A/(e* — 1)y
are Hermitian by Egs. (20, 23) and positive definite
by the last form of Eq. (41). Here u is the super-
operator which is the positive root of the super-
operator equation

a_ A

" 2sinh 1A
Thus uA is Hermitian if A is and also « has the
property that

tr AuB = tr (wA)B = tr Bud,

u (42)

(43)



QUANTUM BOLTZMANN EQUATION

which has been used in the last form of Eq. (41).

In order to apply the variational methods of
Ref. 5 to the present case, it is necessary to show
that ®'® is a positive definite superoperator rela-
tive to the above scalar product and that the
entropy production is given hy

o = kig| & |¢).

The last statement follows directly from the defini-
tion Eq. (35) while the former can be proven by an

(44)

adaptation of an argument of Waldmann’s,"® namely
that with the definition,
¥ = uf % 4w, (45)

one has

@ R |} = tr (uf " ')f R (ug),

—3(2%)" tr tr, w[ I + 51; (17 — w'),]

—1(2m)* trtr, (V¥ — WV S(E — K)s(P — P)t',
12n) trtr, AS(E — K)6(P — P)A' > 0, (46)

where

Il

A = ¥ — w)fOL, (47)

Lastly, it is easily shown that the superoperator
®‘“* which is adjoint to ®'® relative to the scalar
product (41) is given by

R®% = —(2x)" tr, fi” [t'(qb +¢.)8(E — K)o(P — P)¢

+ ﬁ {@+ o)t — 1’6 + ¢.)}:|- (48)
The above equations are quite complicated to
apply because of the superoperator » which appears
in the scalar product. A simpler variational method
can be obtained from the above by setting u = 1,
in which case the appropriate scalar product is

@ | ¥) = tr { Ve ty, (49)

and all the previous statements are correct except
for the identification of the quadratic form (44)
with the entropy production.

Form (b), Eq. (21), for the perturbation is
very similar to form (a), in fact, one can be ob-
tained from the other as has been noted previously
since ¢ = 3(1 + €*)¢"”’. Making this substitution
in Eqgs. (41-48), the same results are obtained as in
form (a) above with the proper interpretations of
entropy density and production as given in Egs.
(36)—(37). A simpler variational method can be based

% .. Waldmann, Z. Naturforsch. 15a, 19 (1960), sec. 2.
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on the scalar product (49) provided slight modifi-
cations are made in the linearized Boltzmann
equation (26), namely by defining X and &
by the following

X(d) = )‘-(DHXf(U)—% y m(d]¢ = j({)}}(m(b)¢)j(m—|

= cosh GAR™¢.  (50)

With these definitions, it is easily shown by an
argument similar to Eq. (46) that ®‘” is positive
definite with respect to the scalar product (49)
and that its adjoint is given by

LA =3B
e + e
2

(d)+

R = ®R“%p = cosh BA)R%¢. (51)
Form (¢), Eq. (22), is somewhat different because
of its normalization. Thus using as a scalar product
A
-1

@lw=tef" 1y

= tr (u—If(O)}d)f(ﬂH)(u—lf(O}{'Pf(t))})' (52)
and modifying the linearized Boltzmann equation
to be

A

X(c) =
e — 1

X =a"%, (53)
it follows that ®'® is positive definite relative to
the scalar product (52), has the same adjoint as
before, Eq. (48), and gives the correct entropy
production by Eq. (44), namely reduces to Eq. (33).
Again, for simplicity, u can be set equal to 1 in
Eq. (52) but then there is no correspondence with
the entropy density or entropy production.

With the respective scalar products and super-
operators, the variational methods discussed in
Sec. III of Ref. 5 may be taken over to solve the
linearized Boltzmann equation.

V. TIME-REVERSAL AND SPACE-INVERSION
SYMMETRY

The variational methods referred to in the previous
section make use of the relation between the Boltz-
mann superoperator & and its adjoint ®F, In the
classical case® the relation between these two (super)
operators is physically related to time reversal
and space inversion. That this is also true in the
quantum mechanical case will be shown in this
section,

Quantum mechanically, the time-reversal opera-
tor 6 on state vectors in the Hilbert space 9 is
antiunitary.’® Consequently, the time-reversal

18 E. P. Wigner, Group Theory (Academic Press, Inc.,
New York, 1959).
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superoperator @ defined by
04 = 467" (54)

is also antiunitary. In the absence of a magnetic
field H the Hamiltonians K and V are time-re-
versal invariant, that is

@K = K, eV =V, (55)
so that the ¢ operator Eq. (3) satisfies
or=1". (56)

Thus for example, the collision cross section, Eq.
(16), satisfies

(57)

in which —7 is the state obtained by time-reversing
state 7.

In analogy with the classical case f*' is not time-
reversal invariant if there is a local stream velocity
or a local angular momentum density but this
difficulty can be overcome by defining the operator
©’ which acts on the parameters in ' to reverse
the stream velocity and angular momentum density
parameters. It is convenient to require ®' to also
change the sign of ¢{ and H. The combined operator
@, = ©0' then will leave ' invariant, ie.,
@, = . It then follows from Eqs. (48) and
(56) that

2 2
k,o’;-., = ]C_.O'..,‘,...—,'

(0)

&’y = 0,807 = /%, (58)

which is exactly Eq. (40) of Ref. 5.

Space-inversion symmetry is also the same quan-
tum mechanically as classically. The space-inver-
sion operator II on state vectors in © is unitary as
is the corresponding superoperator II given by

A = IIAIL (59)

Thus if the Hamiltonians K and V are space-in-
version invariant, then so is ¢, ie.,

NnK =K, nvV=V, m=I (60)
so that the cross section, Eq. (16) satisfies
oiwi(P;i = P:) = o (—p; = —pJ). (61)

The inversion of the relative linear momenta
of the initial and final states has been explicitly
indicated. However, if the states have a spatial
configuration as is the case for optical isomers,
then the spatial configuration must also be re-
versed.

Since f is not invariant to space inversion,
one again defines an operator I’ which inverts
the stream velocity v, so that f is now space-

R. F. SNIDER

inversion invariant. It must be remembered that
1 is parameterized by the position r but that the
origin of the space inversion is to be considered the
position r so that r is unchanged by the above
inversion process. The combined space-inversion
operator II;, = II'II will leave f*” invariant so that

@ =LA, = ®“. (62)

Thus for form (a) and the sealar product (41), all
the statements of Secs. III and IV of Ref. 5 may
be applied to the quantum case. This also holds
for the other two forms and their respective scalar
products. For the simpler scalar products, every-
thing will again be applicable except for the identi-
fication of entropy density and entropy production
as is discussed in Sec. IV.
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APPENDIX A
Some errors in Ref. 3 are corrected:

Eq. (33): replace u® by pops;

LEq. (37): replace u? by pau.;

Eqs. (44), (51), (58), (59): replace i by —1;
Eq. (69): insert 1/, inside the integral.

APPENDIX B

In linearizing the Boltzmann equation accord-
ing to form (¢) an expansion of the exponential
¢ ’** is required. Similarly, in evaluating the
entropy density and entropy production by forms
(a) and (b) the linear and quadratic terms in ¢ of
In [f”(1 + ¢)] have been used. These formulas
will be developed here for a noncommutative
algebra.

The classic Baker-Hausdorff formula for the
expansion of z = In (¢"") in powers of y has recently
been discussed by several authors.'” This expan-

sion may be written as follows:
z=zx4+z,+2z+4+ -, (Bl)

where

A,
5 =—"y (B2)

17 J, Wei, J. Math. Phys. 4, 575, 1337 (1963); G. Weiss
and A. A. Maradudin, 1bid. 3, 771 (1962).
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and
(B3)

WY PR

2.. = m 3.1: m=1 1»

In these formulas, A, is the commutator super-
operator

Ay =zy —yz (B4)

and the derivative is the Fréchet derivative'®
(which is again a superoperator). The' first term
Eq. (B2) is in convenient form for application,
though it was found difficult to find an explicit
expression for z, in terms of z and y from Eq. (B3).
Consequently, a different formulation of this result
will be obtained.

Let z(\) be considered as an analytic function
of the complex variable A; then by a Taylor series
expansion of the exponential and identification of
the results, the following derivative is obtained:

i a(h) __ = ﬂ_li ng_{ n—m=1
at = ?;:,...,.nr" an:
Ly mb _saz
S s m4p+ Dimloxp!

Il
™
s
|
&
Q’
k-]
Ry
|N
&
[n, =

— f‘ e(l"‘l}l a_zecl da,
0

wherein p = n — m — 1 and the integral formula
for the beta function m!p!/(m + p + 1)! has been
used.'” The last integral may be evaluated using
the commutator superoperator A, defined analogous
to A, in Eq. (B4). Thus,

& = az fl -l a9z
(1—a)s Y% _as = a* ads L
j; e e da = ¢ 1 e d"‘aA

(B5)

_ el —e®)
= B

For z(\) = In (¢"¢""), Eq. (B6) after inversion of the
superoperator and setting A = 0 gives the first
GAteaux differential® of z(\) which is just Eq. (B2).
5 E. Hille and R. S. Phillips, Functional Analysis and
Semi-groups (American Mathematical Society, Providence,

1-gr
Rhode Island, 1957).

1% See, for example, Higher Transcendental Functions,
edited by A. Erdélyi (McGraw-Hill Book Company, Inc.,

New York, 1953), Vol. 1, Chap. 1.
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The second Géiteaux differential of z(\) is ob-
tained in the same way, namely by differentiating
Eq. (B5) with respect to A, setting z2(A) = In e,
taking the limit A — 0, and solving for 8°z/9A*
using superoperators. Thus,

i’ () __ fl fl [ (l=a)s azz az
T R M A N ¢

Q‘_Z_ Bll—a)s Q_z_ az

(=a)(1=Blepy
e (1 —a) n ™

an
Y o s JPUPYS Reull o [(_13) i]
A, oA A, A, N A
_[1 a_z]e._l—e‘°'ez+ .(l—e"'ﬂ)l_ﬂ
A, oA A, ax " °\ A, oA

o B T [a_l_i]
&R, o A, an (B7)

so that for A\ = 0 and z(A) = In e%" there results

+ e(l—cln a_ze(l—ﬂlulag_ieﬁcn] dadB.

9’z

2 = |\

_ A ,_( 1 ) A,
1—e'°'y l—e""y l—e"'y

A, [(el )_ 1 ]
t |\ A

+ (1 _‘A;“‘- y) :

l—¢e

= (B8)

To apply these equations to the main text, one
sees first of all that the second term in Eq. (29) is
just Eq. (B6) in the limit A = 0 with the proper
replacement of z by —g and dz/d\ by ¢. Equations
(34)—(35) are derived from the expansion (B1) for
z(\) = In e%" with the replacement of z by —g
and y by ¢ — 3¢°, the latter being necessary if
¢” is to be equal to 1 4+ ¢ to second order in 4.
A small amount of algebraic manipulation and the
identity

¢f(0l _— i(D)eﬂ¢ (Bg)

[with A as in Eq. (24)] then yields the required
results.
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The conventional statement of statistical determinism is that “‘the expectation values of all (Heisen-
berg) observables are determined by the expectation values of the observables at one time.” This re-
quires that a full algebra of self-adjoint operators be in one-to-one correspondence with measurement
procedures performed af one time. For instance, it requires that if two noncommuting observables p
and g are defined at {=0, there should exist a measurement procedure at {=0 corresponding to p-q.
No such procedure is known. The contrast between the positive assertion of the existence of certain
laboratory procedures and the inability to describe them constitutes perhaps the weakest point of
quantum mechanics. However, the conventional statement of statistical causality is shown to be un-
tenable in a relativistic theory. This paper proposes a weaker form of causality which (1) uses measure-
ments made within a truncated light cone rather than at one time for predictive purposes, and (2)
which involves only strictly localized states, i.e., states which are vacuumlike outside a finite volume.
Failure of the conventional causality statement implies that the set of quasilocal observables is not
necessarily linear, i.c., if A and B are in a set, A 4B is not necessarily in it. This remark may open the
way to a systematic inquiry into the problems of associating laboratory procedures to self-adjoint
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operators.

I. INTRODUCTION

HE fact that quantum mechanics is an incom-

plete theory is generally acknowledged and de-
plored by those who are interested in fundamental
problems. Quantum mechanics asserts''* that meas-
urement procedures at one time are in one-to-one
correspondence with an algebra of self-adjoint
operators on Hilbert space, but it does not specify
the procedures. As an example, assume that pro-
cedures for measuring the position ¢ and the mo-
mentum p at the time { = 0 are known. Quantum
mechanics asserts that there exist procedures per-
formed at ¢ = 0 which correspond to p + g. The
assertion does not mean only that it is possible to
design a procedure by which the sum of the expecta-
tion values (p)¢ + {(g)+ is obtained for every state
¥, If this were the whole assertion, the procedure
could be trivially specified as an arithmetic addition
of numbers obtained from many individual measure-
ments of p and of ¢ on samples of the ensemble ¥.
The assertion is that the same procedure should
also yield the expectation values of (p + ¢)* and
of other real-valued functions of the operator p + ¢.
For this purpose, results of the measurement of
(p 4+ ¢) on individual samples may be squared and
averaged. One could, for instance, measure ¢ and

* This work performed under the auspices of the U. 8.
Atomic Ener ommission.

1P. A. M. Dirac, The Principles of Quantum Mechanics
(Clarendon Press, Oxford, England 1947), p. 26.

2 J. von Neumann, Mathematische Grundlagen der Quanten-
Mechanik (Dover Publications, Inc., New York, 1943), p. 167.

then p in rapid succession and consider the sum of
the observed values as the value of (p + ¢). How-
ever, the more accurately ¢ is measured, the wider
the statistical dispersion of subsequent values of p,
until, in the limit, the measured value of p becomes
entirely independent of the original state.

Also, two measurements of (p -+ ¢) performed in
rapid succession should give the same or almost the
same value. These requirements, imposed by the
theory on the apparatus, cannot be met by any
known device. On the other hand, the sum of two
commuting observables A and B may be defined
simply as the arithmetic addition operation on the
two procedures. Operationally, the test for com-
mutativity is to determine if the expectation value
(A 4 B) is independent of the order in which the
measurements are performed.

Why is it necessary to maintain the stringent
postulate in the face of obvious difficulties? What
would the theory lose in predictive power if the
postulate were dropped or weakened? It is shown
that the usual assumption about the correspondence
between operators and procedures is indispensable
for the commonly accepted form of statistical
causality (or determinism).’ The assertion of causal-
ity is

(A) ““The expectation values of the observables meas-
ured at one time (on a spacelike hypersurface) de-

# No precise distinction between the two words seems to
enjoy universal acceptance.
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termane the expectation values of all observables at
later limes.”

This seems to be a minimal substitute for classical
causality, and it is understandable that one goes
far to save it.

We shall see that in the context of the general
principles of quantum mechanics the causality (A)
requires, in effect, that the observables on one space-
like hypersurface ¢ = 0 form a linear set. In par-
ticular, for a complete set of dynamical variables
2(0), ¢(0), the linear combination p(0) + ¢(0) must
also be an observable at t = 0. The dilemma ap-
parently is this: either we must find procedures
for measuring such quantities as (p 4 ¢) at t = 0,
or we must abandon what seems to be a reasonably
minimal form of causality. Yet, as we shall show, the
statement (A) conflicts with the combination of (1)
the relativistic principle of signal propagation with
a finite velocity and (2) well-established non-
classical effects such as measurability of parity.
Therefore, one must accept a weaker form of sta-
tistical causality which does not refer to such all-
inclusive categories as “observables at time ¢ any-
where in the universe” but, more modestly and
realistically, to quasilocal observables [Sec. IV,
Statement (C)].

The weaker form of causality does not demand
that observables at one time form a linear set, and
hence relieves us of the burden of trying to design
extraordinary experimental procedures to satisfy the
requirements of a theory. This result opens the way
to a systematic investigation of the relation between
laboratory procedures and self-adjoint operators on
Hilbert space.

II. CONSEQUENCES OF CONVENTIONAL CAUSALITY

A measurement procedure in a space—time volume
V or spacelike hyperplane S is a set of instructions
and apparatus for an operation carried out within
V or 8; that is, all interaction between the ap-
paratus and the system takes place within V or S.

The assumption that such procedures exist clearly
requires some extrapolative idealization. If a meas-
uring instrument begins to interact with the system
at the time ¢ in a space volume v, the instrument
must have been brought there previously, thus dis-
turbing the system. To justify this assumption, it
must be asserted that the interaction previous to
t can be minimized to any desired degree.

In Secs. II-IV we are not interested in correla-
tion measurements, i.e., subsequent measurements
on the same sample of an ensemble. We may assume
that each sample of the ensemble is destroyed or

RELATIVISTIC QUANTUM MECHANICS
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discarded after the measurement. However, we do
not assume that each measurement is instantaneous,
and we classify observables by the time interval
of measurement, i.e., the interval beginning with
the interaction between apparatus and object and
ending at the moment when the necessary informa-
tion is stored.

Many measurement procedures are equivalent in
that they give identical results for all ensembles.
An equivalence class of measurement procedures in
V (or S) are called an observable in V (or S). Dif-
ferent observables may have identical expectation
values for all ensembles, e.g., the momentum of a
free particle, measured at different times. This de-
fines an equivalence class of observables which,
following Dirac, we call a “dynamical variable.”
Self-adjoint operators on Hilbert space may be con-
sidered as images of observables in a many-to-one
mapping, or as images of dynamical variables in a
one-to-one mapping.

We follow the conventional assumption to the
extent that the set E of dynamical variables is

»assumed to form a normed linear space so that the
set of all observables is closed under addition. For
example, if p(0) and ¢(0) are observables, then
q(0) + p(0) may not be an observable at t = 0;
but it is an observable. This is a much weaker as-
sumption than isomorphism between dynamical
variables and observables at one time. For instance,
for a free particle [g(f) = ¢(0) + pt], the Heisen-
berg operator ¢ measured at the time ¢t = 1 is equal
to p(0) + ¢(0). In other words, the equivalence
class of the dynamical variable ¢(0) 4 p(0) may not
include an observable at ¢ = 0, but it does include
one at { = 1. In the remainder of this section, we
consider only observables at one time (or on a
spacelike hyperplane).

Let G, be the set of dynamical variables ob-
servable at ¢, i.e., G, consists of those dynamical
variables whose equivalence class includes an ob-
servable at {. To an ensemble p, one associates expec-
tation values of dynamical variables (4), (4 € E).
They form a positive linear functional f,(4) on the
dynamical variables. According to Statement (A),
the expectation values of the particular dynamical
variables B (B € G.) determine all expectation
values. In other words, if two ensembles have identi-
cal expectation values for all dynamical variables
B € @,, then they also have identical expectation

values for all dynamical variables. That is,
fp(B) ~ fﬂ'(B) (B (= Gr) (21)

implies



1590

¥iXx)

-d-» *="d ‘ X d 61_1

Fic. 1. Wavefunction of a one-dimensional particle with
positive (full line) and negative (dotted Jine) reflection parity.

1,(4) = 1.(4) (4 € E). (2.2)

The vanishing of a linear functiona] fo — f, in G,
implies its vanishing on the whole set ; such a
subset @, is called tolal. Note added in proof: It is
assumed that every linear functional can be repre-
sented as the difference between two positive linear
functionals. This assumption is justified only for
certain topologies of the space of dynamical varia-
bles.

We need two definitions in order to state the
consequences of this postulate.

Definition 1. A subset G is denge in E if, for each
y € E, there exisls @ Cauchy sequence of elements
X, € G so that X, — ¥.

Definition 2. A svfbsec_G is fundamental if the set
of all linear combinations of elements of G is dense in E.

The condition for G being total [i.e., the condition
for the postulate (A)] is then given by the theorem:*

Theorem. A subsel G 1is total if gng only if it is
fundamental.

For the purpose of designing measurement pro-
cedures, we can go farther. The knowledge of the
expectation values of observables 4, is equivalent
to the knowledge of the expectation values of all
linear combinations of the A.. Also, there is no
physical distinction between a procedure for ob-
taining a mean value and one which allows approxi-
mating it to any desired degree. Hence:

Physically, a fundamental set of dynamical
variables is equivalent to the whole gef,

To summarize, the postulate (A), together with the
general principles of quantum mechanics, requires
a one-to-one correspondence between the set of
observables at one time and the set, of all dynamical
variables.

In an attempt to avoid the unpleasant conse-
quences, one might weaken the statement of causal-
ity in an obvious way by requiring knowledge of
expectation values of observables in 3 gpacelike slab
of finite thickness in the time dimension [State-
ment (B)].°

8. Banach, Théorie des Opérations Linsaires (Hafner

Publishing Company, New York, 1932) 1, 58
¢ R. Haag and B. Schroer, J. Math, Bhys. 3, 249 (1963).
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While this weakening constitutes a further de-
parture from the idea that the present determines
the future, it does not seem unreasonable as long
as the thickness of the slab is small. This idea will
not be pursued in the present paper since the next
section will show that neither Statement (A) nor
Statement (B) is tenable in a relativistic theory,

III. THE FAILURE OF STATISTICAL CAUSALITY
IN RELATIVITY

The finite velocity of signal propagation imposes
severe restrictions on the possibilities of the measur-
ing apparatus. Since the measuring instruments are
macroscopic, it is sufficient to apply the basic
principles of classical relativity to their operation.

Consider a space volume v at a time {, and let
S, be the set of all observables that can be meas-
ured in » at time ¢ If ¢’ is another nonintersecting
volume, a measurement in » cannot influence one
in v* at the time {. That is, any instantaneous
measurement by an instrument which occupies both
v and v’ supplies no more information than could
be obtained by simultaneous separate measurements
in v and in ¢’. The same conclusion obviously holds
if V and V’ are space-time volumes which are space-
like with respect to each other, i.e., if V includes
only points that are separated by spacelike inter-
vals from all points of V.

Consider a state that is vacuumlike everywhere
except in two congruent disjoint volumes v and ?’,
i.e., the expectation values of all quasilocal observa-
bles at ¢ = 0 outside of v and v" are those of the
vacuum state. The remaining information is supplied
by quasilocal observables in the space-time volumes
V and V' which include v and ¢»". We may assume
V and V’ to be spacelike, with respect to each other.
As an example, consider a one-dimensional one-
particle system with two states described by the
wavefunctions ¥(z) (Fig. 1):

0 exceptfor d < |z] <d + w,
12)¢sin(z —d) for d <z <d+ m,

+3@)'sin (—z +d) for —d — v <z < —d.
(3.1)

Instantaneous observations in the two segments
d < |z|] < d + = cannot distinguish between the
two signs. By the principle of finite signal propaga-
tion, the time necessary to obtain additional in-
formation cannot be made arbitrarily small. If a
photon is used for the purpose of comparing the
physical situations in the two segments, the minimal
time for obtaining information would be 2(d + =) /e.

Y =
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On the other hand, we know that the reflection
operator, defined by

Ry(z) = y(—7) (3.2)

corresponds to an observable. The two functions
in Eq. (3.1) are eigenfunctions of R with parity
(eigenvalue) =+ 1, and there are known methods
for determination of parity.

If, more generally, observations in a finite time
interval are admitted, the same conclusions hold
if the space—time volumes -

—d— i - <

and
d<z <d++m,

are spacelike with respect to each other. For any
finite timelike thickness Af, there are states (charac-
terized by ¢ in our example) whose observable
properties cannot be determined by an observation
in the timelike slice.

We conclude that the strong causality [Statement
(A)] as well ag the slightly weakened form (B) are
untenable in relativistic quantum mechanics.

[t] < At

IV. WEAK CAUSALITY

A strictly localized ensemble p, has the property
that at ¢ = 0 the expectation values of all observables
are vacuumlike outside the space volume ». More
precisely, if w is a space volume entirely outside »,
and A, a quasilocal observable at ¢{ = 0 in w, then
the expectation value (4,),, is equal to the vacuum
expectation value (4,)q of this observable. Accord-
ing to Sec. III, there exist observables whose expecta-
tion values are not functions of the instantaneous
expectation values (4),,. Consider, however, a four-
dimensional cone defined as follows. Let R be the
radius of the smallest spliere that contains ». Then
this sphere and the hypersurface consisting of all
light rays from the surface of the sphere to its center
defines a space-time cone C(v), shown in Fig. 2,
such that observations in C can ascertain any
“phase relation” between parts of the physical
system in ». Without contradicting either the rela-
tivistic principle of finite signal velocity or well-
established results of quantum mechanics, we can
state a weaker form of causality:

(C) For a strictly localized ensemble p, in the space
volume v, the expectation values of the observables A .
in the corresponding space—time cone C(v) determine
all expectation values.

It might appear, at first, that Statement (C) is

QUANTUM MECHANICS 1591

%
/ - R

Fic. 2. Weak causality: For a state strictly localized within
a sphere of radius R;, a determining set of observations must
include durations of R/e.

too weak to be useful as a substitute for (A) since
the strictly localized ensembles are a very special
class of ensembles or states. However, the concept
of a physical system is meaningful only to the ex-
tent that it is not influenced by other parts of the
universe which are left out in considering the system.
If, nevertheless, the system is idealized so that it
extends everywhere, then we must make the as-
sumption that nothing else exists, i.e., that the
expectation values of quasilocal observables are
vacuumlike at sufficiently large distances. State-
ment (C) seems to be adequate not because most
ensembles are strictly localized but because tiie only
way to deal with actual ensembles is to approximate
them by strictly localized ones. In contrast to
Statements (A) and (B), (C) evidently does not re-
quire that the set of observables associated with a
precise instant should be closed under addition, and
thereby relieves the theorist of a heavy burden.

Another consequence of the principle of finite
signal velocity is that a collection of strictly localized
ensembles {p,} for a fixed volume v is invariant
under operators that are images of the corresponding
set of quasilocal observables {A4,}. Indeed, according
to the principles of quantum mechanies the vector
A,,./||4,%,]| is the state created immediately after
an instantaneous measurement A,. If this state
differed from the vacuum state outside of », a
signal would be transmitted instantaneously from
v to other space points.

This remark can serve to confirm the impossibility
of determining the phase & in a state of the type
considered in Sec. ITI, viz.

® =V, + 'y,

by instantaneous measurements if v and v* are dis-
joint simultaneous space volumes. Clearly,

(‘P-'r‘I’-) = 0:
and according to our previous remark

(‘I’o'n A‘I’r') = 0
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whether 4 is in {A,} or {4,.]. Hence, for any ob-
servable 4,

(‘I’: Aé) = (¥, A‘I’,) + (\I'v'a A‘I’.-)

and the cross term always vanishes, so that no in-
stantaneous information about the phase is available.

V. THE PRO]JECTION AXIOM

The weakening of classical determinism in quan-
tum mechanics is of two kinds: either the statements
refer to all observables and all states but to the
ensemble rather than the individual sample, or they
refer to some observations on some states and suc-
cessive observations on one sample. The latter cases
are realized by a special kind of measurement pro-
cedure called a “procedure of the first kind,”® which
is aptly described as filtering. A filter selects a sub-
set of an-original ensemble, and some unambiguous
predictions can be made with respect to each sample
of such a subset. Let us consider the restrictions
that relativity imposes on these predictions.

One of von Neumann’s postulates is the pro-
jection axiom (M)": “If the observable R is measured
on a system twice in succession, both observations
yield the same value.” Clearly, this form of the
statement must be taken with a grain of salt.
Margenau® has pointed out that in the overwhelm-
ing majority of measurements the system under ob-
servation is destroyed; it or its parts become perma-
nently attached to the measuring apparatus. In the
spirit of Pauli,’ a more literal version would preface
the sentence by “In every equivalence class of pro-
cedures belonging to the observable R, there exists
one such that ....”

Is Axiom M necessary at all? It is argued here
that at least in some modified form “Axiom M”
is both physically desirable and indispensable. In
classical physics the immediate .repetition of an
observation confirms the first result. This fact is
tacitly accepted as the basis of any science. If it
were not so, could one speak of objectively true
events at all? Since quantum mechanics must agree
with classical physies in some limit, quantum me-
chanics must surely include some statement with
predictive claim on successive measurements of
individual samples. What could the statement be?

Von Neumann points out that there are, a priorz,
three possible forms of causality or acausality in
relation to the repetition test. (The words “con-

¢ W. Pauli, Handbuch der Physik (Springer-Verlag, Berlin
1933), p. 152. ’ '

7 Reference 2, p. 177.

8 H. Margenau, Phys. Rev. 49, 240 (1936).
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firmability” or “objectivity’” would perhaps be more
felicitous than ‘“‘causality.”) Given a repetition, (1)
the first and second results could be statistically
independent, (2) the first result could have a sta-
tistical dispersal, but the second be each time
identical with the first, or (3) both results could be
uniquely determined by the initial state.

The third case is that of classical mechanies; the
first would come close to denying the existence of
any objective observation, and hence of natural
science. There remains the second case which is
embodied in Axiom M—and perhaps a fourth pos-
sibility, namely that the results of the second meas-
urement could be statistically correlated to the first.
The principle of simplicity impels us to choose the
second rather than the fourth possibility unless
there is definite evidence against the former.

The point in which von Neumann’s axiom needs
revision (in addition to the minor restriction made
above) is the time after which a confirmatory repeti-
tion can be made. As we have seen, in relativistic
quantum mechanics some observables that are in-
dispensable for prediction cannot be measured in-
stantly, i.e., there is an inevitable delay between the
beginning of the interaction and the recording of the
information. It is now shown that there is equally
an inevitable delay before the second measurement
can confirm the first result.

In discussing the time sequence of measurements,
it is convenient to think of a retrospective analysis
of measurements completed in the distant past,
rather than of a theory to be applied to experiments
in actual progress. The first advantage of this view
is that the use of probability in the sense of a ra-
tional judgment on the basis of existing and,
ordinarily, incomplete evidence never arises; the
only kind of probability involved is the relative
frequency of past events. The second advantage of
the retrospective view is that the question of signal
velocity between recording devices never arises. It
must be remembered that, literally speaking, a
prediction is not possible even in classical relativistic
physics, since the time necessary to communicate
information from local observing devices to a central
predictor would be precisely as long as the time for
which the theoretical predictive ability claims
validity, viz. ¢ = A/e, where A is the distance
between the most distant of the simultaneous re-
cording devices. Instead, by prediction we mean the
establishment of a functional relation between ob-
servations recorded at different times, all of them
in the distant past with respect to the time at
which the verification is made.



OBSERVABLES IN RELATIVISTIC

We consider the procedures of the first kind which
measure the parity of a sample at two different.
times in such a way that the first and second meas-
urements have identical results.

Resonance scattering of light provides such a
procedure for some systems. Let there be two energy
“ground” eigenstates with opposite parity, and let
the state be a coherent superposition of the two
(which are assumed to be nearly degenerate). If
there is an excited energy eigenstate of known parity
(say +1), then resonance scattering for sufficiently
long wavelength is possible only with parity change
of the system. If the energy spread of the photon
covers the energy difference between the two ground
states and the excited states then the system is
certain to be in the state with parity —1 after
resonance of the photon has been observed. The
question is now: What is the smallest time between
the beginning of the interaction between system
and photon and its cessation? To simplify the
question, think of a system which is initially in the
negative-parity state, and ask for the time at which
the wavefunction of the combination (system and
photon) becomes a product function with the
negative-parity eigenfunction as one factor.

Consider an electrodynamic system (such as a
positronium) consisting of two particles localized
approximately in small volumes » and »' with a large
distance between them. Intuitively, the answer to
our question is then the following. In order to be
sensitive to the parity of the state, the photon has
to be scattered by one particle (say, in ») and run
to ¢' to be rescattered—or vice versa. The smallest
time for such a process is evidently d/c.

A more quantitative estimate may be derived by
elementary perturbation theory. Dyson’s operator®
U(t, t,) for finite times can be expanded and the
terms transformed in the usual manner. The result
of the contractions can be represented by the usual
diagrams. The relevant fourth-order diagrams are
shown in Fig. 3; it is the interference of these two
terms that is sensitive to parity. The rules for the
evaluation of the diagrams differ from the usual
ones only in that the integration over the coordinates
of points 1 and 4 is omitted. The result is the prob-
ability amplitude for a process in which a photon
reaches the system at ¢, and leaves it at ¢,. In order
to obtain the probability for a resonance scattering
from a ground state, the resulting matrix element
would have to be integrated with respect to the

¥ See, for example, 8. 8. Schweber, H. A. Bethe, and
F. De Hoffmann, Mesons and Fields (Row, Peterson and
Co., Evanston, 1llinois, 1955), Vol. I.
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F1c. 3. Feynman diagrams for resonance scattering. The
photon is absorbed and re-emitted by one particle, then
absorbed and re-emitted by the other particle.

initial and final coordinates of the particles. Simi-
larly, an integration over some localized wave
packet of photons would have to be performed on
the final and initial coordinates of the photon.

The usual evaluation of the diagrams exhibits
the function Dg(xs — z,), where the time coordi-
nates of z; and z, cannot differ by more than ¢, — ¢,
while the space coordinates differ approximately
by d. Sinee the function D, decreases rapidly outside
the light cone, the matrix element is negligible
unless the time {, — {, is larger than d/c. The meas-
urement begins when the photon interacts with
particle No. 1 (or 2) and is repeatable after it has
interacted with particle 2 (or 1) in diagram (a)
[or (b)]. In the intermediate period, one of the
particles is in an excited state and the total system
is clearly not in the ground state, so that an ad-
ditional photon would not be scattered in the same
manner.

Only a particular class of fourth-order diagrams
has been considered, and one may ask why others
should not contribute to the measurement. Physi-
cally, the reason is that the photon energy has been
chosen for resonance (i.e., so that Thompson scatter-
ing, Compton scattering, ete., are negligible), but
mathematically this cannot be shown from perturba-
tion since the excited intermediate state is not ob-
tainable by perturbation.

It has thus been shown that relativity imposes a
time delay between a measurement of the first kind
and the subsequent confirmatory observation. There-
fore, the term ‘“immediate repetition” in Axiom M
must be replaced by the phrase ‘‘repetition after
the time At¢ that characterizes the space-time
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volume V assigned to the observables.” This leads
to the modified axiom:

(M") In every equivalence class of procedures be-
longing to an observable Ay. there exists a procedure
such that for all systems whose Hamiltonian commutes
with Ay, ils repetition after the time At gives the same

W. C. DAVIDON AND H. EKSTEIN

result as the first measurement, where the interval A
18 the largest timelike interval in V.
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1. INTRODUCTION

HE solutions for the relativistic scattering of

electrons in a Coulomb field were first obtained
by Mott' in the form of partial wave amplitudes.
These amplitudes were expressed as functions of
the two parameters a and ¢, where « = Z/137,
g = a/B, and B = v/c. Attempts to sum the partial
wave series analytically were successful only in
powers of a (with 8 considered to be of order 1).**
The most recent of these attempts® led to expressions
for the Coulomb amplitudes F and G (in Mott’s
notation) accurate to order o’ and o° respectively,
with extremely complicated coefficients which were
functions of g and z = sin }6.

We have obtained a simple and useful relation
between the Coulomb amplitudes F and G, and have
succeeded in summing the partial wave series in
powers of o’ for arbitrary ¢, up to and ineluding
the terms in a'. This organization of the expansion
appears to be simpler and more natural than that
in simultaneous power of « and ¢***, since the major
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3'W. R. Johunson, T. A. Weber, and C. J. Mullin, Phys.
Rev. 121, 933 (1962).

complexity of the latter comes from expansion of
the Coulomb phase factor, exp (2ig In z), in powers
of ¢. In our expansion the result is separated into
two terms, one of which contains the phase factor
exp (2ig In z), the other of which does not. These
results are then analytic in the variable z, apart
from the Coulomb phase factor. This separation is
similar to that given by Drell and Pratt' for 8 = 1.

Our results are related to those of Rosen,® and
of Fradkin, Weber, and Hammer.” Rosen derived
a double-integral representation of the coefficients
of powers of a’. Fradkin et al. derived a similar
expansion in terms of a two-parameter function
T(6, q) up to a’. We have evaluated these coeffi-
cients as convergent expansions in powers of z,
which are most useful in the small-angle region
(near z = 0). In addition, the method is applicable
for the o’ and higher terms, although the algebra
is tedious and has not been carried out.

For completeness we have also obtained a double-
integral representation of the Coulomb amplitudes,
in which the dependence on «, g, and 6 is exhibited
in separate factors.

Applications of the considerations in the present
paper to physical problems have been considered

4 8. D. Drell and R. H. Pratt, Phys. Rev. 125, 1394 (1962).

& B. Rosen, J. Math. Phys. 4, 392 (1963).

¢ D. M. Fradkin, T. A. Weber, and C. L. Hammer, Ann.
Phys. (N. Y.) 27, 338 (1964).
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in a separate paper.” Among these applications are:

(1) Accurate evaluation of the poorly convergent
partial wave series for the Coulomb amplitudes at
forward angles.

(2) Comparison of attractive and repulsive
Coulomb scattering, particularly in the nonrela-
tivistic limit of large |g| but finite e.

(3) Behavior of the cross section and asymmetry
function for small angles.

(4) Behavior of the cross section and asymmetry
function at backward angles, where magnetic scat-
tering effects will be important.

(5) Modification of the Coulomb amplitudes be-
cause of screening by atomic electrons.

2. RELATION BETWEEN F AND G FOR
RELATIVISTIC COULOMB SCATTERING

a. Partial Wave Expansion

The relativistic amplitudes for Coulomb scattering
have been obtained in partial wave expansion by
Mott," and his results are reproduced below. The
amplitudes of the scattered wave in the two spin
states are related to the functions f(6) and g(0),
given in the general case by

2kf(6) = 3" [(n + DE™ — 1)

=0

+ n(e"""* — 1)]P.(cos 6), (2.1)

2ikg(8) = 2 (—e"'™ + €""""*)Pl(cos 6).

n=0
For Coulomb scattering the phase shifts in (2.1)
are determined from the asymptotic form of the
wavefunction; the prescription here is

e?it—u—n = _[n — iq(} S— ﬁ‘)‘]cm
e = [+ 1g(1 — B)YC,,

e =

(2.2)

where"

C. = —e"""'I(p, — 1g)/T(p + 1 + ig)
and

B =1v/c, p. = (0" — ')}, a = Z/137, q = a/B. (2.4)
Using

kf(8) = —iq(1 — 6")'F(6) + G(6),

kg(8) = ig(1 — §°)'F(6) cot 0 + G(6) tan }0,
Mott obtains

(19;4}?).. L. Gluckstern and S.-R Lin, Phys. Rev. 136, B 859
% The notation is identical with that of Mott (see Ref. 1)
except that our C, differs from his by a factor (—=1).

(2.3)

(2.5)
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F(0) = 5 3 nC.[Pu(cos 6) — Poy(cos )],
o (2.6)
G(6) = ‘5 3" n*C,[P.(cos 6) + P.-,(cos 6)].

b. Convergence of Partial Wave Expansion

The series as they stand in (2.6) do not converge
for all 8. For large n, one has

—1—2ig
C,~n f

and for 6 # 0, P,(cos 6) ~ n~Y. Therefore in the
strict sense, F(6) is conditionally convergent and
/(0) is divergent. Nevertheless, the expression for
G(8) in (2.6) is to be understood as the limit of a
corresponding sum which includes a suitable con-
vergence factor.

A more convenient approach is to evaluate the
sums in (2.6) for « = 0, obtaining the usual Born
approximation (F, and G, )and then expand the
difference between F, G and Fy, G, in partial wave
series which converge properly. Mott has performed
the sums for @ = 0, obtaining

Fy(8) = 3T — ig)/T(1 + i))(sin 36)*",
Go(6) = —ig cot® $6F,(6),

and the convergent partial ﬁave expressions for
Fl(a) = F(ﬂ) — Fo(8) and G,(0) = G(a) - Go(e)
are then given by

2.7

Fy(6) = % 3> nD,[P.(cos 8) — P,_.(cos 8)], s
i 2.8

}2‘_, n*D,[P.(cos 6) + P,_\(cos 6)],

G,(0) =

b | ==,

where
D, =C,— Cuax =0). (2.9

The convergence of the series in (2.8) is now assured
since n°D, is bounded as n — .

c. Relation between F and G*

The recurrence relations satisfied by the Legendre
polynomials can be put in the form

(1 — cos 8)d[P.(cos 6) + P,_,(cos 6)]/d cos 0
= —n[P.(cos ) — P._,(cos 6)],

(1 4 cos 6)d[P,(cos ) — P,_,(cos 6)]/d cos 6

= n[P,(cos 68) + P,_.(cos 8)]. (2.11)

Equations (2.11) and (2.8) lead immediately to the

® The existence of such a relation was first pointed out
by G. Rawitscher.

(2.10)



1596

relation

G(8) = (1 + cos 6)dF,(6)/d cos 6

= —cot $6dF,(6)/d4. (2.12)
From (2.7) one can easily demonstrate that
Go(8) = (1 + cos 6)dF,(6)/d cos 8

= — cot 36dF,(6)/d8. (2.13)

Therefore F and @ satisfy the same relation, namely
G(6) = (1 + cos 6)dF(0)/d cos 6

= —cot $6dF(0)/do.  (2.14)

The significance of this relation is twofold: In any
computation or evaluation of Coulomb amplitudes,
it is only necessary to consider F(6). The other
amplitude G(6) can be obtained by differentiation
once F(f) is available. Moreover, since the series
for F,(6) in (2.8) converges more rapidly than that
for @,(6), numerical results obtained using (2.12)
will be more accurate than those obtained with (2.8).

d. Non-Coulomb Scattering

The relation (2.14) suggests that it may be useful
to cast the results (2.1) for general relativistic
scattering into a more convergent form. If one
defines the complex quantities A, and B, in terms
of the phase shifts by

2inn—1
& = A,

Zif—pn=— =
e Lt B'”

(2.15)

the amplitudes f and g can be written, for all direc-
tions except 6§ = 0, as
2ikf(6) = 3 n(A.P. + B.P.-),
= (2.16)

; d <
21-]59(8) = d_a 21 (_AuP =1 + BuPu)'

Defining
E®) = L 3 (4, + B)P, + P,
e (2.17)
H(O) = 3 3 n(A, — B)P. = P,
one finds
kf(6) = B(6) — H(0) -

kg(6) = E(0) tan 30 + H(0) cot 10,

where the recurrence relations (2.10) and (2.11) have
been used. Comparison with (2.5) shows that E(6)
and H(6) now play the role of ig(1 — *)*F(8) and
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((6). However, the relation (2.14) no longer exists
between E(6) and H(6).

The rate of convergence of the expansions(2.17)
may be increased by repeated applications of (2.10)
and (2.11). For example, one may define the sums

E®) = £ 3 (4. + BYP. - P, -
=1 2.19

A0) = 3 3 (4s = BIP. + P,

leading to
E(6) = —tan 16 dE(6)/d6

H(8) = cot 36 dH(6)/d6.

This prescription must be used cautiously in numer-
ical calculations, since the more rapid convergence
of (2.19) is to be balanced against the greater
accuracy required for the numerical differentiation
required in (2.20).

(2.20)

e. Limits for F(0), G(6) at6 = 0, =
The convergent expression for F,(6) in (2.8) leads
immediately to the results

Fy0} =0, @2.21)

F\x) =i 3 (—=1)nD,.

Explicit results for coefficients of F,(r) expanded
in powers of a are given later. It can similarly be
shown from (2.8) or (2.14) with some care regarding
convergence, that

Gy(r) = 0. (2.22)

The quantity G,(0) is infinite as is also shown later,
although this may be inferred directly from (2.8).

3. SMALL-ANGLE EXPANSION FOR F AND G

It is obvious from (2.8) that the main contribu-
tions to the behavior of F,(8) and @,(8) near 8 = 0
come from large n. In fact, an expansion of D, for
large n allows one to perform sums of the terms
in this expansion for small ¢, leading to the form

Fo(6) =~ > a0 + > b6,
i=1 =2

(3.1)

Gi(0) =~ 3 ¢;6"* + 3 d;f’.
j=—1 i=0
After much labor, the first few values of a; and ¢;
can be written down for arbitrary «, ¢. However
b; and d; cannot be obtained explicitly this way.
It can be shown that (3.1) correctly describes the
analytic property of F,(0), G,(8) in the variable 0.
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Specifically, each function separates into two parts;
one is regular in the variable 8 and the other has a
branch point at § = 0, just as Fy(0) and G,(0) in
(2.7). We now obtain the series in (3.1) by expanding
in powers of o’ for fired q. This modified Born
series correctly exhibits the analytic behavior in 6,
although succeeding powers in o are more difficult
to obtain.

The starting point of this expansion is the integral
representation for D,:

1 i X ;
D = pr——— f a1l — !
(1 + 2iq) Jo ( ) g

X [I = gimmte=tany  (3.9)

Writing
n— p.~a’/2n + o'/8n°,
one has

nD, ~ m[ di(l — o) He e

X [’ (—ir + In t) — 2a'(—ir + In &)°
+ (a'/8n")(—ix + In 1)]
= }’d" — $a'dP + 1a'd. (3.3)

The most convenient form to use in evaluating the
sums in (2.8) is the one which has the appropriate
power of n to cancel that of the d!” in (3.3). Specifi-
cally, one can write

I = 2 di"[Pa(cos 6) — P,_(cos )],

g™ = > nd®[P.(cos 6) + P,_,(cos )],

B® = > n%d®[P,(cos 6) — P,_,(cos 6)].
Use of the recurrence relations (2.10) gives
g*® = —cot 20df"/do, ¢ = —cot 30df"/de,

h'® = tan 36 dg™' /do, g'? = —cot 10 df'V /de.
(3.5)
One therefore evaluates ', ¢, A’ from (3.4),
obtains ¢, 1*', [® from (3.5), and finally arrives at
Fl(ﬂ) — %z-[_l_azf(l) _ 1 4,(2) + %tx‘f(:”],
Gi(6) = ¥l3a’g" — g™ + a'g”].
Let us write the sums explicitly, replacing the
factor (—ir + In ¢) by (—ir + 3/d€)t* |.-o. This
leads to

f”) -

(3.4)

(3.6)

f dt(l . t)Zi G‘tt fg—1
X E t“(Pn == n—l)y
n=1

r(1+2 )

3.7)

(2)

D, ! 2iq e—ig—1
= mfo di(l — t)**°¢

X X (P, + P.y),

n=1
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F1g. 1. The contour € for P(z).
and
h(a) — f“),
where
D, = (_7:71' + 8/8€). 0.
The sums over n lead to
D ! o
w _ D,  im e
I =1a +2iq)fo aut — ™"
1—¢
X [(1 — 2tcos 8+ ) 1] ’ (3.8)
(2) I 2 T —
7T Ta + 2iq) f dil. = ™
141
# I:(l — 2l cos 6 4 15 1:|' (3.9)
Since
1—2tcosd+ = (1 — !efﬂ)(l _ {e—.-e)’

the integrals can be written as double hypergeo-
metric functions of the arguments ¢**. We are
interested in the behavior for small 4, and our task
is therefore to obtain a suitable analytic continuation
of the double hypergeometric function. We do this
directly from (3.8) and (3.9), illustrating our method
with (3.8).

a. Term Proportional to o’ for Arbitrary g

Let us start with the integral representation

) = [ali o, 610
where z = sin 14. From (3.8) one has
i = [D/TA + 2ig]lp(x) — pO].  (3.11)
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F1G. 2. The contour
C’ for P(z).

@-

Let us now consider the contour integral

. § 1)2ic+lt(—~iq1l
Pw'ﬁﬂﬂw—wﬁa—fﬂr’

where the contour € is shown as the solid curve in
Fig. 1. The singularities in the ¢ plane are at { = 0, 1,
e, and ¢™*, and the phase of each factor is chosen
to be zero at the point Q. If one deforms the contour
to the dotted curve shown, one can neglect the
contributions around { = 0 and { = =, obtaining

P(x) = 2p(x)sinh 2rq — 2r(z) sinh (rq — iwe), (3.13)

where

(1 t)21u+1( t)e-ﬂ‘q 1
)= f U — oF + 4]

It is clear from Fig. 1 that the integral representation
P(z) does not allow one to approach the limit § = 0,
since the branch points { = ¢*'’ merge with one
of the endpoints of integration. However p(z) may
be expressed in terms of P(z) and r(z) from (3.13),
each of which is now evaluated as 6 — 0.

In the expression for r(z), |4tz’| is always less than
(I — ¢)* and one may expand the denominator in

(3.12)

(3.14)

R. L. GLUCKSTERN

(22)'"*T(k + ig + 1 — oI'3)(=1)"(—2m)

AND S8.-R LIN

powers of z, obtaining

_ 3 @@=l
G ,Z-::: TG — )
% f dt(l _ t)ﬂ!’q—zs'(_t)e—in+i—l- (3.15)
Setting v = (1 — t)7', one finds
r(z)
. i (=1)'@2)" TG — ig — JTG—ig+ ¢
- JI TG — N7 — 2ig)
(3.16)

In the integral representation for P(z) one may
change variables from ¢ to » according to ¢ — 1 = 2vz.
In this way one writes

P(JL') - (21)2““ -Ldf)vz‘.‘“-l(l + zvx)e-fa—I

X @ + 2vz 4+ 1)7H, (3.17)

where the contour is the same as Fig. 1, displaced
to v = 0. For small z, one can expand both the
factors (1 + 2vz)* and (v + 1 + 2vz)" in powers
of z, obtaining

P(.’.U) s (2I)2iq+l

= = (22)** Tk +ig + 1 — OTE)(=1)"
X 2 X i TGg + 1 — 9/ TG — 7

i=0 k=0

2|q+]+r+k
Xf dv(v FOr

where the contour €’ is shown in Fig. 2.

The phases of v and »* 4+ 1 are taken to be zero
at Q. The integral over C’ can be separated into
two parts, one in the upper and the other in the
lower half-plane. Each is a beta function, leading to
the following result for P(z):

(3.18)

el = (muﬂgggkrm+4—wwr&+w+¢w—ﬂw—w—fu+m1 &19
Setting § = | — k, one can write % Z (2z)'T(% + 3 — '3 + ¢ 3 10D
Pa) = 3 — @0 TG) (—2r) 5 i tord + ot

51 T(—ig — I/2)T(ig + 1 — ¢ X cos (3wl — we). 3.21)

x 3 (CDTk+ig+1—09

ikl —B!ITEG +4g— 31+ k)

The sum over k may be performed by using the beta

function integral representation of I'(k+a)/T'(k-+b).
One finally obtains

P(@) = —2iT(})(22)'**"

(3.20)

Combining (3.13), (3.16), and (3.21), one finds

p@) —p0) _ 1| _ sign 3~ __T(=79)
I(l + 2ig) w[ DY I'(—ig — 30

D(—ig+3) @0 Ly 4y
TG Fig+ap 0 ot

X
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¢) cos (3wl — em)

X I'G+ 3l +

- 2 T3)(=)' T + 2ig — 29)
=i 2 @) TR0 + i)

‘% T —ig — eT'(j — iq + ¢) sinh (g — z'wre)]-
(3.22)

The operator D), may now be applied in order to
obtain . Since I'(a — €)I'(a + €) is even in ¢,
the differentiation need only be applied to the trig-
onometric factors and e can be set equal to zero in
the gamma functions. Thus

1 _ ;o 2ig+l 2 F(_"'Q) I'(—ig + 3)
1 = Y S i — ) TG T ia F 3D

(2-'0) r’G + 3y me”" E 22)"'1(3)

1! " sinhwg &7 TG — j)

(1l + 2ig — 2j) TG —iq)

'l + 2ig) T(A — j+ ig)

One can therefore write for the ratio F,/F,, accurate
to order o’

_&Ni (1) _—2iq F(I + i'I) i iy - 2
e =g ~ % &

X (3.23)

Fo
+ 173 ,Z-:a bzzy +Smh q z—n-‘u §6i12f’ (324)
where
& = ain. TG+ 3)
- 14 2ig T@))j!
' +ig9 TIG+1+1ig
XT@+ig+n Tl+ig @ CP
b — _ 2 (14 2ig) TETG + 1)
2ig(1 +19) TG+ 3)
T2 +ig) TG+ ig + 5) :
XTe+ig+7) rG+ig @ 20
(m _ 2Lr(%+5)
G T ¥ e )l
I(—ig+3) TG — g
XT-ig+31+9 =g * &%
and
v =2arg I'(1 + ig) — 2 arg T'(3 — iq)
= 4 arg I'(1 + ig) — 2 arg T'(1 + 2iq)
+ 2¢In2. (3.28)

The superseript (2) stands for the term in o

It is obvious from the form of the coefficients
a;, b;, ¢; that F,/F, may be written in terms of
hypergeometric functions as
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F & . ;
7= *{(I‘TZ Tt o1+t + ig; z°)
1 2 ; 2
= %st(l l: '32' + 1q, %1 2 + "'Q;mz)
—-21q rq
+ Sesmheg PG —i0, § — g2 — 11} :

(3.29)

where we have used the Pochhammer notation for
the hypergeometric function,'®

th(alr Oy bln R bn:z)
- EI‘(al +3) . Tl +3)
i=0 P(at) I'a.)
Tk) . T(k) 2
X5+ T+t &30
To the same approximation one can write
_(i _ iy - - 2f
. = Z(}J az
2 > i .27 ' 2 2iq - 27
+ z gb,-x +sinh7rq ’_Eaca: ; (3.31)
where
a; = [1 + (27 + 1)/2iqla;, (3.32)
= [1 + (G + 1)/iq]b;, (3.33)
& = [(G + 1)/igle;. (3.34)

Equations (3.32)-(3.34) are obtained from (2.14)
rewritten in the form

z d:l F,

21,q dz | Fy

G, _

G~ [1
In terms of the hypergeometric function, one finds,
to order o,

G\/Gy = o’ {(3r/q)ze™ F\(},
+ Zzg

(3.35)

1+ iq, ¥ + iq; 2°)

SFS(I ]- +IQ1 %l 1 +1'Q;1:2)
2—-2igq rq
- q(f" 5i7) sinh g T 1 — 0 3 — ig; z’)}-

(3.36)

b. Term Proportional to o' for Arbitrary ¢

The above procedure works as well for the term
proportional to «*, although the algebra is lengthier
and the final result more complicated. A brief
account of the analysis is given.

The term with superseript (3) in (3.6) comes
directly from A® = [, evaluated in (3.23) and
(3.24).

10 See for example, A. Erdelyi, Higher Transcendental
Functions (McGraw-Hill, New York, 1953), Vol. 1, p. 182.
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From (3.5) one finds

g7(0) = fo 2%11“’ + 4, (3.37)

where the constant A is chosen so that g**' (x) =0, i.e.,
= ' d__f (3)
P fu 2%
One then has
3 __ . 2ig+1 r(‘_iﬂ)
= 2‘[ T
M(—ig+3) (22)' G + 30 ;
rg+i4g+3n 229+l+1
R - N ) S A ¢ )
sinhwg <= 25 7! TG —9)
I'(l + 2ig — 25) T — ig)
r(l + 2i¢) TI(l — j+ iq)

and ¥ is then obtained from (3.5). -
The term with superseript (2) in (3.6) comes from

= ¢™(0). (3.38)

X

X :] + 4, (3.39)

={4)

I — H(=1)"2ig + 3n — HTU — igQ)T(} + ig)

R. L. GLUCKSTERN AND S.-R LIN

¥ which is given in (3.9) and can be rewritten as
D
r(l + 2ig) Jo

i L =
3 "L[(l 0 4w

where the constant

2D f N
L= dtll .— e
T+ 2ig) 4y T =Y

is equivalent to the value g'*' (0).
The integral over z in the expression for A4 in
(3.38) can be performed using (3.8), and leads to

D.d,
I'(l + 2ig)

where the operator d, is defined as d/du |,-o. Accord-
ing to (3.6), g and g occur in the combination
g™ — g". One can then write the terms in o in
the form (3.24) and (3.31). After much algebra,
one finds

i
g(2>(e’) — dl(l - ’-)?wfltcuiukl

1:| + B, (3.40)

B = (3.41)

‘ 3
i e nsil f AUl — PRt (3.42)
(1]

(3.43)

0
a; = <4..4
Ta

6:" = <

4q° Z; Fn)n — 3)(2iq + 2n — DI'(1 — n — iq)TG +n + 1g) '

w(n)(2ig + 3n)T(1 + )T} — ig)

770

(3.44)

(—da'r (I"(l + 2iq)

_ra- iq)) -
S _ 4(12 r( 2iq)
<

r(l — ig)

@ g :
8¢* (-1r . .gnl‘(n + HEg + )1 + g + T3 — ig — n)) !

o (=1)"T(3 + n)(ig — 3n — 3)T({ig —n — HI'in + 1 — ig)

1#0

i=0
(3.45)

4 i
b * 4
8¢ Z

(4) b(-l] (4)

The quantities a; and c{* are obtained from
(3.43)-(3.45) by usmg (3.32)- (3 34).

A study of the form of the coefficients leads to
the following conclusions:

(1) The form of F,/F, and G,/G, to all orders
of o’ is given by (3.24) and (3.31).

(2) The terms not containing the factor ™ start
with successively higher powers of z as one goes
to higher order in o”. For example,

& =0, a®=b"=0, a®=a®=b>=0.

(3) The expressions given are convergent for all
values of z except x = 1. For this value of z(8 = =)
alternate expressions obtained in the following sub-

e I'm 4+ 2)(n + 1)(i¢g — n — 1)I'(ig + 3T — iq) '

77 0.

section are valid.

(4) The terms containing the factor z7*** all
contain an additional factor ¢*‘/sinh »g. Since the
factor z7**° is rapidly oscillating near ¢ = 0, the
character of the Coulomb amplitudes for large posi-

11 The quantity
(1 + 2ig)
T(I + 2iq)
ma.y also be written as

r'(l — iq)
(1 — iq)

arg T(1 + 2ig) — 571 arg (1 + ig)

1) 3
+§{2Tq s 3 tanh o (3 + tanh® rq)}

and can also be expressed in terms of dy /dg by means of (3.28).

§d—
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tive and negative ¢ will be substantially different.
This has been pointed out by Fradkin, Weber, and
Hammer," and also by Rawitscher,'* who note the
absence of oscillations in the nonrelativistic limit
(large |g|) for the repulsive Coulomb case (g < 0).

c. Values at 0 =

To complete the expressions given in (3.24) and
(3.31) the value of F,/F, at § = = accurate to
order o® will be obtained. This term is given by

Fim) = 5 )

{1 = t)?iqte—lq
141

—ia’ i

2 T( + 2iq)fu al
- la i r2iqg+7+1)1
4 2 TQig+1) 2

I'(e — g + 1)
D, ——5= . A4
XM G+ retd (8.46)
One then has
Fix) _ Z I'(2ig + j + 1)1 + ig) 1
Fo(r) 2 = T'(2ig + )T + iq + j) 2°
. I'(l —ig) I+ g + 3')}
=0 |:— T —L — - = |. (3.47
"t T =i TC+ig+3 8:43)

4. INTEGRAL REPRESENTATION FOR F(6)

In order to complete the more-formal aspects
of our work we have obtained an integral representa-
tion of the function F(6) which separates the de-
pendence on the parameters a and ¢ and which
exhibits the analytic properties in the z = sin 16
plane. The technique used to obtain the result
parallels that of Rosen,® who obtains representations
as double integrals for the individual terms in an
expansion in power of o’. We obtain a double
integral for F(6) without expansion in a or ¢."*

For this purpose we write (0) as

P,..)

FO) =% 3 nCuP, —

n=1

= ——(l—z)ﬁZC(P + P,.y),

n=]1

(4.1)

where z = cos 0 and C, is given in (2.3). Applying
the Sommerfeld-Watson transformation one has

F(o) = 1(1 —2)

2 G, Rawitscher, Phys. Letters 9, 337 (1964).

13 The possibility of such an mtegral representation was
pointed out by L. Brown (private communication) who
obtained the corresponding result for the Klein-Gordon
equation.

(4.2)
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(3]

7 FiG. 3. The contour C
1 and C' for F(#0).

c

e = b e

where the contour € is shown as the solid curve
in Fig. 3. The quantity C(v) is given by
C(II) - _e-d(ﬂ--)r

X T(p(r) — i9)/T(p() + g + 1), (4.3)

where p(») = (* — &) It can be shown that
both P,(z) and C(v) are bounded for large » in the
region of interest and that the contour can be
deformed to the straight-line contour .

We now use the integral representation

1 d dss"
f(s s S

sin v dz
which converges for —2 < Re » < 1. This leads to

ds(l 4 s)
2) f (s 4+ 1 — 25‘2’)i

F(6) = &1; a-—

b ¢ f ’ dvC(p)s™” (4.5)

The poles in the » plane are located at

v =o' + (m + 1+ ig)?, = 01,2 « -
which are all to the left of the line Re » = 1. The
contour C’ may therefore be closed to the right
giving a vanishing contribution for s > 1. If one

then uses the beta-function integral representation
for C'(v), one has

ds(1 + s)
+ 1 — 2s2)}

1 1
BiE) = T 4x (=) T'(2ig + 1) ./:, (s*

1
d
Xfo A
xf (E’e_,‘(p—y)re—rlnu-#ptnt,
cr P

where an integration by parts has been performed
in the variable {. The behavior of the integrand for
large » is governed by the exponent

o t)qu’il'a]

(4.6)

—vlns+plnt
ernlpn

with p =~ ». In the right half-plane, the integrand
tends to zero if s > . Contributions to the integral
therefore come only for ¢ > s, and these may be
evaluated by closing the contour to the left to form
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a loop around the branch points at v = Z-a which
are the only singularities remaining in the » plane.
Setting

v = @ oS ¢, p = tasin ¢,

the integral over the loop becomes
‘. j-r d¢ e(—|'|r+ln t)ia sing+(ir—Ins) acosd

= 2nil,[af(ir — Ins)® — (i — In 0)*]}}. @.7)
The final integral representation for F(6) is therefore

i ds(l + s)

1 1
PO =50~ 1am D | 1 1= 55

: d 2ig—iq
X_/:dta[(l—t) 9]

X I{a[(ir — Ins)* — (ir — In 1)°]}}. (4.8)

This integral representation clearly separates the
a and ¢ dependence and suggests that the analytic
behavior of F(8) in the variables « and ¢ will be
different.

The analytic form of F(6) in the variable r = sin 46
will be the same as that given in the o® and o' terms
already obtained. In fact the sarhe contour deforma-
tion as in Sec. 3 can be used in the s plane to dem-
onstrate that F(8) can be separated into the form
in (3.24) for arbitrary «. The coefficients of successive
powers of o’ can be obtained by using the power
series expansion for I,. The individual terms present
themselves as double integrals in this formulation,
as in the work of Rosen.® The terms in &” and «" have
been reduced after much labor to those obtained
in (3.24)—(3.34) and (3.43)—(3.45). Higher terms can
similarly be obtained, but the results do not appear
to be simple, nor do they seem to be easier to calcu-
late in this way than with the method of Sec. 3.

R. L. GLUCKSTERN AND S.-R LIN

5. RELATION WITH BORN EXPANSIONS

At this point it is useful to discuss the relationship
of our present results with the previous Born expan-
sion®*? results obtained by simultaneous expansion
in powers of « and ¢ = «/f. The coefficients obtained
in this way have logarithmic dependence on the
angle, a result which is easy to understand since the

expansion of z°** in powers of « is

. i @) (%)m(].n z)".

2 (5.1)

A useful preseription for Coulomb-type problems is
therefore to extract the phase 2ig In (sin 36) where-
ever the logarithmic factors occur. If this procedure
is applied to the Born expansions, agreement is
obtained with our results to all orders available.

It is also clear at this point that the analytic
behavior obtained here for the Coulomb amplitudes
of the Dirac equation must be quite similar to that
for the Klein-Gordon equation, where the phase
shifts are given by

= e—{r(p'—n'}

X T’ + % — iQ[T(p’ + % + ig)]™
with

eﬁu

(5-2)

o = @ -

n =14+ 1%,

These results are discussed for large |q| by Fradkin,
Weber and Hammer,® and by Rawitscher."
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Electric charge has no direct meaning for strong interactions, yet is involved in the octet model in
such a way that the size of the elementary unit of electric charge becomes tied to the topology of the
group of strong interaction symmetries. This tie may indieate a relationship of electric charge to
another kind of charge got directly from topology of the group.

1. INTRODUCTION

T has been noted by Gell-Mann' that the theory
of SU(3) symmetry and the identification of the

operator
=3iY + I (1)

as the charge in units of that of the positron Z = Q/e,
suggest the existence of particles of charge =-1ie,
“subelectrons.”” This comes from the possibility that
arbitrary representations D(p, q) of SU(3) are
realized by multiplets of partieles.

On the other hand, there is an ‘“octet model”
which rules out subelectron representations. The
octet model may be posited in several ways. Briefest
is the rule®

@)

for a physical representation. Equivalently, that
all physical or “octet’” representations be obtained
from D(1, 1), the octet, by tensor product and
reduction. Justifications for (2) in the form of
physical models arise because tensor product and
reduction appear in the discussion of bound states.
One viewpoint is that the basic particles belong to
D(1, 1) octets. Another® is that the subelectron
multiplets are missed experimentally, perhaps be-
cause they are associated with high mass, and all
ordinary particles are got from D(1, 0) @ D(0, 1) =
D(0,0) @ D(1, 1) binding. If the distinction between
basic and compound particles is removed, however,
these models leave Rule (2) an undigested empirical
fact.

The subelectron matrix representations are also
characterized by being triple-valued representations
of pSU(3), the factor group of SU(3) by its center C,
whereas octet representations are single-valued. This,

* This work was supported by the U. S, Atomic Energy
Commission under Contract AT(30-1)-2262,

! Lectures of T. D. Lee and 8. L. Glashow (unpublished).

2 J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963), Eq. (7.4).
The argument and matrices at the begmmng of Sec. 2 are
adapteﬂrom de Swart.

. *This idea of M. Gell-Mann is said to have motivated
his “Eightfold Way."

p = gmod 3

though generally known,* will be explained in Sec. 2,
because it is closely related to the point raised here.
Namely, this distinction between subelectron and
octet representations is a direct manifestation of the
fact that pSU(3) is not simply connected. A similar
manifestation is the notion of “dual charge.”® The
first of these is a mathematical fact, the second is
related to a conserved quantity and is therefore
more of a physical hypothesis. It is unfortunately
not completely physical, as dual charge also entails
topological complexity of ordinary space-time,
whereas there is no scheme of calculation wedding
quantum mechanies to topological complexity of
space time. The point of this note is to suggest a
relationship between subelectrons and dual charge.
It will be seen that a difference exists in a classical
theory between fields belonging to subelectron rep-
resentations and those belonging to others, if it is
postulated that dual charge and electric charge are
essentially the same. Whether this distinction is
reflected in mass differences, in a law against sub-
electrons, or in some other way, is hard to say.

2. REVIEW OF THE DISTINCTION BETWEEN
SUBELECTRON AND OCTET REPRE-
SENTATIONS OF SU(3)

SU(@3) = D(1, 0) is the group of all 3 by 3 complex
unitary matrices of determinant 1. Corresponding
infinitesimal operators, defined with an “¢” factored
out, are the Hermitian matrices of trace 0, su(3).
By leaving one “third” complex dimension in the
representation space alone, one finds an SU(2) sub-
group of isotopic spin };

13 = dlﬂ.g (%r _%J 0): (3)

4 The author gratefully acknowledges information to this
effect from 8. L. Glashow. The referee has provided the
following references: M. Gourdin, Nuovo Cimento 30, 587,
(1963); L. C. Biedenharn and E. C. Fowler, “Fractional
Charges in the SU3 Scheme’, Duke University Proprmt
1963; and C. R. Hagen and b Y MacFarlane, uarks,
Tns.hty, and Unitary Symmetry Schemes’” (Rochester Uni-
vers:EyEepnnt 1964).

ubkin, Ann. Phys. (N. Y.) 23, 233 (1963), especially
pp. 263-273.
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and the su(3) matrices which commute with the
isotopic spin matrices are all proportional to

Y = diag (3, §, — 9. @)

The requirement that the hypercharge operator ¥
commute with 7,, I,, 5, and belong to su(3) fixes
(4) up to a scale factor, which is then adjusted to
fit Eq. (1) with Z’s which match nuclear physics
and the successful assignments of particles to D(1, 1)
and D(3, 0) multiplets. From (1), (3), (4),

Z =diag (3, —%, -9, ()

and in particular, an eigenvalue Z’ = —3 mod 1.

The representation D(p, ¢) is obtained from the
tensor product of p factors D(1, 0) with ¢ of the
contragredient representation D(0, 1) of transposed
inverse matrices, equivalently complex-conjugate
matrices, by subjecting the representation space
of tensors to symmetry conditions. Since complex
conjugation corresponds to reversing sign in su(3),
the matrices in D(0, 1) for I, ¥, Z are the negatives
of (3)—-(5). In particular, Z' = % mod 1 in D(0, 1).
Eigenvalues of infinitesimal operators add when
tensor products are taken, so

Z'= —4p — g mod 1, (6

generally, whence the rule (2) against subelectrons.

The center C of SU(3) consists of its constant
matrices, by Schur’s lemma. The condition that
the determinant be 1 shows that these are only
M(\) = diag (A, A, A), where A = 1, w, or «’, and
w = exp (—ifw). Observe that

M(w) = exp (—1i27Z). (7)

Topology of the group is brought into the discus-
sion through the following circumstance. Most
physical SU(3) arguments really concern only su(3),
so that it is of interest to consider replacing SU(3)
by another connected compact Lie group G with
an infinitesimal algebra isomorphic to su(3).

The only other such group is pSU(3): SU(3) is
simply connected.” All G are obtained from the
simply connected one by congruence modulo a
discrete central subgroup.” But the only central sub-
groups are the identity alone, which gives back
SU(3), and the whole three-element center C', which
gives pSU(3).*

s C. C. Chevalley, Theory of Lie Groups (Ptinceton Uni-
versity Press, Princeton, New Jersey, 1946), p. 60.

7 Reference 6, p. 49.

8 pSU(3) = D(1, 1) is also obtained as the adjoint repre-
sentation, and by asking for the action of SU(3) [or even of
U(3) or GL(3)] on rays instead of vectors, whence the nota-

tion ““p” for “projective”’, suggested by Dr. Bruno Harris of
the Department of Mathematics.
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Topology enters because the discrete central sub-
group employed in the construction is also the first
homology group of the group G: In pSU(3), there
are three types of closed paths, corresponding to a
curve beginning at M (1) and ending at M (1), M (v),
or M (") in SU(3) itself; only the first of these types
may be shrunk to a point. A matrix representation
R of su(3) if extended over pSU(3) is single-valued
if and only if the matrix R[M (\)] representing M (\)
is independent of A; i.e., if R[M ()] is the appropriate
unit matrix. The other matrix representations are
triple valued.

In D(p, q), M (w) is represented by o”(w*)? = »™*°
times a unit matrix; this also from (6) and (7).
If 0™ = 0% is the “type” of the representation,
then Type 1 corresponds to single-valued representa-
tions of pSU(3) and rule (2), whereas the triple-
valued representations are those of type w and «®
p = gq =%+ 1mod 3, 2 = F} mod 1, respectively
Subelectron representations correspond to pSU(3)-
multivalued types.

3. pSU(3)

It would be premature to take single-valuedness
of a D(p, q) considered as a pSU(3) representation
as a law for nonexistence of subelectrons. An an-
alogous law for the group of rotations in ordinary
space, 0(3) = pSU(2), would forbid half-integral
spin. F'urthermore, the use of the representations
as ray representations or projective representations
in quantum mechanics collapses their multivalued-
ness: the three representative matrices for an element
of pSU(3) in a multivalued ordinary matrix rep-
resentation are obtained from one of them by
multiplying by the phase factors 1, », and «; and
are therefore identical in their transformation of
rays. In fact, because of the requirement of unitarity
and the irrelevance of a uniform phase factor, the
reduction® GL(n) — pSU(n) together with the loss
of multivaluedness in virtue of the replacement of
matrix representations by ray representations is the
largest symmetry group conceivable belonging to an
n-level quantum mechanical system, together with
the correct description of the representations as
they are used.

The only remaining general feature known to the
author and associated with the three-element group
that might have physical meaning is dual charge.

4. REVIEW OF DUAL CHARGE*

Suppose su(3) symmetry is taken seriously, in
spite of the fact of broken symmetry, so that a
choice of a reference frame in an attached D(p, q)
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representation space of ‘“tensors’” at a space-time
point is subject to a D(p, ¢) ambiguity, and that
following the philosophy of general relativity as
explained by Yang and Mills,’ a parallel displace-
ment field (gauge field) must be introduced to
define an absolute (covariant) derivative, and that
this absolute derivative, not the literal derivative,
must appear in some unnamed Lagrangian which
is to tie the theory to physics. The parallel displace-
ment assigns a D(p, q) matrix to each loop in
ordinary space, with the ambiguity of an unimpor-
tant conjugation which will not be mentioned
further. That D(p, q) matrix explains how a tensor
is altered when displaced parallelly around the loop.
Consider a spherical bag in ordinary space as a
sequence of parallels of latitude, each one of which
is & loop, beginning with a degenerate or point loop
(north pole) and ending with another (south pole).
Each parallel of latitude corresponds to a D(p, q)
matrix, the poles to the unit matrix. Therefore, the
bag as a whole corresponds to a loop L of D(p, q)
matrices, beginning and ending at the unit matrix.
This loop L can be broken into a succession of
many small transformations, each one, roughly
speaking, associated with an element of su(3). By
putting these small transformations together in
SU(3), the loop L is imaged back in SU(3), so
that it appears as a path P from the identity 3 (1)
to either M (1), M(w), or M(»®). In the first case,
the dual charge D contained in the bag is defined
to be 0, in the second case it is —1, in the third
case, 1.

If the bag can be continuously deformed in
ordinary space to a point, without running through
singularities of the displacement or tensor fields,
then D = 0, so that speculations on D 0 entail
singularities or wormholes in ordinary space.

The dual charge of a system is the sum of the
dual charges of its components, reduced modulo 3.

5. POSSIBLE ARGUMENT AGAINST
SUBELECTRONS

If p # ¢ mod 3, then the path P in SU(3) must
terminate at M (1), and D = 0. This is because,
if the path P is not a closed loop, then L is not,
as the representation map SU(3) — D(p, ¢) is an
isomorphism. Now suppose space should be imagined
as a froth of wormholes,' with D’s having all
possible values. Then D(p, ¢) tensors can’t be
supported unless p = ¢ mod 3.

* C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).

10 J. A. Wheeler, Geometrodynamics (Academic Press Inc.,
New York, 1962).
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However, if the picture of a tensor field is replaced
by a “triad” field of unordered triads of tensors,
mutually differing by factors of w, «”, D = 0 cor-
responds to the three sheets being separate; D = 41
to their being united in one ‘“Riemann surface.”
This possibility should be considered, because the
multivaluedness collapses on going to ray representa-
tions, and is therefore not excluded in the sense
of quantum mechanics even by a law of a single-
valuedness for quantum fields.

The surface of a bag is simply connected. There-
fore, it cannot support three attached sheets which
are separate over each point."' D £ 0 triad fields
therefore entail at least one branch point on a bag.
To avoid singularity, the magnitude of the triad
field must vanish there. We are reminded of Dirac’s
nodal lines."

6. POSSIBLE IDENTIFICATION OF DUAL
CHARGE WITH ELECTRIC CHARGE
1f
4D = Z' mod 1. (8)

or if 3D = —Z’ mod 1, so that electric charge is
a refinement of the crude topological notion of
dual charge, then all subelectrons possess D = 1.
Even without requiring the vacuum to be a froth
of wormholes, the option of using a triad field would
then be necessary to realize a single-valued quantum
field for a subelectron, even if the problem of writing
such a field is restricted to the surface of a sphere
of large radius, which contains a single subelectron.
If a triad field with its three branches united is for
some reason impossible, the subelectron would be-
come impossible under (8) at the same time that the
basis (8) of the argument becomes vacuous!

7. RELATION TO GRAVITY

It is hard to imagine (8) without a wormhole
model for charge in general. Nevertheless, the
inability to shrink a bag to a point is definitely
argued only for D 5 0, so that under the hypothesis
(8), only subelectrons would necessarily be associated
with wormholes. If the reason for the unshrink-
ability is singularities, then the metric of space-time
would be expected to depart greatly from flat-space
values. If the reason is that nonsingular fields are
distributed over a space-time manifold with an
actual “neck,” again a large distortion would be
expected in the ordinary metrie. If such distortion
is pictured physically as a strong gravitational field,
and if the mass tensor is the only source for the
development of this field, then even if the phenom-

1t Reference 6, p. 46, Theorem 2.
2 P. A. M. Dirac, Proc. Roy. Soc. (London) 133, 60 (1931).
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enon has no essential roots in gravity theory, there
is an argument here for large concentration of mass.
This argument cannot be converted into any fan-
tastically large mass, however, because the large
concentration of mass may be confined to an ar-
bitrarily small region.

In greater detail, a mass m yields a Compton wave-
length m ™" and a gravitational radius proportional to
m. These are equal® form=2.2 X 107° g ~ 10" BeV.
But this fantastic mass drops out of the picture if
the Compton wavelength of the particle is allowed
to greatly exceed the characteristic dimension of
the wormhole; if the wormhole is quantum mechan-
ically smeared in its mean position.™

8. DUAL CHARGE FOR THE ROTATION GROUP

Conserved quantum numbers not incorporated in
any group-theoretical scheme are atomic number,
electron number, and muon number. These numbers

13 Reference 10, p. 77.
% Compare Reference 10, p. 82,

ELIHU LUBKIN

are all associated with fermions, which belong to
double-valued representations of the rotation group,
0(3). The use of spinor doublets in place of spinor
fields changes the situation from that of no dual
charge for ordinary fermion fields'® to possible dual
charge for all fields, and then by sheer analogy to
(8), perhaps to dual charge only for fermion fields,
or only for some fermion fields. For 0(3), dual
charge is of course an integer modulo 2, but may
be a erude representation of one of the unclassified
free integer conserved quantities. Of course, the
conservation of fermion number modulo 2 follows
simply from conservation of angular momentum, and
in itself needs no explanation; the above indicates
merely the possibility of a parallel in O(3) of the
previous discussion. The relation of the rotation
group to the 10-parameter Lorentz group which ties
Fermi statistics to half-integral spin, has not been
explored in relation to the above.

1 Reference 5, p. 271.
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A one-parameter integral representation is given for the momentum space Green’s function of

the nonrelativistic Coulomb problem.

T has long been known that the degeneracy of
the bound states in the nonrelativistic Coulomb
problem can be deseribed by a four-dimensional
Euclidean rotation group, and that the momentum
representation is most convenient for realizing the
connection. It seems not to have been recognized,
however, that the same approach can be used to
obtain an explicit construction for the Green’s
function of this problem. The derivation' is given
here.
The momentum representation equation for the

1 It was worked out to present at a Harvard quantum
mechanics course given in the late 1940’s. I have been
stimulated to rescue it from the quiet death of lecture notes
by recent publications in this Journal, which give alternative
forms of t.ge Green's function: E. H. Wichmann and C. H.
(Woo,)J. Math. Phys. 2, 178 (1961); L. Hostler, tbid. 5, 591

1964).

Green’s function is (A = 1)

2 2
v L) 5 Ze f . 1
(E om)G@ P) + 55 | (dp )m
X G@p”,p) = ép — p).
We shall solve this equation by assuming, at first,
that
E = —(pi/2m)
is real and negative. The general result is inferred
by analytic continuation.
The parameters

¢ o+’ & Po+p

define the surface of a unit four-dimensional Eu-
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clidean sphere,
E+E8=1,

the points of which are in one to one correspondence
with the momentum space. The element of area
on the sphere is

d¥) ( 2 )‘

a0 - 4 _ (22 Vo,

&l ~ i+ P
if one keeps in mind that p 2 p, corresponds to the
two semispheres £, = F(1 — £*)}. Asanother form of
this relation, we write the delta function connect-
ing two points on the unit sphere as

2 2

(e — Q) = (%p—)aﬂ(p - p).

Next, observe that
C—&)=6C-8"+E-¥"
= 4p; — ph)?
TSy e
Then, if we define

1 2 2
T@, 2) = {5, @} + pVCE, )@ + 2,

that function obeys a four-dimensional Euclidean
surface integral equation,

e Q) — 2 f dQ'" D — £)rQ”’, Q)
= 30 — Q),
where
1 1
Dl — 1) gty
(e E ) 4'2 (E e E )2 .
and
v = Ze'm/p,.

The function D that is defined similarly through-
out the Euclidean space is the Green’s function
of the four-dimensional Poisson equation,

—3'DE — &) = 8¢ - ¢).

It can be constructed in terms of a complete set
of four-dimensional solid harmonics. In the spherical
coordinates indicated by p, Q, these are

(P.-Iv p".—l) Ynlﬂ(g)l = 1,2 v+~ ;

where the quantum numbers [, m provide a three-
dimensional harmonic classification of the four-
dimensional harmonies. The largest value of ! con-
tained in the homogeneous polynomial p" 'V ,;.(2)
is the degree of the polynomial, n — 1. Thus,
—1<m<]l, 0LI<n~—-1

label the n* distinct harmonies that have a common
value of n.
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The Green’s function D is exhibited as

= n—1 1 .
£t p;+t zn g Yulu(ﬂ)ynlu(g )*n

DE-¥)=
where
M2 — ) = 2, Yuu® V... (2)*

conveys the normalization and completeness of the
surface harmonics. One can verify that D has the
radial discontinuity implied by the delta function
inhomogeneity of the differential equation,
4 a p’'+0
—p a—D(e—e')]_ ~
1y p’ =0
The function D is used in the integral equation for
I with p = p’ = 1. The equation is solved by

rig, 0= F s Daall T,

3(Q — Q).

The singularities of this function at r=n=1,2, ---
give the expected negative energy eigenvalues.
The residues of G at the corresponding poles in
the F plane provide the normalized wavefunc-
tions, which are

6/2

‘P-ln(p) - —(p—:{i% Y-i-(ﬂ)l

po = Ze'm/n.

One can exhibit T'(Q2, Q') in essentially closed
form with the end of the expansion for D. We use
the following version of this expansion:

1 1
2 (1 — o)+ o6 — &)

= E p“-li ‘E’- Yorn(2) Y uia(Q)*,

=]

where ¢ and ¢ are of unit length and 0 < p < 1.
Note, incidentally, that if we set ¢ = ¢ and inte-
grate over the unit sphere, of area 2x", we get

] =il
= =& am

n=1

where m, is the multiplicity of the quantum number
n. This confirms that m, = n’.

The identity
. Xiow. L
T—m T at " sm=n

together with the integral representation

1 g
—fdpp o,
(1]

n—v

valid for » < 1, gives
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v 1
o2 (&

— &)
¥ ! - 1
o 2 ’ 2 v 1
*zwfod"” =0 +0C—8) )

produced by partial integra-

e, o) = a0 — Q) +

Equivalent forms,

tions, are
I'(Q, ) = 3(Q — 2
v i =y p
] d E = 72 2
+27ﬁf,, PP dp (1 — p)" + ot — E)° @
and
- p(l = p%)
’ = d i :
T8 ) f G T T 5 T
, 3)
which uses the limiting relation
1 — o'
s = li 292 °
82 ~ ) = lim 5 (T T G
Note that I' is a function of a single variable,

& — &Y
The restriction » < 1 can be removed by re-
placing the real mtegmls with contour integrals,

f dop™ Jr " [ dos ().

The path C begins at p = 1 + 0z, where the phase
of p is zero and terminates at p = 1 — 0%, after
encireling the origin within the unit circle.

The Green’s function expressions implied by (1),
(2), and (3) are
; (p —p) Z& 1 1 1
)=FE-7  wWE—T@-prE-T
. E 1 I}' f l dpp” "

21!'2 E _ T n # PP

1 1
# (p—p)’p—(m/2E)E-T)E-T")( —p)”] E-T"
(17)

2sm7n'

G(p, p

where

T = p*/2m, = Ze*m/k;

. _ op —p) Ze*_lﬁ[f' sond
G(p,p)‘-' E—T _QFEE—‘T U] dPP dP

i ==

JULIAN SCHWINGER

The Green’s function is regular everywhere in
the complex E plane with the exception of the
physical energy spectrum. This consists of the
negative-energy eigenvalues already identified and
the positive-energy continuum. The integral repre-
sentations (17), (2’), and (3") are not completely
general since it is required that

Rein = —Imn < 1.

As we have indicated, this restriction can be re-
moved, It is not necessary to do so, however, if
one is interested in the limit of real k. These repre-
sentations can therefore be applied directly to the
physical scattering problem.

The asymptotic conditions that characterize finite
angle deflections are

£ — T ~0, [B-— (e —p) >0

The second of the three forms given for G is most
convenient here. The asymptotic behavior is domi-
nated by small p values, and one immediately
obtains

G(p, p) ~ G*(P)(—1/4="m)f(p, p")G°(®"),

7" ~ 0,

where
1 E—-T| 2 ¥
GO(P) = E—T exp[ —17 log 4R ](ezn.’ri 1)
and
2mZe’ [ . 4%° ]
' N = 7T " | . ] T 3 |
f(p, p") @ —py P e oy

p2 = p;z - kz.

One would have found the same asymptotic form
for any potential that decreases more rapidly than
the Coulomb potential at large distances, but with
@(p) = (E — T)". The factors G°(p’) and G°(p)
deseribe the propagation of the particle before and
after the collision, respectively, and f is identified
as the scattering amplitude. The same interpreta-
tion is applicable here since the modified G° just
incorporates the long-range effect of the Coulomb
potential. This is most evident from the asymptotic
behavior of the corresponding spatial function,
which is a distorted spherical wave,

P l ™ (dp) iprr
X = Po—(m/ZEE-DE—T1 _,,)2] o o=
(27) ~ (—m/2xr) exp [i(kr + n log 2kr + )],
sl b o ¢ = arg (1 — in).
Glp. ) = "4 E f dep dp The scattering amplitude obtained in this way
(1= o) coincides with the known result,
4 P (3;)

X o—p)p—(m/2EYE—T)E—-T)(1—p)T

{(8) = (Ze*/AE) csc® 39 exp [—1in log csc” 149).
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Given n? nonnegative real numbers u which form a matrix with row and column vectors of unit
magnitude, it is shown under what conditions there exists a unitary matrix (U jx), such that |U| = .
The results may be shown to contain a theorem on unitary matrices.

HE formulation of a physical test of the quantal

superposition principle’ is dependent on the
solution of the following mathematical problem:
Given n” nonnegative real numbers u;, which obey
the 2n — 1 independent relations

Zu?k= Eu?k=1- (1)
I=1 k=1
when is it possible to construct a unitary matrix
(Uj), such that
(Uil = un? 2

Alternatively, the question may be formulated:
When do there exist real solutions »;, to the set
of equations

’

Z‘R,‘g‘u“ exp ?:(U;[ = v,—,,) 1 0. (3)

=1
where k = 1, -+ ,nandl =k + 1, --- , n, and
the v;, are the arguments of the matrix elements
Ui = Uz expiv;? 4)
Rather than attempting to consider the difficult
nonlinear equations (3), we try to solve the problem
by making use of a convenient parameterization of
unitary matrices. Murnaghan® has shown that an
n-dimensional unitary matrix may be factorized into
a diagonal unitary matrix and 4n(n — 1) unitary
unimodular matrices of a particularly simple struc-
ture. Thus, if U" denotes the unitary matrix and

where 3" denotes the product

n k—1

N = H Hu';x(ﬂih G'fk)- (7)

k=2 j=1

The unitary unimodular matrices U, (0;,, o;x) are
functions of only two parameters each: 6;, and o.
Only four elements in U}, are different from §;,: the
(j5) and (kk) elements have the value ¢;; = cos 6,
the (jk) element has the value —s;; exp (—1to;z),
where s;, = sin 6, and the (kj) element has the
value s;, exp io:.

The n-dimensional unitary group is an n’-param-
eter group. When the parameters are chosen, as in
(6) and (7), to be the n parameters «;, the $n(n — 1)
parameters 0;, and the jn(n — 1) parameters o,
the parametric space is

"""JI'<(I,-S7I’, _'TI'<U,')‘S1'I’, OSG‘,';S%‘R'.

To solve our problem, as formulated in (2), we
first observe that

]U?kl = |3';k|v

because the unitary diagonal matrix D in (6) does
not alter the values of the moduli of the elements
of 3" when multiplied into 3". Thus the parameters
a; need not enter into our problem.

Let us identify the moduli of the elements of 3*
with 16 given nonnegative real numbers u;, which
obey (1), so that nine of them are independent, and
try to solve for the 6’s and ¢’s. We have

Dl(al, t', - a”) ko diagonal matite with 5t = ‘11:,(9,2, 012)"“-:3(913r 0'13) -‘IL;;,(B”, 023)
elements
Djx = 8 exp ta; (5) “Ua(Oray 01a) “WU2a(Baa, 020) Uza(Bs4, 034).
r ) i
then The product of the last three matrices becomes
U" = Doy, -++ ,a,)3", (6) explicitly
C1a “sxaszcei(_¢"+’.., —314“3243343”_"”“‘) _3140246348—““
0 Cas _sz.isa"el'(—ﬂ‘-r"flc) _324ca4fi T ' (8)
{) 0 C:S-I _S;“e e
Suew‘ ‘ 0143343“" 0145245343“- ‘ C14C24C34

! M. Roos and B. E. Laurent (to be published).

t ¥, D. Murnaghan, The Unitary and Rotation Groups (Spartan Books, Washington, D. C., 1962).
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Multiplying a3, into (8), the second and third rows mix in such a way that it is convenient to introduce
a new parameter

Yz = 023 — 0G24 T Oga.

Then (8) becomes explicitly, omitting the unaltered first and fourth rows,

—1i0as

0 C23C24 —(6233243343'-7" + 3:3034)5 (_623324034 + 3233343_‘7")3_”" .

ifsa

0 s35Caue™"™ —3233243343”" + CasCas (—3233246343”" — Ca3834)€
Next, multiplying U3, into this, the first and third rows mix in such a way that it is convenient to introduce
a second new parameter
Yis = 013 — O — a3 + Tus.
Multiplying in the final factor U}, and introducing a third new parameter
Y12 = 012 — 014 + o,
we obtain the product matrix 3%

iy 014

C12€13C14 212(12y sy 323)3—"" 213(Y12, Y13, Yaa, Oas)e” 214(v12, Y13, Yos, Oas)e”

idys —~iCan —ida
3 = 812C13C14€" " 222(v12, Y13, 623) zzs(‘hx, Y13y Yas, Gza}e ! 324(712; Y13y Yas, 023)3 : . (9)
T i ST
813C1€"" Z32(V13, By3)e" """ 233(V13, Y23, O23) 234(713, Vo3, Oas)e "’
{014 LT TP
S14€ C14824€ " €14C24834€"" €14C24C34

The z;, are complex polynomials, in which the argument of each term is a linear sum of v’s or zero.

It is evident from (9) that the moduli |5%| are functions of nine parameters only: the six parameters 8;,
and the three parameters v;:, but not of the remaining three independent parameters ¢, which enter only
in the arguments of the matrix elements.

We now want to express the parameters 6;; and v;, in terms of nine independent u;,’s. From

Uz = 812C13C14, Us1 = 813C1a, Uy = 814, Uy = C14824, Usz = C€14C24834,
we can immediately solve for five of the 6,,’s, which become
6,3 = arc sin u;(1 — uf, — ul) ™ 6:s = arc sin us, (1 — ui,)}; 64 = arc sin u,;;
6, = arc sin ug,(l — ud)™; 05 = arc sin us(l — uf, — ul) .
There remain four equations containing the parameters
O23; Y12y Y1z and g,

Usz = lzaz(‘ha, Baa)li Uy = |Zzs(‘l’u; Y13, Yas, 023)!3 Uz = Izaz(‘l’m:‘ha, 993)!; Uz = Izsa(‘ha;"!zn; Bn)l- (10)

From the first of Egs. (10), cos ¥,; may be solved in terms of 6,; and inserted into the other three equa-
tions. Then from the last two equations (10), cos v, and cos v.s, respectively, may be solved in terms of 8.,
and inserted into the u,; equation, which thus becomes

Uzs = f(62). (11)

The answer given by this procedure to our initially formulated question is then as follows: it is possible
to construct a unitary matrix (U,,) with |U;:| = u;, only when

(1) there exists a solution 0 < 6,3 < 4r to Eq. (11), and when this solution, inserted into (10), yields
(2)
lcos vis| < 1;  |eosyas| < 1;  [eosvis| < 1. (12)

The conditions (12) are restrictions on the allowed volume in the nine-dimensional u;,-space. If these con-
ditions all hold with the inequality sign, the unitary matrix U* is completely determined by the nine given
u;,’s and seven phases: the three independent ¢;,’s and the four «,’s.



CONSTRUCTION OF A UNITARY MATRIX

If one or several of the conditions (12) hold with
the equality sign, the number of independent w;,’s
decreases correspondingly and the arbitrariness of
the unitary matrix exceeds that of the seven phases.

It is straightforward to generalize the four-dimen-
sional case to n dimensions. 3" then consists of
jn(n — 1) factors; the product of the last n — 1
factors gives the generalization of (8).

The first v,, appears when we multiply this
product with the nth matrix

cu-:--z.n—l(en—z.n—l y Tne2,n—~ l) ’

which mixes the rows of number n — 2 and n — 1.
This Yik will be

Yn-2.-1 = Opn-2.nm1 — Op-2,n T Oni,n-

Each time we multiply the next factor matrix into
the previous product, it becomes convenient to intro-
duce a new parameter v,,, which is a sum of ¢;,’s with
weights +1 or —1. The final product 3" will thus
contain 3n(n — 1) parameters 0;;, 3(n — 1)(n — 2)
parameters v;;, and n — 1 parameters o;,. The
moduli [3},| of the matrix elements will be functions
of the parameters 0;, and v, totaling (n — 1)
and the parameters o;, enter only in the arguments
of Ty

Next, we write down the (n — 1)® requirements

(13)

13:k| = Ujk,

where, for instance, j = 2,---,nand k= 1,---,n—1.
We can immediately solve for the 2n — 3 param-
ters 6,; and 6,, (k # 1), and get expressions similar
to those of the four-dimensional case. The number of
remaining equations (13), corresponding to KEgs.
(10), is (n — 2)*.

The structure of the remaining equations allows
each cos v;, to be solved as a function of the 6,.’s.
Carrying through this process of elimination, we
are finally left with 3(n — 2)(n — 3) equations, corre-
sponding to (11) and containing the remaining
%‘(n it 2)(’1"1 ins 3) G;k’s.

The problem (13) or (2) thus has a solution when
(1) the set of 3(n — 2)(n — 3) equations have a
solution with each 8, within the interval

1611
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and, using this solution in the expressions for the
COS Yk,

(2) lcos v <1 (14)
for each ;.

The conditions (14) are restrictions on the allowed
volume in the (n — 1)*-dimensional u;.-space. If

these conditions all hold with the inequality sign,
the unitary matrix U" is completely determined by
the (n — 1)® given u;’s and 2n — 1 phases: the
n — 1 independent ¢;’s and the n «;’s. Let us call
such a unitary matrix regular, whereas if (14) holds
with one or more equality signs we call the unitary
matrix irregular.

Let us further define a phase transformation by
D, M D,, where D, and D, are diagonal unitary
matrices. Such a transformation has 2n — 1 param-
eters; it further has the property of leaving the
moduli [ ;] of the elements of an arbitrary matrix
M unchanged.

Part of our results may then be stated as the
following

Theorem. A regular unitary matrix is determined,
up to a phase transformation, by the moduli of its
elements.

The irregular unitary matrices are clearly not
completely determined by the moduli of their ele-
ments and a phase transformation, because there
are relations between the moduli and thus the num-
ber of independent moduli is smaller than (n — 1),
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The problem of generating a complete set of linearly independent nth-order tensors which are in-
variant under a crystallographic group is considered. A number of methods for the solution of this
problem such as the use of tensor bases, the addition of tensors of lower symmetry, and the method of
polynomial invariants are discussed. The limitations of these methods are outlined.

I. INTRODUCTION
N nth-order tensor C,,,...,. which satisfies the

equations
C-‘.-‘.----‘. = b pibiggy ti-incha‘."':‘n (I)
for all transformations T = ||¢;;|| belonging to a

group G is said to be invariant under G. A tensor
which is invariant under the orthogonal group is
said to be an isotropic temsor. A tensor which is
invariant under a proper subgroup of the orthogonal
group, for example, one of the crystallographic
groups, is said to be an anisotropic tensor. We are
concerned with the problem of generating a complete
set of linearly independent nth-order tensors in-
variant under the crystallographic groups and would
like to comment on the efficiency of certain of the
available methods when applied to the generation
of invariant tensors of high order.

II. TENSOR BASES

A tensor basis for the group G is a set of tensors
each of which is invariant under G such that any
tensor which is invariant under G is expressible as a
linear combination of outer produets of the basic
tensors. We list in Table I the tensor bases associated
with those erystallographic groups G for which the
three-dimensional representation of the group G
furnished by the symmetry transformation matrices
Ti...., T is reducible to the sum of three one-
dimensional representations. We also list the number
P,(G) of linearly independent nth-order tensors
which are invariant under G. The quantity P.(G)
is readily obtained from group-theoretic considera-
tions. The crystallographic groups are identified by
their Schonflies and Shubnikov symbols and the
vectors e,, e,, e;, B, C' appearing in Table I are de-
fined by

e; = (1,0,0), e, =(0,1,0), e, =(0,0,1), @
B;=(1,‘i,0), C,;=(1,—‘l:,0), i2= 1.

* This work was supported by the National Science
Foundation.

The first eight tensor bases are those given by
Sirotin.' The remaining eight tensor bases are ob-
tained immediately from the “selection rules’” given
by Sirotin, although the tensor bases listed by
Sirotin for these cases differ from those in Table I.
Tensor bases for the crystallographic groups D,,, C,,,
D, D, Cs,, Dy, D34, D3y, Cey Do, Dew, T', Ty, T, and
0O, have been recently determined by Smith and
Rivlin.* While it is a simple matter to generate the
complete set of P.(G) linearly independent nth-
order tensors invariant under @ from the tensor basis
elements for those groups G listed in Table I, we
maintain that for the remaining ecrystallographic
groups the use of tensor bases is not the appropriate
way to generate the set of mth-order linearly inde-
pendent invariant tensors if n is large. This statement
also applies to the crystallographic groups C,, S,,
Can, Cs, Caa, Cs, Can, C3; if the tensor bases listed by
Sirotin' or Smith and Rivlin® are used instead of
those given in Table I. This contrasts with the
statement by Sirotin' that if the tensor basis is
known one may readily construct the set of linearly
independent invariant tensors. In support of this
point of view, we note that it may be readily verified
that every nmth-order (n is even) two-dimensional
isotropic tensor is expressible as a linear combination
of the 4(j,) distinet linearly independent isotropic
tensors obtained from

B, o B o (G
+ Cn. RS Cn..Bnm+x s Ba. (m s %ﬂ), (3)
Bd - (Iv‘i): Cr: - (lr —1‘-)7 1:2 = —1

by the n! permutations of the subscripts ay, « - - | a,.

The usual statement concerning two-dimensional
isotropic tensors is that 6, forms a tensor basis for
the two-dimensional orthogonal group, i.e., that
any nth-order two-dimensional isotropic tensor is
expressible as a linear combination of the n!/2"*-

1 Ju. I. Sirotin, Dokl. Akad. Nauk SSSR 133, 321 (1960)
[English transl.: Soviet Phys.—Doklady 5, 774 (1961)].

2 (3, F. Smith and R. S. Rivlin, Arch. Ratl. Mech. Anal.
15, 170 (1964).
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TasLe 1. Tensor bases.
Point groups Tensor bases P,
Cy, 1 €1y €3, €3 P, = 3"
C.‘, 2 €1i€1j, €1i€2j, €1i€3y, €2iC2j, €2{€2j, €3i€3j 2P!| = 3» + (—3)"
C.,. m €14, €2i, €3i€3; .ZP- = 3n + 1
Cy, 2 €13€1j, €2i€1j, €aiy €1:€2j 2Py = 3* + (—1)p
Cuy2:m €1:€1j, €2i€2j, €3:€3j, €1:€2{ 4P, = 3 4 (=3)
+ 1+ (=1
(‘25] 2:m €1€1j, €2i{€2j, €3¢ 4P, = 3» + 2 4 (—1)"
$2:2 €1i€1j, €2i€2j, €3i€3j, €1i€2j€3k 4Py = 3" 4 3-(—=1)
Dy, m-2 :m i€y, €a:€aj, €ails; 8Py = 3% - (—3)
+3 + 3 (=1)
Cy 4 e;.,B(‘,,BBB;,,B;, C:CC:C 4P, =34+ 2 4 (=1)
Sq, €3i€3j, DiC;, B; ,B.gB;, C C;CkC., e..B;Bk, Ca.C i 4P, = 3~ + 3( —1)
Ca,d:m esieyj, BiC;, BiB;BuB:, CiC;CiC 8Pn =3+ (-3
+3 4 3-(—1)"
Cy, 3 e, B C,, B..B;Bh C:CiCh 3Py = 3
Cu, 3:m €31i€3j, C.‘C;Cg ﬁpn =3 4 2(—2)‘ + 1
Ce, 6 e, B C,. b. ,BbB:BmB-, CiCiCil1CnCa 6Py =3" 4 2:(=2 4+ (=1
Cany 6 :m esiesj, BiCj, BiB ;BB iBmBa, CiCiCxCiCmCa 12Pp = 3" + (—3)" + 2-2n
+ 2:(=2 414 (=1)
Ci, [ esie3j, BiCj, BiB;BiB BBy, CiC;CiCiCnCa, €3iB;B:By, €3 CiCCy 6P = 3 4 (-3

(n/2)! distinct tensors formed from
(4)

by the n! permutations of the subscripts. We observe
that for n = 12 we obtain 12!/2°.6! = 10395 dis-
tinct tensors from (4). However from (3) we see
that these are expressible in terms of (y) = 462
isotropic tensors. Thus the generation of the set of
invariant tensors from the tensor basis elements
leads in this case to the introduction of a large
number of redundant tensors. The generation of three
dimensional isotropic tensors from the tensor basis
8;; also leads to the introduction of redundant
tensors for (even) n greater than 6. Since either
8.5 Or 8, is an element of the tensor bases given by
Smith and Rivlin® for the crystallographic groups
not listed in Table I, it is clear that for large values
of n the use of tensor bases would lead in these
cases to the generation of redundant tensors. A
procedure which is readily applicable for the cry-
stallographic groups D, --- , O, is described by
Sirotin.’

6:.::; 6::.:. Zni

60.‘,a.

III. ADDITION OF TENSORS OF LOWER SYMMETRY

In a recent paper,® Lokhin and Sedov have pro-
posed an alternate method for generating the set
of P,(@) linearly independent nth-order tensors in-
variant under a crystallographic group @. Consider
the sequence of groups G C G, C G. C --- C @G,
where each group is a subgroup of the groups to the
right of it in the sequence. It is clear that any tensor

3V. V. Lokhin and L. I. Sedov, Prikl. Math. Mech. 27,
393 (1963).

invariant under a group @, is also invariant under
the groups preceding @,. The method then proceeds
by first listing the set of nth-order tensors invariant
under (,, then augmenting this set by the tensors
which are invariant under G,-, but are not invariant
under G,, --- , and finally listing the tensors which
are invariant under G' but which are not invariant
under ;. This method has been previously discussed
by Sirotin*® and has considerable merit in special
cases.® However when applied to the general case
the method as outlined by Lokhin and Sedov® has
some objectionable features. For example, the group
G, is in many instances taken to be the three-
dimensional orthogonal group and it is then required
to list the set of three-dimensional isotropic tensors
of given order. This is readily accomplished for
n = 6 or less but for larger values of n (n even) it is a
matter of considerable difficulty. The set of linearly
independent isotropic tensors of order 10 (say) may
be generated from 4;,;,8;,;, *+* 6:,:., by applying
Young’s symmetry®*® operators to this tensor. How-
ever, this process is tedious and the resulting tensors
are sufficiently cumbersome so as to render the
procedure impractical for even moderate values of n.
It is also to be noted that while it may not be difficult
to generate P,(G,-,) — P,.(G,) tensors which are
invariant under G,_, but which are not invariant

4 Ju. I. Sirotin, Krlstallograﬁm 5, 171 (1960) [English
transl.: Soviet Phys.— Cryst. 5, 157 (19 ).
6 Ju. I. Sirotin, Kristallogr: afica 6, 331 (1961) [English
transl Soviet Phys.—Cryst. 6 263 1961)]
. L. Wade, Am. J. ﬂ[at.h 63, 645 (1941).
7M. Hammermesh, Group Theary (Addison-Wesley Pub-
llshmg Company, Inc., Reading, Massachusetts, 1962), p. 244.
s H. Weyl, The Classical Grou 8 (Prmcet.on University
Press, Princeton, New Jersey, 1939), pp. 96-136.
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under G,, it may prove to be very troublesome to
verify that they are linearly independent.

IV. POLYNOMIAL INVARIANTS

A polynomial function W of the symmetric tensor
S is said to be invariant under the group @ if

W(S) = W(TST™) (5)

for every transformation T belonging to the group
G. Consider the problem of determining the form
of the eighth-order tensor C.,...,, associated with
the fourth-order elastic constants for the group 0,,
i.e., the tensor C,,...,, appearing in the expression

W, = Cn---i.Gi,l.G-‘.i.Gi..'.G.',-'.. Gn’ = Gii- (6)

where W, is a scalar function of degree four in the
finite strain tensor G,; which is invariant under the
group O,. The tensor C,,...;, appearing in (6) is re-
quired to be invariant under O, and is also required
to be symmetrie in %, and <,, 7; and 1,, ete. The form
of the general polynomial function of @;; which is
invariant under 0, is known® and we note that this
information immediately yields the form of the
fourth-order elastic constant tensor C;,...;, and also
the form of the tensor C.,...;,, associated with the
elastic constants of arbitrary order n. Thus, it has
been shown that any polynomial function of G,
which is invariant under 0, is uniquely expressible
in the form

8o + 8,Ly + S,L, + S;Ls + S.Li + SsL.Ls, (7)

where S;, - -+, S; are polynomials in the quantities
K, -+, K4 defined by

(Kn‘ 2=y Ku) = (Z Gu: E Gan. GnGzzGaau
Z G:B- E G:SG:l " GHGII.GI‘-‘)U (8)
and where
Ll. - ZGII(G;I + Gf2)r L, = E GIEG§IG321
L; = E GganG:w-

In (8) and (9), X Gy, - -+ Gy; denotes the sum of the
three quantities obtained by permuting the sub-
seripts in the summand eyclically. Hence the func-
tion W, given by (6) is expressible as a linear com-

? G. F. Smith, Arch. Ratl. Mech. Anal. 10, 108 (1962).

9

G. F. SMITH

bination of the eleven quantities
:! KJR;K2! K?K'Il KIKSI K:l fl
KZKh K&n K:IKIU KlLll La-

We may associate a tensor with each of the invari-
ants (10). Thus, since

K: =, aa‘.f.5.’..‘.5.'“‘.ac’.i.Gu"".G(.nGi.i.Gu.nu (]-I)

we associate 8,,:.6:.:.8:,5.8:,¢. With K}. The tensor
C;,...;, in (6) is then expressible as a linear combina-
tion of the eleven tensors associated with the in-
variants (10). It is clear that this analysis may be
extended so as to obtain the elastic constants of
arbitrary order.

The fourth-order elastic constants for O, have
been obtained recently by Ghate'® and are in agree-
ment with the results listed above. We feel that
obtaining the form of the elastic constant tensors
from consideration of the form of polynomial in-
variants of a single symmetric tensor G,; is preferable
to the method adopted by Ghate'® and note that
elastic constant tensors of arbitrary order and for
all erystallographic groups may be read off almost
immediately from the results given by Smith.’

(10)

V. CONCLUSION

For the erystallographic groups C,, C;, C., C, Cas,
C:-, D:, Dah, C, Cn, Ca, Cah, Ca, Cu, Cs.', it is pre-
ferable to generate the set of invariant tensors from
the tensor bases listed in Table I. For the crystal-
lographic groups D.., C.,, Dy, D, Cs,, Da, Daa, Dis,
Cs,, Dy, Dy, T', T, Ts, O, O,, the set of nth-order in-
variant tensors may be generated efficiently by use
of tensor bases only for small values of n (say 5 or
less) but for larger values of n it is preferable to
use the method discussed by Sirotin." The method of
addition of tensors of lower symmetry may prove to
be highly efficient in special cases but in general it
will suffer by comparison with the use of tensor bases
for the low-symmetry crystal classes and with the
method of Sirotin' for the high-symmetry crystal
classes. For special cases such as the determination
of the elastic constant tensor, the use of polynomial
invariants is highly efficient.

10 P, B. Ghate, J. Appl. Phys. 35, 337 (1964).
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The equations of motion of lattice vibrations are formulated with the action principle as a starting
point. As a result, one obtains, in addition to the equations of motion, the conservation laws for
energy and momentum. The latter are contained in a set of finite difference equations. Boundary
conditions on the field variables must be specified over a region equal to one lattice spacing in order
for the entire procedure to be meaningful. The quantized version of the theory can be constructed
in a conventional way, and the commutators of the field variables exhibit a set of periodically spaced
singularities. In this way we construct a field which is nonlocal with respect to its dependence on
space variables, but is local with respect to its time dependence.

HE conventional theory of lattice vibrations is

formulated in terms of a set of coupled finite
difference equations. Because of the periodicity of
the lattice, one may transform to normal modes
where it is possible, in a completely straightforward
manner, to quantize the decoupled equations.’ Such
a theory is strictly one of particle dynamies, and the
wave character of the lattice vibrations can be
discussed only by going to the continuum limit.

Now there is a fundamental difference between
a particle theory as compared to a wave theory of
lattice vibrations; for the latter requires the specifi-
cation of a function throughout all points in space,
while the former allows field functions to be specified
only at the lattice sites. Nevertheless, the inter-
acting phonon field can be studied in terms of a point
interaction with, say, the electron field. A conven-
tional field theoretic description of this electron
phonon system can then be developed, but this is
convenient only if we consider the continuum limit
for the phonon field.”

At present, to the knowledge of the author, no
formulation has been given in the literature of a
theory involving field variables which are continuous
functions of the space variables and which satisfy
the finite difference equations of the particle theory
at the lattice points. Such a theory is outlined below
in the following sections.’ The development is pre-
sented with the action integral as a starting point.
This allows a straightforward deduction of the con-
servation laws, and is particularly convenient when
one quantizes the theory. We consider the one-dimen-
sional case only, since all of the salient features

1 J. Ziman, Electrons and Phonons (Oxford University
Press, London, 1960), Chap. 1.

*Y. Nambu, Phys. Rev. 117, 648 (1960).

3 A preliminary report of this work is presented in the
following reference: A. D. Levine and A. N. Vaidya, Bull.
Am. Phys. Soc. 7, 546 (1962).

manifest themselves here, and the only new result
to be obtained in the three-dimensional problem is
the angular momentum conservation law, as well as
the derivation of the spin of the phonon.

I

We consider a one-dimensional linear chain of
length L, consisting of N particles separated by a
distance a. In the particle theory of lattice vibrations
we obtain the set of coupled finite difference equa-
tions for the displacements of the lattice points

i = (©@/a)(ma + na — 2m), (1)

where 7, is the displacement of the lattice site.
We introduce a field, defined at all points in space,
which can be made identical to the lattice displace-
ments at the lattice sites. Thus, we want an equation
of the form

é(x, t) = [/a®)[d(z + a, 1)
+ ¢z — a, ) — 2¢(z, 1)]. (1)

For the sake of brevity, we introduce the following
notation:

fz + a) = T.f(z)

L= Lo

Let us now introduce the following Lagrangian
density*

and

f‘l“'d dxj(x) _ zy+a dxf(z) .

s z3

* The method of taking finite differences for the purposes
of obtaining the equations of motion is not unique. For
example, we could employ finite differences of the field oper-
ators evaluated at (z =+ a/2) with equally satisfactory re-
sults. The only modifications that appear in the final results
correspond to the manner of specification of the variations
at the boundaries. We employ the present convention on the
finite differences as a matter of convenience,

1615



1616

L = [¢(x, /2 — [¢*/2a*)[(T'+ — D¢z, V)]’ (2)

with the action integral

1= ["a [ are e @

The variation of the action integral will then be
- f dx dt|:(aL/6¢)au¢ + (0L/3T.$)8,T ¢

+ @L/o)sg + [ L

::} ) )

Sp = —¢ol — ¢, 8z )

is the intrinsic variation of ¢ at the boundaries.’
Now the third term in the square-bracketed expres-
sion of (4) may be transformed, using integration
by parts in a conventional manner. The second term
in the same bracketed expression is transformed in
the following way:

where

[tz o) a4
- f " dz T(T-f{6()|15.:6(2).

Now, the latter expression may be rewritten as

[ " de(T, — 1(T-f{6@)}]50()
4 f " dolT_1{6(2))]00(2).

But the first integral of this last expression may be
rewritten as a surfacelike integral:

{f - f,‘}[T—f (¢(@)]]18:(2).

Thus, combining all of our results, the variation of
the action integral may be written as

- f dz di[aT,/0¢
+ T _(dL/3T.¢) — 9.(dL/3¢)]ud

- f:dt(l/a){ f - f }S, o

- dt Sz 451:;

- [ (l/a){f f}a o | ®)

" SN. N. N. Bogoliubov and D. V. Shirkov, Introduction to
the Theory of Quanitized Fields (Interscience Publishers, Ine.,
New York, 1959), Chaps. 1 and 2.

f dx II éz|;*

ARNOLD D. LEVINE

where we have written
S=2848, S, =al_{dL/oT . ¢}¢zx, S, = —L,
= (9L/9¢)e.,
G = al'-(aL/3T .¢)9,
= (0L/d)$ — L. @)

The symbols introduced are as follows: S will be the
stress density, IT the momentum density, G the power
flow density, and H the energy density. We have
employed (5) to represent the variation of the field
function at the boundary layers in order to obtain (6).

We must impose certain conditions on the system
and the allowed variations before we can use the
action principle to obtain the desired results. For one
thing, as is already evident if one observes the sur-
facelike integrals of (6), we must continue the defini-
tion of the system beyond the spatial limits z, and
z,, at least to within one lattice spacing. This means
that our results will be restricted to the interiors
of large or infinite lattices. Another condition which
we must impose, in order to obtain meaningful
conservation laws is that the variations of = and ¢
are uniform at the boundaries z, and z, within a
distance of one lattice spacing. Thus, we cannot
specify variations at the boundaries which involve
relative displacements of the end lattice points as
a function of the distance between the lattice points.
This seems to be a reasonable assumption of the
physical situation that one encounters. Of course,
it must be strictly understood that we are omitting
all effects of surface vibrations from our con-
siderations.

We may now obtain all of the desired information
about the system using (6). The application of the
action integral at the interior of the space-time
domain gives us the equation of motion:

(OL/d¢) + T_(dL/dT.¢) — 9.(dL/3¢) = 0.  (8)

If we insert the Lagrangian (2) into (8) we obtain
(1’) as we had set out to do. Application of the action
principle to the coefficients of §z and 8¢ in (6) gives
us the conservation laws for momentum and energy,
respectively:

f dta/a){f - f}&

+f dt S, +f dz 11" (A9)
I 'dt(l/a){ [ -] }G+ [z = (9B)
These conservation laws appear in integral form.
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The corresponding differential forms for these laws
are

(1/a)(T, — 1)8, + 38,/8z + all/at = 0, (9A")
(1/a)(T, — 1)@ + aH/at = 0. (9B

Note that these latter equations occur as finite
difference equations. The reader may verify readily
that the equation of motion (8) is consistent with
the conservation laws (9).

One may consider the continuum limit of the
equations which we have used, and show that it is
identical to the continuum theory of the one-dimen-
sional wave-equation problem. For example, the
Lagrangian (2) becomes

L = }$* — (3c)4:-

The equation of motion (1') is ¢ = c’¢xz while the
conservation equations (9) become ordinary dif-
ferential equations. We might also note that the
stress density S,, the power flow density @, and the
energy density H, become identical to the cor-
responding quantities of the continuum theory. (The
momentum density IT already is of the form which
we encounter in a conventional continuum theory.)
If we introduce a plane-wave representation

i(kz—wt)
e ’

the equation of motion (1) yields the dispersion law
w = (2¢/a) sin }ka (10)

which, as we may note approaches the result for the
continuum limit when ka is much less than unity.
It is well to bear in mind the fact that some of the
results of the theory we have outlined above are a
consequence of the assumption of nearest-neighbor
interactions. If this restriction is removed, the basic
structure of the theory remains unaltered, although
the individual equations become more involved. The
most important difference occurs in the assumptions
pertaining to boundary conditions and variations at
the boundaries. Thus, for example, if we were to
include second nearest neighbor interactions, it would
be necessary to continue the domain of the lattice
to a length equal to two lattice spacings beyond z..
At the same time, it would be necessary to demand
that the variations of z and ¢ at the boundaries
z, and 2, be uniform in a spacelike region equal to
two lattice spacings beyond these two limits. With
these alterations the entire procedure goes through
as before. If now, one were to increase the number
of neighbors whose interaction must be accounted
for, it would become necessary to maintain uniform
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variations of z and { throughout a substantial portion
of the lattice domain, and the physical interpretation
of such a theory would become quite obscure. How-
ever, when we begin to take all of the neighboring
interactions into account, we go over to a limit where
the lattice model is no longer adequate, and we must
consider the system as a many-body problem, Since
we confine our considerations to those cases where
the lattice model is adequate, the physical interpreta-
tion of our theory does not present any difficulty.

I

We may now proceed to the quantization of the
classical field equations which we have developed.
Starting with the canonical momentum®

P(l) = f 7 g, ), 1)

we have

(P(), ¢(=, )] = (A/D)¢.(x, ?). (11%)
Combining these relations with (7) and (2) we find

(¢, 1), $(z’, t)] = Dz — z’, t — V) (12)
with

D(x — 2/,0) =0, (13a)

Dz — 2/, t — t)|iwer = (B/1)8(x — ). (13b)

The explicit form of these commutator functions
can be obtained by using a plane-wave representation

#(z, ) = (1/0)7 ; (Gheos)?

X {bee™ " + ble'**le™;  (14a)
we obtain (12) and (13) if we set
[bkn bk] - 01 [bk., bf] = 8*;;-. (14b)

Here the operators b* and b are the conventional
creation and annihilation operators for the plane-
wave states. The singularities of the commutator
function are determined by (13) and the dispersion
law (10). The explicit form of the commutator func-
tion can be deduced quite readily using a plane-
wave expansion of the form (14), and the procedure
is sufficiently well known, so that we may limit
ourselves to quoting the result”:

6J. M. Jauch and F. Rohrlich, The Theory of Electrons
and Photons (Addison-Wesley Publishing Company, Ine.,
Cambridge, Massachusetts, 1955), p. 27.

" We make use of the Fourier decomposition for Bessel
functions in arriving at this result. See: G. H. Watson, A
T'reatise on the Theory of Bessel Functions (Cambridge Uni-
versity Press, New York, 1944), p. 20.
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DG, 7) = Lot — ma) [ Lnet/a)dr,  (19)

m L]
where the sum over m runs from zero to infinity
and the J are the ordinary Bessel functions. Now
the commutator function is also the Green’s function
for the solution of the homogeneous equation of
motion (1°). If, at some given time ¢, we may specify
the field operator and its time derivative, then at
any subsequent time the field operator will be given
by

o, ) = i [ A DIz — =, t — LYo, 1)

= D@ — 2',t — h)é(z', B)].  (15)

The derivation of this last result may be obtained,
starting with (1’) and proceeding as one does in the
continuum theory. If we have some disturbance,
then from (15) it is clear that this disturbance will
be propagated from one lattice cell to the next, as
if the system consisted of a set of percussion centers.
We write down explicitly the (normal product)
plane-wave expansion of the energy and momentum,
This, of course, could be obtained by substituting
(14) into (7),
P = X hkbib,,
! (16)

E = Zhﬁ’kb‘gbg - fd.'DH.
k

There are two points worthy of note in connection
with these last relationships. In the particle theory
of lattice vibrations, there is a degeneracy in the
system due to the nature of the dispersion law (10)
so that it is necessary to divide up the domain of
wavenumber space into zones,® and sum all dynam-
ical effects over the zones. If this is not done, dynam-
ical variables such as energy and momentum will
contain coherent sums over the degenerate states in
the separate zones, and these will give rise to un-
physical results. In a wave theory, such as we have
considered in this paper, such degeneracies do not
oceur, and there need be no restriction in the summa-
tions of relation (16). Of course, in practical applica-
tions of the theory a sum over zones may be very
helpful, the point being that here it is no longer
needed. We should also keep in mind the fact that
we are dealing with a nonlocal theory. The difficulties
which one normally encounters for such a theory®

¢ L. Brillouin, Wave Propogation and Periodic Structures
(MeGraw-Hill Book Company, Ine.,, New York, 1946), pp.
102-107, 148-164.

* A. Pais and G. Uhlenbeck, Phys. Rev. 82, 914 (1951).
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do not appear because the theory which we have
developed is not covariant, and is local in its de-
pendence on time, even though it is nonlocal in its
dependence on space variables.

The three-dimensional problem may be treated
in the same manner as the one-dimensional problem
described here. A realistic three-dimensional model
must include second nearest neighbor interactions.'
Thus, the relations become quite involved. However,
the procedure and the results are very similar to the
ones obtained here. The main difference arises from
the variations corresponding to rotations of the
system from which one may deduce the angular
momentum conservation laws. The properties involv-
ing the spin of the phonon that enter into these
considerations have been discussed elsewhere in
terms of a continuum theory, and are very similar
to the ones given in that reference.'" The dispersion
law and the commutator function do not have the
simple forms given in this paper, but one can readily
discuss the singularities, and demonstrate explicitly
how the wave propogates in such a system.

In this article, we have demonstrated the possi-
bility of quantizing a system of finite difference
equations and constructing a nonlocal field that
corresponds to these equations. Apart from the
purely heuristic value, it is interesting to look at
the interactions of such a field, and study it to
determine what physical effects manifest themselves
when one considers the renormalized interacting
systems. It is also interesting to consider electro-
magnetic interactions of such systems and attempt
to gain an insight into the gauge condition that
plays such an important role in the electromagnetic
properties of these interacting systems. Such studies
are now under way.
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The problem of multiple scattering of waves by randomly positioned objects has been treated by
several authors, for example, Foldy, Lax, Twersky, Waterman, and Truell. The present work extends
the theory to electromagnetic vector fields and to scatterers of arbitrary size and properties. A general
formulation has been made for scattering by any type of discrete and identical scatterers which are
similarly oriented. The case of spherical scatterers has been treated by using the rigorous Mie theory
both for sparse and dense concentration. Results indicate that in case of sparse concentration, the
statistical expectation of the total field has a polarization similar to that of the normally incident
wave and the distribution of scatterers is equivalent to a homogeneous medium with a modified

refractive index. In case of dense concentration

the medium can sustain a number of plane-wave

modes. A dispersion relation for the modified medium has been obtained. When the special cases of
small spheres is considered, the well-known results obtained by other authors are recovered.

1. INTRODUCTION

HE study of wave propagation in a random

medium is interesting both theoretically and
from the experimental point of view due to its
numerous practical applications. Consequently, it
has received considerable attention in the literature.
Various approaches are used for a theoretical
investigation of the subject, depending upon the
statistical model chosen to describe the medium.
In this paper we consider a random distribution
of distinct obstacles. As the wave propagates in
such a medium, it is scattered by the obstacles
and the problem is, therefore, formulated in terms
of multiply scattered waves.

The problem of scattering by distributions of
objects dates back to 1881 when the Lorentz-
Lorenz formula for the refractive index of a gas
was developed. This was followed by Lord Rayleigh’s
classical work in 1899 on the scattering of waves by
random distributions which explained the color
of the sky. However, the first systematic treatment
of multiple scattering of waves was given in a
paper by Foldy in 1495." Much work has since been
done on the subject with wvaluable contributions
from Lax,® Twersky,’ and Waterman and Truell.*

* This work was done at the University of Illinois with
partial supports from the Agency for International Develop-
ment and tge National Aeronautics and Space Administration
under Grant No. NsG 24-59. A more detailed version has
been published as a technical re%ort with the same title by
the Department of Electrical Engineering, University of
Illinois, Urbana, Illinois, 1963.

1 L.'L. Foldy, Phys. Rev. 67, 107 (1945).

: M. Lax, Rev. Mod. Phys. 23, 287 (1951); Phys. Rev.
85, 621 (1952).

1V, Twersky, J. Math. Phys. 3, 700 (1962).

( +P. C. Waterman and R. Truell, J. Math. Phys. 2, 512
1961).

The formulation used in this paper follows closely
the work of Waterman and Truell. The new features
considered here are the vector nature of the electro-
magnetic waves and the finite size of the scatterers.
We consider the incidence of an electromagnetic
wave on a semi-infinite medium containing a ran-
dom distribution of identical, similarly oriented
scattering objects. The statistical expectation of
the field for an ensemble of configurations of the
scatterers is obtained using the joint probability
density distribution of scatterers. The special case
of spherical scatterers is considered in detail. When
the concentration of spheres is sparse, an expres-
sion is obtained for the refractive index of the
synthetic medium by considering the first-order
scattering only. The polarization of a normally
incident wave is found to remain unchanged. For
dense concentrations, multiple scattering effects
have to be taken into account and a dispersion
equation for the refractive index of the synthetic
medium is obtained. For finite-size spheres, this
equation is higher than a quadratic and shows that
more than one mode can propagate in the syn-
thetic medium.

2. FORMULATION OF THE PROBLEM

Let us consider a random distribution of m
identical, similarly oriented scatterers of arbitrary
size, shape, and scattering properties. Let the various
configurations of scatterers be governed by the
probability density distribution p(ry, Tsy <+ , Tp).
Here p(r, Ts, =+ , Tm) dvy doy -~ dv, i8 the joint
probability of finding one scatterer in the volume
dv, centered at r,, another scatterer in the volume
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Fig. 1. The geometry of the problem.

dv, centered at r, and so on. Since all scatterers are
identical and similarly oriented, a configuration of
scatterers is specified by the scatterer positions
alone. To facilitate mathematical formulation, let
us introduce the following notation.

Let S be the domain of all points in the con-
figurational space. Let S; be the domain of all
points lying in the right half-space z > 0, and S,
the domain of all points lying in the left half-space
z < 0, so that S, \J 8, = S. Let S,, be the domain
of all points lying inside the scatterer centered at
1;. To be specific we shall restrict the centers of all
scatterers to the right half-space z > 0 and shall
not permit interpenetration of scatterers. This is
expressed by imposing the following conditions on
the density function:

I =0 for r; €8, Y1,
,I) =0 for S,, NS, #0,

Vi, k; j#=k.
We shall consider only elastic scattering and assume
that the scatterers are in no way affected by the
incident field and that the motion of scatterers,
if any, is too slow to be of significance.

Let an electromagnetic wave E(r, t) be incident
from the left. We shall consider only the forced
oscillation case with time dependence e *“* and
shall suppress the time dependence for convenience.
For a configuration ry, 1, - - - , 1, of scatterers, the
total field at a point ris denoted by E(r : 1y, + -+ ,T,.).
Clearly, if r € 8,, it may lie outside all scatterers
(as at P in Fig. 1) or it may lie within some scatterer
centered at r; (as at P’). However, if r € 8, (as
at P'") and far from the boundary z = 0, it must
lie outside all scatterers. For convenience, we shall
not consider the case when r € S, but is so close
to the boundary that it is within some scatterer
whose center is in S,. This “edge’” effect seems to
be very complicated and in the following we shall
ignore this small region and only consider the
fields in S, and S; away from the edge. The incident

p(rh rz, -

P(rurm R
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field as well as the field outside of all scatterers in
a given configuration is supposed to satisfy the
wave equation

(V* + )E@ i, - ,1) =0, r€8— S,

i=1
If r is inside any scatterer, say at r;, then the
field satisfies

(V' + EDE(xr i1y, --- ,1,) =0, r€E€S,, Vi

All these fields are also supposed to satisfy certain
radiation and boundary conditions.

2.1 Derivation of Exact Equations

Let E*(r, r; : 1,, --+ , r,) denote the scattered
field at r from a scatterer at r; for the configuration
Iy, -+, I, of scatterers. We shall write this scattered
field in terms of the exciting field E*(r; 1 1y, - -+ , 1)
at the scatterer at r; and a scattering operator
T(x, r;). Thus,

E'(I.', e P S R sr-n) e T(I',I,-)EE(I',- S ST ,I',,,),
r & HS,,.

If r lies inside some scatterer, say one centered at r;,
then we shall make use of the interior scattering
operator T"(r, r;) and write

E(l’ Ty e ,rm) == T'(r’ r;)EE(ri Ty, l.'.,,),

& 8
The scattering operators T and T" are merely
formal and are introduced purely to stress the
functional dependences. For convenience we shall let

T@,r;) =0, for rE 8,,,
T'(,r;) =0, for r & S,,.

The total field at a point lying in the scattering
medium, i.e., r € S, can, therefore, be written in a
self-consistent manner as

E@r:r, - ,r.)
r m
Ei(r) + Z T(r, I,-)EE(I'J- Ly vy l',,.,),
- rg Us,
TI(I',I',-)EE(I"- sy wes srm}: I E Sr;-

Following Waterman and Truell, these equations
can be combined into one by using the symbol
a(r, 1,) defined as follows

o:(!‘, rk) - {O? r E Su:‘
1, r&8,.
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Using this symbol, the total field for a given con-
figuration ean be written as

) Tw) = [f[ afr, ra)]

k=]

Elr:n, <--
X [E"(r) + }i T(r, r,)E(r; i1y, -+ ,r..)]

+ ,Z:'} [1 — afr, t)T'(, TE"(r, i1y, -+, 1),

re S,. (1)

It has been found by various authors that the
field given by Eq. (1) cannot be evaluated ex-
plicitly except in simplest cases. The scheme here
is to take the ensemble average of (1) as it stands
and make approximations later.

The statistical expectation, or the average value,
of the total field is defined by

®e) = [ o [dv - [ av,

X P(fu ,I‘,,,)E(l' PRy &9 lrﬂl)'

In this, the volume of integration for each scatterer
is the entire volume accessible to scatterers. If the
average is taken with one or more scatterers held
fixed, we get the first, second, etc., partial average.
Thus

(E"(;-l :1,)) = first partial average of the exciting field at
r, with the scatterer at r, held fixed,

= fdvz fd,,_p(rh

X E¥x, :1,, ---

T, iT,)

’ r'l)l

where p(r, - - -, .. : 1,) is the conditional probability
density function when the scatterer at r, is given.
It has been shown by Waterman and Truell that
due to exclusion of interpenetration, we can write

p(rh T rm) I-‘Il a(l', rk)

=m¢”mb—gu—mm@

Using this relation, Eq. (1) ean be averaged to
get the result

(E@) = Ei(r)l:l o fm dv'p(r’)]

+ j:@ﬂ,r dy'p(r')T(r’ r')(EE(rr :f’)) - _/‘.-L' , dv’P(r’)

3
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X f dv” p(x’’ :x)T(r,r’ XE*(r' :x’,1'"))
rES ;8¢ 'MSerr=0

+ fea ‘ dv'p@)T'(r, ' YE (" : 1)), rE S,. (2)

Here, p(r') is the density of scatterers at r’ and is
related to the single scatterer probability through
p(r’) = p(r')/m. The conditional density p(r” : 1)
is related to the conditional probability through
p(r” :1') = p(x” : r')/(m — 1). The domain of
integration r € S, indicates that the r’ integra-
tion is to be carried out over all points r’ such that
r is inside the scatterer at r’. Similarly, the domain
r ¢ S,. indicates that r is to be outside the scatterer
at r and S, N S,.. = 0 indicates that the r”
integration is to be carried out over all points r”
such that the scatterer at r’ does not penetrate

the scatterer at r’.
If the point of observation lies in the left half-
space, i.e,, r & S,, then the total field is given by

E(r:r, --- ,I.)

= E'(r) + i T, DB @, 2t ++ ,Lu)-

The average total field then becomes
E®@) = E'@ + [ a'se)Te r)EE :x)),

r e 8. (3)

The partial averages of the exciting field that
occur in Egs. (2) and (3) can be obtained from the
self-consistent equation

B, i1y, ~o o E2)

= E'(r;) + i 4 C NG ) Do § T TREET (4)

i

The ensemble average of this equation taken with
the scatterer at r; held fixed gives the first partial
average

Er, :1)) = E'(r)

dv'p(r’

B¢ iN\Ber=0

+ )Ty, U XERE i r/, 1), (5)
This equation involves the first and second partial
averages of the exciting field. An equation for the
second partial average can be similarly obtained
and will involve the third partial average. Similarly,
each equation for s partial average will involve
a partial average of one higher order. In order to
break this hierarchy of equations and get an inte-
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gral equation in the closed form, some approxi-
mations have to be made.

2.2 Approximations

There are several types of approximations possible.
In a weakly random medium, we can use different
orders of iteration of Eq. (4) for the exciting field.
In the first iteration the exciting field is replaced
by the incident field alone. In the second iteration
we consider the exciting field as made up of the
incident field plus the once scattered fields and so
on. At each stage of iteration in such an approach,
we are confronted with an essentially new problem
of integration when any specific type of scatterers
are considered.

Another approach is to consider the exciting
field at a scatterer at r; in a given configuration
as an expansion in which the first term is the total
field at r; when this scatterer is not there [that is,
in a configuration of (m — 1) scatterers]. The
second and higher terms then include the rescattering
of the field scattered from this scatterer when it is
put back in the configuration. Thus, we have
B (i AT

r

(i er) =E(rr':rls e ;rm)

W+ Zm: T(r;, rk)T(l':,, r)Ex; :r,, -t ,r,) + I. e (6)

=3

The prime on the configuration r,, --- , r,, indi-
cates that the scatterer at r; has been removed.
The approximation then consists of neglecting
the second and higher terms in the right-hand
side of Eq. (6). This approximation has been con-
sidered in detail by Waterman and Truell' and
they have developed a criterion of its validity.
According to this criterion, the second and higher
terms are much smaller than the first if

PoQ./k << ]. y

where p, is the number density of scatterers (assumed
constant), @, is the scattering cross section of a
single scatterer and k is the propagation constant
of the medium in which the scatterers are located.
Although this eriterion has been developed using
point scatterers and scalar waves, it is shown to be
quite generally valid.

A third approach is to consider the hierarchy of
equations for partial averages of the exciting field
of which Eq. (5) is the first. The approximation
consists of breaking the hierarchy at some point,
that is, taking

(EE(rl I STR P TR srf:ri)}gJ(EE(rl Iy, e

H I,-)),
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for some 7 and j. If we break the hierarchy at the
first equation itself, then we have

(EE(fl I, ) R (EE(rl 1)) 7

This approximation has been discussed by Lax’
and is designated as the “quasicrystalline’” approxi-
mation by him. He has shown that this is a very
good approximation in the case of dense systems
when multiple scattering effects are most important.
For the case of statistically independent distribu-
tions, it can be shown to be equivalent to the
second approximation considered.

We shall simplify the equation by using the
second approximation and considering the case of
statistically independent distributions only. Thus
we put

E°(r; i1, - , 1) ~E(r; i1, -, 1)
and
Pty »o , Ta) = p(r,)p(rs) - - - plra).

Straightforward simplification then leads to the
equations

(E(r)) B [1 N -[I‘ES,' du’P(r’)]
x| B@+ [ araerre e o]
+ [ @) EE ), TE€S, ®

®@) = B'® + [ o), )EE 1)),
re S, 9)

(E"r 1)) = E'@) + [ e, )

X (E 1)) (10)

These equations are quite generally valid for scat-
terers of arbitrary size and shape. We shall now
consider the special case when the scatterers are
spheres of arbitrary radius a and electromagnetic
properties p., €, k., with constant number density
po and when the incident wave is a linearly polarized
plane wave and is incident normally. We shall
consider both the sparse concentration case when
single scattering theory is good enough as well as
the dense concentration case when multiple scatter-
ing has to be taken into account.

3. SINGLE SCATTERING BY SPHERICAL SCATTERERS

When the scatterers are sparsely packed, only
first-order scattering (Born approximation) need
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be considered. In this case we replace the exciting
field by the incident field and neglect the second
term in Eq. (10). Considering the incident field of
the form i.e™**, Eqs. (8) and (9) now involve the
scattered and “transmitted ” fields [T(r, 1')i.e™*']
and [T7(r, 1')i.e™*'] at the point r for a sphere
centered at r’. The problem of scattering of a linearly
polarized plane wave by a sphere was first solved
rigorously by Gustav Mie in 1908 and the results
are expressed in terms of an infinite series involving
spherical vector wavefunctions.® Using the co-
ordinate systems shown in Fig. 2 and letting
¢, = v (2n 4+ 1)/n(n + 1), the various fields can
be expressed as follows:

E'(r) = 1.e'™ =

izeik(=’+=|)

'™ Z cﬂ[mllllln(rli k)

- in:ln(rls k)]:

I

Tlr, e )ENr')

- ei’kl' z: e [a mom(r” k) — ‘lb n‘]ﬂ(rlj k)]?
T'(r, r)E(r")

=™ 3 clammg (T, k,) —

n=1

b1y, k)]

The coefficients a, b:, a, and b} are obtained from
boundary conditions and are functions of the radius
and properties of the spheres. These fields are
now expressed in terms of a coordinate system
centered at the center of the scattering sphere.
The position of the scatterer is taken care of by
the phase factor ¢'**'. However, since the center of
the scatterer, 1’, is the variable of integration, the
integrand must be expressed in terms of some other
coordinate system which is fixed. The translation
addition theorems for spherical vector wavefunc-
tions are very involved, in general, and, therefore,
we choose the fixed coordinate system to be centered
at the point of observation P. We now use the
simple coordinate transformation r, = —r,. It
can be easily shown that

méiﬁ(fl, k) = (_1) mUh(rh k))
n,ia(ry, k) = (—1)"'n.ii(r, k).

8 J. A. Stratton, Electromagnetic Theory (McGraw-Hill
Book Company, Inc., New York 1941), p. 564. In most cases
we are using his notations with glight and obvious modifica-
tions. It was pointed out by the reviewer that similar tech-
niques as that used in this section have also been applied to
the periodic case by N. Kasterin, Koning. Akd. Wentens.
4, 460 (1897) and to waves in a lattice of spherical particles
based on angular momentum theorems by P. H. Morse, Proc.
Acad. Sci. 42, 276 (1956 ).
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F1g. 2. The coordinate systems.

Equations (8) and (9) can, therefore, be written as
E@)

+ (1 — 2,)pe™ f | due™

= (1 — v,)i.e™

[Z ( l)n n anml)ln(r2: k) + T'b neln(rﬂl k)}]

n=1

dv.e™**

rg<a

[ZH)

n=1

+ poe™

G..mom(rz, k ) + 7rbnﬂ-lu(r2r k )l:l

(11)
where r € 8, and

(E(f)) — ‘E,e"“ + poe(kz f dvzeikz.

X [): (—1)"c.fanmg,a(rs, k) + 2band,.(rs, k)}], (12)

where r € S,. Here v, = [res,. po dv' = (4)wa’p,,
is the fractional volume occupied by the scatterers.
The domains of integration used here are shown in
Fig. 3. For convenience, we restrict the point of
observation P to lie outside the slab region —a <
z < a. The integration in Egs. (11) and (12) can be
carried out exactly by expanding the vector wave-
functions m and n in terms of their Cartesian com-
ponents.” The summation and integration can be
interchanged. The integrands involved are of the
form

e'.h'P:(COS 02)z,(krs)sia(mes),
where P7 is the associated Legendre polynomial

¢ P. M. Morse and H. Feshbach, Methods of Theoretical
Physics (McGraw-Hill Book Company, Inc., New York,
1953), Part II, p. 1899.
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Gz =-z

z;

(o) r,>0,2,2-2;

i>a

A

=i

) <o

X Z -2

\
N

(€) 2p2-2, 2<-0

F1a. 3. The domains of integration (shaded regions).

and z, stands for either the spherical Bessel func-
tion or spherical Hankel function. Since the do-
mains of integration have a ¢, symmetry the terms
of the type

2r
f de, tin(mes), m #0,

go to zero. Thus the only terms which do not go
to zero are those which are independent of ¢,.
This reduces Eqgs. (11) and (12) to the following:

(B@). = (1 — )™ + (1 — )™ p il (—2i)‘

X dvzeik“[(gn' + 1apP.(cos 8,)h,(kry)

ra>a,g3>—2

=5 ib:{('n + l)Pn—l(cos gz)hn-l(krz)

AND K. C. YEH

X dve™* [(2n + 1)a,P.(cos 6;)ju(k.r2)
+ 'f'b:{(n + 1)P,_1(cos 05)jn—i(kers)
— nP,.(cos 32)jn+1(k-r2)”: (13)
when r € §,, and
(E(r)), — ev’k: + eﬂu 1') f dv2e1h-
X [(2n + D)a;, -(COS 02 h.(Fers)
+ b2 {(n + 1)P,_.(cos Ou)h,_,(krs)
- nP..n(COS az)hnu(krz)”s (14)

when r € 8,. It is thus seen that the average total
field is also linearly polarized in the z direction,
like the incident field. This was also found by
Twersky.? It is to be noticed that there is no singu-
larity in the integrands in any of the domains of
integration. Previous work on this subject is re-
stricted to the case of small spheres and the fields
interior to the spheres are ignored. The problem is
thus reduced to that of point scatterers. This
introduces a singularity in the kernel of the integral
equation and there is some ambiguity in treating
such integrals since the results depend upon the
shape of the volume excluded in the Cauchy prinei-
pal value technique (for instance, see Waterman
and Truell'). In our treatment, where the fields
interior to the scatterers are properly accounted for,
such ambiguity no longer exists. The spherical
Hankel function is regular at infinity and the
spherical Bessel function is regular at the origin.
Typical integrals are now of the form

a‘*”P,(GOS Bg)h,.(k?'n) and 8“‘"Pn((‘.08 B,)j,(k?‘g)-

In the domain shown in Fig. 3(b), the integration
can be carried out in a straightforward manner and
in the domain 3(¢c) we make use of eylindrical
coordinates and the relation”

(=3P, (f’c a‘:z)

These integrations can then be carried out following
the work of Waterman and Truell. For the domain
shown in Fig. 3(a), we convert the volume integral
to a surface integral by the formula

P,(cos 6.)h(kr.) = i

f Aoy P, (cos 0)h,(kry)

- f [P,(cos az)h.(krz)v{e“‘“(ﬁ =

; 1
. tkzg "
¢ (4k’

2)
2k

- "z*)vzp.(cos 8,)h. (krz)]] as.  (15)

. a1 (€08 00, (ko) )] + &* oy i‘ (_21)-

7 B. van der Pol, Physica 3, 393 (1936).
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The surface ¢ encloses the volume V and dS is in
the direction of the outward normal. This formula
has been developed in the report. After some
lengthy computations using the above relations,
the average total field ean be shown to be given by

(E@) = (1 — )™

+ @1 - v.)e"‘"pul:;;—f Z:; (2n + 1)(an + b2)

+ g 2 (@n+ Daley + (0 + Dblan, + nbiow) }

n=]

+ poeml:zi;c‘* 2 {@n + Dag. + (n + DY,

+ nb:ﬁ.u}]: re S,. (16)

The symbols a, and 8, are defined as follows

@ = S ©)i) + ha()ialt)
2 + 20 (R — KEOKON,
Be = T2 73 Nuda®iarsV.8) = Guca RN,

where { = ka, N, = k,/k and the primes indicate
differentiation with respect to the argument of the
function concerned. Equation (16) can be written
in the form

(E(@). = Ee™(1 + idk2),

with obvious definitions for E} and é. If é is small,
as it will be in cases where the Born approximation
is sufficiently good, then this can also be written as

(EM), = Ex'™™, rE S8, (17)

where Ny =1 + é. Thus, the wave propagates with
a “transmission” coefficient E; in a medium of
refractive index Ng.

In the left half-plane, Eq. (12) leads to

(E(r)). = ™

2 e"""[%}? Zj; (—1)"@n + 1)(an — b.’.):|- (18)

This equation is of the form
(E@). = e +Ee™, r€8. (19

This also shows that the right half-space containing
the scatterers acts like a modified medium which
reflects part of the incident field with a “reflection”
coefficients Ej. The reflection coefficient, trans-
mission coefficient and refractive index of the
equivalent medium are functions of the size, density
and electromagnetic properties of the scatterers
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and of the wavelength considered. Some of their
properties are discussed in Sec. 5.

4. MULTIPLE SCATTERING BY
SPHERICAL SCATTERERS

4.1 The Exciting Field

In a dense distribution, the effects of multiple
seattering can not be neglected. The various orders
of scattering can be considered by successive itera-
tion of the exciting field equation. However in this
method, as was pointed out earlier, a new problem
in integration is confronted at each stage. The
complexity of the integrals involved increases very
rapidly even for such a simple shape of scatterer
as a sphere. We shall, therefore, direct our attention
to solving Eq. (10) for the exciting field.

Most of the earlier work on multiple scattering
has shown that a distribution of scatterers can be
replaced by a modified homogeneous medium.
Thus Foldy has obtained an expression for the
refractive index of such a modified medium for
the case of isotropic point scatterers. A similar
result for anisotropic point scatterers has been
obtained by Waterman and Truell for the case of
scalar waves. The single scattering approach of
Sec. 3 gives the refractive index of the modified
medium when vector waves are considered and no
restriction is placed on the size of the scatterers.
On the basis of these results we shall assume that
the exciting field can be represented by a collection
of uniform plane-wave modes when multiple scatter-
ing effects are taken into account. From the geometry
of the problem and the results of Born approximation
it is clear that these plane waves will all travel in
the positive z direction and will be linearly polar-
ized like the incident wave. Therefore, we assume
the following form for the exciting field as a trial
solution

Ex D) = 2 LB,

where all the k,’s are assumed to be distinct, i.e.,
ki 5= k! for I = I'. Substituting this in Eq. (10)
we get

k - k
E L Ee" = L™

I=1

i f dv’[T(r, D> E,E,e“"']. 20)
SrNSer=0 I=1

In order to carry out the integration, we need to
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know [T'(r, 1) Do, 5. Ei**"], which is the scattered
field at r from a scatterer at r’ excited by a col-
lection of plane waves of the type i.E, exp ikz.
Each of these plane waves gives rise to a scattered
field which travels in a medium of propagation
constant k, and a ‘“transmitted” field inside the
scatterer where the propagation constant is k,.
Thus using the coordinate system of Fig. 2, we can
write the incident, scattered and transmitted fields
of each plane-wave mode as follows:

LB = Ep™'" Z: cﬁ[mtllln(rll k) — ?‘.n,;ln(rly k)],
(21a)

T(r, 1)1 Ee**

N. C. MATHUR AND K. C. YEH

- Ele‘.ki" Z: cn[A:nmgln(rl, k) =4 iB;nnzln(rla k)]:
n=1
(21b)
T'(x, r')6.Eie™"™

= E(e‘.kl" 21 ca[A:nm;ln(rl) ka) = ‘I:B:,.nl,h.(r“ k!)]'
(21¢)

The media corresponding to the incident, scattered
and transmitted fields are characterized by (u,,
e, ki), (&, ¢ k), and (u,, €., k,), respectively. This
is the so-called “two-exterior’” formalism of
Twersky,” indicating that the incident and scattered
fields travel in two different media. The coefficients
are found from boundary conditions and are given by

_ £ NN N — pudaN NN
pe pha(OINGGNDY — pdaNDEROT

At = B BRIV NV O) = pijaN O [Eha(D)]

(22)

=y Al > 9;

The notation A};*(x — €) means that wu, u,, u, are
to be replaced by ¢ e, ¢ in the expressions for

5.t The relations
k: = wzme,, kf = (02}1.6.,

k; =le

k' = w’pe,
k, = Nk,

have also been used.

We can now substitute Eq. (21b) in Eq. (20)
and carry out the integration by referring the
whole integrand to a coordinate system centered
at r. The domain of integration in this case is the
right half-space excluding a sphere of radius 2a
centered at r, since the sphere the sphere at r’
must not penetrate the sphere at r. The integration
is carried out by converting to a surface integral
using Green’s theorem. Some lengthy but straight-
forward computations lead to the equation

Z E‘e!‘ku - eu‘k-

t=1

4+ ‘Z_; B k"’(l\’%—ﬁ I:Z @n + 1)(A}. + BI,)]

n=1

= tkis 2'"'90 - s
+ ; Ege ks(N? r 1) l:z {(2ﬂ + l)A!ﬂTfﬂ

n=1

+ (m + 1)BLyi - + BV ne1) :I: (23)

1 B ()N 3N D] — mdalN O [SRa(5)]”

B;, =

aN.
L

€ Nl A:u(# = é).

where

Tin = 8V [Nija-s@N1DRa(28) — 3N i8)har(29)].
Since this equation is true for all z > 2a in the
right half-space, we can equate the coefficients of
e for all [, and of ¢™** and get the following equa-
tions

Z [@n + DA%y + (1 4+ DBivrncs +nBiyimni]
= (2*/3v)(NT — 1), (24)

and

1=1,2 -,

3,

2 ol gy, =)

X [Z @n + 1)(4% + B?.)] F1=0. ()

ne=]1

Equation (24) is the dispersion relation governing
the refractive index of the medium. Its roots are
the different modes which the medium can sustain.
However, since the coefficients A}, and Bj, involve
both N, and u,, one more equation is needed. This
can be derived by considering an incident H field
so that H'(r) = .. A similar analysis leads to
the equation

Z (@n + 1)Chvie + (0 4 DDivens 4+ 1Dhvemen]
= (25'8/3%)(]\[? - l)l (26)
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where
Cia = wBl. /N, and Dj, = Ny, Al/p.

Between Eqs. (24) and (26) we can get a trans-
cendental equation in which the only unknown
is N;. The different modes will be governed by this
equation.

4.2 The Average Total Field

The average total field can be derived in a straight-
forward manner by substituting Egs. (21a), (21b),
(21c) into Eqs. (8) and (9). The techniques of inte-
gration are similar to those outlined in Sec. 3. Equa-
tion (8) leads to the following equation giving the
average total field in the right half-space (z > a)

E@). = 1 — v)e™
+ 3

i
— v,)E:po PN, —1°

X [Z': @n + 143, + B:,)]

m=1

+ ZDIPU ks e‘“‘l:;r! E {(277' + l)A!nalu
+ (n + l)B;aal’ n—1 + nBlnal n+l}

N? Z l(zn + I)Aluﬁ-

s A=l

+NH

-+ (n -+ ].}B:..Es.n—l -+ ﬂB;.ﬂ.uH’]:

where

= [N ijucrs (N DR(D) — 3oV 1Ry (D]

and

= FINGaNiju-1(No8) — Nijarr (N 18)jn(N )]

By virtue of Eq. (25), the first two terms of this
equation add up to zero. The equation, therefore,
reduces to the form

ZE!. Ikll

Thus, the average total field propagates in the

27)

(E(M). = 2> a.

4, — uN;
2u, + uN;

3 | g =
p =1 o U =
o +2”L.+2n

where {, N, <« 1. If the permeability u, of the
spheres is nearly equal to that of the background
medium and the case of sparse concentration of
spheres is considered, then g, uand v, < 1.

~
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right half-space as a collection of plane-wave modes.
The extinction theorem is verified since there is no
¢ component in the field. The transmission co-

efficients E} are given by the equation

t el 3vl(1
E; = ———wwz B Z [@n + 1)ALbu
+ ('n + I)Blaal.n—l + ﬂB:nal.n+l]
¥ ot B 3 (@0 4 DAl

20°(NT — N) ' &
+ (n + 1)Bl‘nél.n—l + nB:nEl .n+l]- (28)

The average total field in the left half-space is
similarly obtained from Eq. (9) and is given by

(E(), = e** + E'¢™, z< —a, (29)
where
% 3w,
B = 2 W, D
X E:I:Z:,: (=1)"2n + 1)(Al. — B;u)]' (30)

This treatment has given a fairly good picture of
the multiply scattered field. There is not enough
information to determine uniquely the amplitudes
E, of the plane-wave modes. Because of the com-
plexity of integrals the treatment has excluded
from consideration the region —a < z < a. How-
ever, sufficient information has been obtained to
determine the refractive index of the modified
medium from the dispersion relation.

5. SPECIAL CASES

The results obtained in Secs. 3 and 4 for single
and multiple scattering reduce to simple and well
known results when special cases are considered.
Thus at low frequencies, when the radius of the
sphere is small compared to the wavelength, the
parameter {(=ka) is very small. In this case we
can take the small-argument approximation of
spherical Bessel and Hankel functions. In the case
of single scattering the refractive index for this
case is given by

1/4+4(

.u,—u_é.u,-.uNfl:'_ 3v, ™ }
M = 2.“ 5 2»“5 + nuNf (1 - vs) (2“‘»1 b M'N?) :
(31)
In this case, to the first power of v, we get
‘3 N’
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where the polarizability of spheres is o =
a@(N? — 1)/(N? 4+ 2). This is the well known
refractive index of Rayleigh scattering given in
the Clausius-Mossotti form. The small-sphere
approximation is equivalent to neglecting all orders
of multipoles, except the first-order electric dipole
in the Mie expansion.

For the case of small perfectly conducting spheres,
we cannot let N, — « directly in the above equa-
tion, since this was derived for N, < 1. However,
taking asymptotic expansions for a) and b for
N, — o and ¢ « 1, the total field and refractive
index in this case are given by

iNpksz

— fv,)e , z > a

(E@), = { P 33)

e™ — R, z < —a,

and

Na =14 .. (34)

When the sphere size is comparable to wavelength
the contribution of the higher order multipoles
can no longer be neglected. In this ease the re-
fractive index Ny for the Born approximation will,
in general, have an imaginary part also, indicating
attenuation in the medium. Numerical values of
Ny for perfectly conducting spheres for values of
¢ from 0.1 to 5 and for v, from 0.001 to 0.1 have
been computed and are given in the report.

For the case of multiple scattering, when ¢,
N,t, and N,;¢ are much less than unity, Eqs. (24)
and (26) reduce to

B Ha T M 2 €& — € 2

3 e [#. + 2#]N' + L. + 2e:|(2 + Ny)
= (N7 — D/,

_i € — € 2 By — My 0 2

8 € l:e. o I Ze]N' » [u. =+ 2#](2 + v

= (N? — 1)/u,.

C. MATHUR AND K. C. YEH

The constants g, and ¢ can be determined from
these equations for any type of spheres. Suitable
combination of these two equations yields a quartic
equation in we. To the lowest order in v, the
refractive index N, is 1. To the next order in v,
we obtain

&fe — 1 | p/u — 1)' (35)

6,/&+2 ”n/nu+2

which is just the generalization of the Clausius-
Mossotti relation given in Eq. (32).

When the spheres are perfectly conducting, the
dispersion relation reduces to the following

7 1 2 23 .4 1.).; ;
(15 3‘2)"’? = [5 (‘ + ;,) +8 T+ (a*)f‘]”f

2 1y ,10.. (1)\.]_
+36+)+ 2 -Gl -0

For very small values of {, we have only one mode
with refractive index given by

Ni =1+ 20,)/(1 + 3v.).

This expression has been derived earlier by Twersky.®
For sparse concentrations, we get back the re-
fractive index and transmission and reflection co-
efficients obtained in the case of Born approxima-
tion. By comparing the results with the standard
expressions for the transmission and reflection
coefficients, we get

N; = .l +%U.(

e = u(l — 3v,), « = ¢1 + 3v,).

These expressions also agree with Twersky’s.’ As ¢
increases we get more than one mode and their
refractives indices have to be computed numerically.
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A physical 3-vector and dyadic formalism for the treatment of general relativistic problems is
derived, by systematic introduction of a proper tetrad field. The method is especially appropriate
when there exists a physically or geometrically preferred timelike congruence; all quantities in the
formalism are then shown to have immediate physical interpretation as proper local observables. A
complete and nonredundant set of equations for the analysis of timelike congruences is developed in
this operational language. Application is made to some simple examples involving local observations,
and the direct measurement of the Riemann tensor discussed.

A. INTRODUCTION

HE spinor analysis and the tetrad (or vierbein)

formalism were both employed in the 1930’s,
in connection with attempts to generalize general
relativity and to formulate a unified theory of
electricity and gravitation. The lack of success in
this particular endeavor, however, led to a sub-
sequent lack of interest in the formal techniques
thus opened up. Now, in just the last few years,
greatly renewed interest in the spinor analysis has
followed upon its successful application to cases
of gravitational radiation, within the now-classical
theory of Einsteinian general relativity.' Such cases
are characterized by having preferred null con-
gruences. The tetrad formalism, we believe, can be
of equally great service, within Einstein theory,
when appropriately applied to situations having
preferred timelike congruences. When a tetrad
formalism is based on a preferred congruence it then
naturally leads to a three-dimensional dyadic and
vector formulation which explicitly depends on (and
expresses) the dimensionality and signature of
physical space-time. For the many important re-
sults that depend on this dimensionality and signa-
ture for their validity, the usual tensor caleulus is
rather an imperfect instrument, tending to prove
easily only more general results, valid in n dimen-
sions with arbitrary signatures.

The dyadic formalism we present in the present
paper has the advantages of physical inferpret-
ability, mathematical completeness, and wide applica-
bility. We are at considerable pains in several
sections of the paper to give the physical interpreta-
tion of all dyadic quantities arising from the formal-
ism—in almost all cases this is rather easily done,
for indeed the naturally occurring dyadic quantities
are found to be those already familiar either from

* Sponsored by the National Aeronautics and Space Ad-

ministration under Contract No. NAS7-100,
! E. Newman and R. Penrose, J. Math Phys. 3, 566 (1962).

classical mechanics or from quite simple geometric
considerations. The result is a much more under-
standable set of relations, than in the more custom-
ary 4-tensor formulation of general relativity,
especially when a physically distinguished con-
gruence is present. The second advantage is in the
completeness of the dyadic partial differential equa-
tions. The more usual tensorial techniques for dis-
cussing congruences in curved (3 -+ 1)-dimensional
manifolds are quite ad hoc, and although the litera-
ture is replete with many elegant results for special
cases, a systematic mathematical approach or
algorithm which overlooks no such results, writes
no redundant equations, and yet is completely
general, seems not to be available. Although this
technical point is difficult to express in an introduec-
tion, it should become clear in the body of the
paper. Finally, there promise to be many areas of
application of the dyadic formalism: a timelike
congruence which is in some way distinguished or
preferred occurs in such varied situations as space—
times supporting matter—energy distributions, cos-
mological models with preferred galactic distribu-
tions, and space-times having symmetries and
isometries described by congruences. The possibility
of generating new exact solutions of the field equa-
tions should also be mentioned, especially since the
dyadic formalism is not wedded to a choice of
(holonomic) coordinates. The applicability of the
dyadic formalism to the explicit prediction of exper-
imental results is noteworthy: the dyadic quantities
are world scalars, proper components everywhere
resolved along the orthogonal space and time axes
of local Lorentz tetrads; they are, that is, precisely
the raw material of observational physics. We
demonstrate this last point by presenting equations
for the differential absolute acceleration and preces-
sion between adjacent inertially oriented test
particles, which show in principle how 14 compo-
nents of the Riemann tensor are locally measurable.

1629



1630 F. B. ESTABROOK
The differential precession equation in particular
seems not to have been given previously in a form
involving strictly local, proper, observations, and
uniting the differential Thomas precession of ac-
celerating particles with the general relativistic Fok-
ker precession.

In Sec. B of this paper we discuss tetrad fields
and the formulation of general relativity in terms
of such anholonomic reference systems. Section C
introduces the 3-dyadic formalism, based on a tetrad
field attached to a preferred timelike congruence,
and elucidates the physical significance of the dyadic
quantities. In Sec. D we transeribe the tetrad equa-
tions into this physical dyadic language.

In a succeeding paper’ we will demonstrate the
utility of the dyadie formalism in a consideration
of the Herglotz—Nother theorem on the motion of
Born-rigid bodies, which assumes a simplicity other-
wise entirely concealed. In addition we will there
derive new results for Born congruences in curved
space-times. In future papers, we intend to present
the dyadic method applied in several other situations
having, again, preferred timelike congruences.

B. TETRAD FORMALISM

1. Tetrad Fields

The use of auxiliary ennuples in differential
geometry is of course not new, going back at least
to the work of Ricei. To introduce the 3-dyadic
treatment of Secs. C and D, we nevertheless must
briefly recapitulate in a uniform notation much of
the formalism expounded, for example, in Schouten®
and Eisenhart.*

The method of analysis follows upon systematic
introduction of a tetrad field based on a given time-
like congruence; we will in fact use four orthonormal
reference vector fields ,\*, where r = 0 labels a
timelike vector, and r = 1, 2, 3 are three spacelike
vectors. The label r is a “Lorentz index” in the
terminology of Synge,® and we will reserve Latin
indices for this purpose. These unit vector fields ,\*
will trace out four congruences not, in general, 3-
surface orthogonal. The method is thus equivalent to
the introduction of convenient, everywhere orthog-
onal, but anholonomic coordinates, in the termi-
nology of Schouten.’

2 H. D. Wahlquist and F. B. Estabrook, unpublished.

3J. A. Schouten, Ricci-Calculus (Springer-Verlag, Berlin,
1954), 2nd ed.

4 L. P. Eisenhart, Riemannian Geomeiry (Princeton Uni-
versity Press, Princeton, New Jersey, 1926).

s J: Li Sfrnge, Relativity: The General Theory (North-
Holland Publishing Company, Amsterdam, 1960).
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By transvection with the contravariant tetrad
vectors A" or their covariant duals, °\,, we will
systematically ‘“‘strangle’” all tensor indices of fields
of interest, thus replacing these indices by Lorentz
indices, labeling the resulting arrays of world scalars.
This formalism in many ways bridges the conven-
tional approach in which tensors are considered as
arrays of components, and that of the school of
Cartan, with its perhaps more physical emphasis
on algebraic quantities in tangent vector spaces.’

At any point of space-time, the given timelike
congruence, and in particular the orthonormal vector
tetrad there, defines a preferred local Minkowskian
frame, with respect to which Lorentz indices take
meaning as labeling proper components, spacelike,
timelike, and mixed. We will use the special relativ-
istic Minkowski metric form 3" = ¢,, = diag(—1, 1,
1, 1) to raise and lower Lorentz indices, and so
to express the tetrad orthonormality relations

(B.1)

The metric tensor components are, as in the Cartan
formalism, simply given by quadratic forms in the
unit vectors:

NN =0 N = .

ur

Jur = 'Au f)\n g =
g: = 6: = rk“ r>\r-

Nk (B.2)

In general, it appears that results which are valid
only for a certain dimensionality and signature of
a space, are much more easily and directly demon-
strated with such a tetrad formalism. The main
algebraic inconvenience which will arise is due to
the lack of commutivity in the process of successive
“intrinsic” differentiation of scalars (i.e., absolute
differentiation along the unit vector fields); we
derive the necessary commutation formulas in
Sec. B3.

2. The Object of Anholonomity

The variation of the tetrad field is described by
the set of strangled intrinsic derivatives of the unit
vectors:

Lroe = M A oA (B.3)

These are essentially the “rotation coefficients’ in-
troduced by Ricei. It is shown in Sec. B3 that the
set of scalars I';;* can properly be regarded as the
anholonomic components of the affinity in our 3 + 1
metrie space. From Eq. (B.1) it immediately follows
that I',,, = —T,,, and indeed there are here exactly
24 scalar fields. A more elegant set of 24 scalars,

¢ See, for example, A. Lichnerowicz, Elements of Tensor
Calculus (Methuen and Company, Ltd., London, 1962).
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however, may be defined using only simple curls
of the vector fields:

ﬂ'.’-l = %('A,_, = rkr.u)lku rh-' (B'4)
In our metric space this is equivalent to
ﬂ,,; = %(Plar = Falr)' (‘B'5)

The ,,, are again antisymmetric on the last pair
of indices: ?,,, = —,,.. For the present case of
orthonormal unit vectors the Eq. (B.5) can be
readily solved for the anholonomic affinity compo-
nents, which demonstrates the equivalence of the
two sets:

Ft-r == n-u— + Qr-l + Q- (86)

It is thus clear that the curls of the tetrad fields
carry all the metric information, and so knowledge
of the 40 Christoffel symbols is not now required.
This is an advantage of an orthonormal tetrad
formulation, also met with in the spinor calculus,
where there are just 24 components in the spin
connection. In the following we give explicit expres-
sions for the Riemann tensor components in terms
of the I',,, fields.

The components Q7,, defined as in Eq. (B.4) are
termed the “object of anholonomity’” by Schouten,?
who introduces them in general, non-Riemannian,
spaces. The vanishing of the Q',, everywhere is the
integrability condition for the unit vectors to be
gradients of four families of hypersurfaces—hence,
derivable from ordinary or holonomic coordinates.
In our present case, the vanishing of 97,, would
imply the existence of four everywhere orthogonal,
equally spaced (hence, Cartesian) coordinate fam-
ilies, which is to say, the flatness of space-time.

Intrinsic differentiation of Eq. (B.4) with respect
to ,\" and subsequent complete antisymmetrization
with respect to Lorentz indices s, ¢, and p, results in
a set of 16 first-order differential identities:

QTI".P] - 29?!9:“?!3‘1- (B-7)

Here the brackets denote complete antisymmetriza-
tion—in the case of three indices, this involves add-
ing six terms with appropriate signs according to
the even or odd permutation of the indices, and
multiplication by £. These equations are to be
found in Ref. 3, p. 101; they are in fact integra-
bility conditions on the 24 world scalar fields Q7,,,
allowing them to be derivable from four congruences
or vector fields ,\* in the manner given.

The 16 integrability conditions are especially
noteworthy, in that the metric properties of space—
time nowhere enter in their derivation. There are
twenty other equations implied in a metric space—
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time by the form of Eq. (B.5); when second covariant
derivatives are eliminated by antisymmetrization
(this time on two indices only) components of the
strangled Riemann tensor R™‘” are introduced. If
the 16 relations already written are systematically
eliminated, by imposing the algebraic symmetries
of the Riemann tensor in metric 4-space, one finally
obtains the further independent set:

Q(rp!(l.l! + ﬂltll(r.n) = 29&#)09?72) o Q(m]wQ.(r:)
_— g(n)agft:) e %ga(l(pﬂ‘,’r].)
+ QG(F“QT!:) _I_ Q“””QTT;’ . %Slrrn. (B.S)

Here we have used parentheses to denote total
symmetrization—in the case of two indices, for
example, this means summation of two terms with
indices transposed, and multiplication by 3. In
addition, it has proved algebraically convenient to
use the symmeirized Riemann tensor (Ref. 5, p. 54),

8" = —}(R'""* + R™"). (B.9)

It is clear that all of Eq. (13.8) has the same sym-
metries as 8"'"": viz., symmetry on the first pair
of indices, symmetry on the second pair, symmetry
on the two pairs of indices, and a cyclic symmetry
on, say, the last three indices. Hence there are
precisely 20 independent relations in Eq. (B.8). The
complete set of 36 differential relations for the
tetrad field, consists of Eqs. (B.7) and (B.8).
Although their separate origins are obscured by
the process, it is often convenient to have Egs. (B.7)
and (B.8) written together in one set of 36 equations
involving the usual Riemann tensor, the anholonomic
affinity components, and their intrinsic derivatives
(Ref. 4, p. 98):
I\lltlrl.ni g %Fprnrffc .
+ Inlpllal—a:r + %R"u,

greoy,
(B.10)

where indices enclosed between bars are excluded
from the antisymmetrization brackets. Equation
(B.10) is, of course, also the promised direct expres-
sion of the components of the Riemann tensor in
terms of the tetrad field.

3. Further Relations

In Sec. D the dyadic forms of Egs. (B.7) and
(B.8) are presented as a general tool for the analysis
of space—time congruences. We must, however, first
supplement these equations by commutation form-
ulas, and by the Bianchi Identities.

Because of the anholonomity, two successive
intrinsic derivative indices do not commute—even
though they are derivatives of world scalars. This
is easily seen from the definition of intrinsic deriva-
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tive; it is perhaps more illuminating, however, to
derive the important resulting commutation formula
from the general formula for strangulation of co-
variant derivatives. Consider a tensor 77", ., with
a single covariant differentiation index; strangle by
multiplication with ‘A, -+ A" - - A%; using the ortho-
normal properties of the tetrad, the resulting expres-
sion can be written in terms of intrinsic derivatives:

(?TT::ﬂ--]G)'Xf - ukn ol IR' = Tf::u.l

o DT, o = TR e, = i e (Bi1)
In this scalar expression the set of T';;" plays exactly
the formal role of an affinity. We emphasize, how-
ever, that whereas with ordinary holonomic coor-
dinates an affinity in a Riemann space is symmetric
on the first two indices (and so in four dimensions has
40 components), as a result of the orthonormal
nature of our present anholonomic reference frame
I';;” is antisymmetric on the last two indices and
in four dimensions has 24 components.’

Since we may commute covariant derivatives of
any scalar, T, ..,., = 0, it then follows immed-
iately upon strangulation according to I£q. (B.11)
that the commutation formula for intrinsic dif-
ferentiation is (suppressing all nonderivative Lorentz
indices)

T.ivr = TiiniT.oe = @,.T.,- (B.12)

We conclude this section by recording the in-
tegrability conditions for the (20) components of
the Riemann tensor field, allowing them to be
derivable as in Eq. (B.8). If we are given a Rie-
mannian metric form, these conditions are of course
identically satisfied: they are indeed the Identities
of Bianchi. In our tetrad notation, they follow
readily upon intrinsic differentiation of Eq. (B.8),
antisymmetrization, and use of the commutation
relation Eq. (B.12) to eliminate second derivatives.
The Bianchi Identities may be most easily written
in terms of the strangled double-dual of the Riemann
tensor; they are

*Rpul — _}éprqnelhuRonw’ (B.14)

and €™ is the usual four-dimensional permutation
symbol. As is immediately obvious in the dyadic
notation, there are exactly 20 independent con-
ditions in Eq. (B.13); these include the four con-
tracted Bianchi Identities. These 20 equations are
of great importance and utility when deriving the

an

7 It is mnemonically most convenient to write all the “cor-
rection” terms in Eq. (B.11) with plus signs, summing always
on the second index of the anholonomie affinity.
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consequences of special assumptions and symme-
tries imposed on the gravitational field, and on the
stress-energy tensor; both of these, in Einstein’s
theory, are comprised in the geometrical Riemann
tensor.

C. 3-VECTOR AND 3-DYADIC ALGEBRAIC
FORMALISM AND INTERPRETATION

1. Introduction

In the general tetrad formalism the associated
congruences are geometrical reference objects more
or less devoid of intrinsic physical significance. If,
however, we identify the timelike congruence with
the world lines of a material continuum, deseribed
by the velocity 4-vector field (A", this is no longer
the case. The ,\* congruence might represent, in
various instances, the motion of a relativistic fluid,
a rigid body as defined by Born’s constraint condi-
tion, a proper frame of reference for the performance
of experiments, or a privileged cosmological matter
distribution. But regardless of the particulars, it is
the attitude of considering the timelike congruence
to be a physically given object that provides the
rationale for the 3-dyadic formalism to be presented
here. A region of space-time in which such a
congruence exists is endowed with a unique time
direction at each point, and it becomes physically
reasonable then to dissolve the 4-dimensional union
of space and time with respect to the congruence.
Of course, such a decoupling is almost always done
at some point in any physical problem in relativity
theory, by selection of a “‘convenient” set of coor-
dinates. With the tetrad and dyadic formalisms this
is done at the outset before further specification
of the particular system at hand, and without
prejudice as to the admissibility or desirability of
any holonomic coordinate system.

In Sec. C 2 we introduce a representation of the
anholonomic affinity, I';;‘, by splitting its compo-
nents into independent three-dimensional arrays
having spacelike Lorentz indices only. The three
spacelike tetrad vectors used to generate these com-
ponents are not, of course, unique. In Sec. C3 it is
shown that certain restricted transformations be-
tween sets of these auxiliary vectors are the analogs
of the familiar orthogonal rotations of Cartesian axes
in 3-space, and that the arrays of proper components
will transform precisely as conventional 3-vector or
3-dyadic fields under such spatial rotations. A
detailed discussion of the kinematical and geo-
metrical significance of the quantities thus intro-
duced is given in Secs. C4 and C5.
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2. Three-Dimensional Representation of I,

The splitting apart of the components of the
anholonomic affinity into independent 3-dimensional
arrays proceeds by segregating those components
which differ in the number and location of timelike
indices, here denoted by 0. It should be noted that
raising or lowering the 0 index changes the sign
of a quantity. We shall henceforth reserve the
letters from the first half of the Latin alphabet
(@ --- m) to indicate spacelike indices. These take
on the values 1, 2, 3 only, and the summation conven-
tion for such indices is limited to this range. Since
the local spacelike metric ** = &, the vertical
position of these indices does not matter. Paren-
theses and brackets around indices have the same
significance as in Sec. B, and e,,, denotes the usual
three-dimensional permutation symbol.

With these conventions, the components of T,

having at least one timelike index may be written:

Fooa = —Toae = a,, (C.1)
~Tuo = Pap = Sup + €, (C.2)
Pnab e _PODn = Enb:wcj (C'B)

where the quantities on the right constitute a three-
dimensional representation consistent with the anti-
symmetry of T,,, on its last two indices. The array
of scalars, S,,, is defined to be symmetric to the
interchange of a and b; from Eq. (C.2) it follows that

S.b = — P(,uu. (0.4)

These definitions provide a representation for 15
of the 24 independent components of the affinity.
The remaining nine, comprised in the wholly space-
like T',,., deseribe characteristics of the nonunique
auxiliary congruences. Again by virtue of the anti-
symmetry on b and ¢, we may represent six of these
quantities by a symmetric array, N,; and the final
three by L, as follows:

*edubl‘;h = N — 3N'ouu + €;&?La, (C.5)
where the contraction, N*,, has been explicitly sub-

tracted for reasons of formal simplicity later. From
this equation we further have:

Ny — %N:‘bsmi & %ﬂ;hru)h, (C.6)
A‘”.‘b = €abe l—‘.bc’ (C'7)

and
L, = iT,.. (C.8)

For future reference it is convenient also to catalog
the components of the object of anholonomity, @,,,,
in terms of this representation, viz.,

Qooa = — Qpao = (CQ)

1
204,
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Qun =T _nﬂbu = eohcﬂgg (C-IO)
Qo = — Dooy = 3[— 8w + € (2 — %), (C.11)
Qate = — Qo = %‘(E‘.lcaNaa + 2L[¢5u.)- (C.l2)

3. Vector-Dyadic Notation

In the representation just developed, the set of
24 components of either T,,, or ., clearly falls
into natural three-dimensional subarrays for which a
vector and dyadic notation would be convenient.
In such notation the equations involving these
quantities would preserve the familiar formalism of
3-space rotation covariance which here corresponds
to the arbitrariness remaining in the selection of
the auxiliary spacelike tetrad vectors, even when
o\* is physically given. Since the quantities in ques-
tion are defined in terms of the tetrad vectors
themselves and their derivatives, it is not obvious
that this program must succeed at all; especially
if we insist that the vector or dyadic character shall
hold not just at a single event, but throughout
space—time.

Accordingly, we now perform an analysis of the
transformation properties of the arrays under a
general, four-dimensional, proper orthogonal trans-
formation of the tetrad fields which leaves o\* fixed.
We determine the widest group of such transforma-
tions under which the arrays will have the 3-vector
and dyadic character at every point. Not surpris-
ingly, the set of acceptable transformations is quite
restricted, in the sense that the parameters of the
transformation at one event determine the trans-
formation throughout space-time. For such trans-
formations, however, we show that the arrays a,
and L, are polar 3-vectors, say a and L; while @,
and w, form axial vectors, @ and w. The symmetric
arrays S,, and N,, transform as dyadics, S and N,
although the latter has a pseudocharacter under
inversions of the spatial tetrad vectors.

Consider then an orthogonal transformation of
the three auxiliary spacelike vector fields. We may
write such a transformation most generally as

A= AL N, (C.13)
where A*, is a tensor field satisfying
Alll 9"1‘1" = Gur- (0.14)

In the present case we require that the orthogonal
tensor field be proper, and that it leave unchanged
the (A" congruence; it follows that it has an unmoved
2-flat and can be written in the canonical form*

8 F. B. Estabrook, California Institute of Technology,

Pasadena, California, Jet Propulsion Laboratory, Research
Summary No. 36-14, p. 119 (1962).
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€086 g, + sind (—g) Ye,., AT
+ 25'1112(%6) (;u;’l . ﬂhu Oh-)' (C'ls)

¢" 18 a unit spacelike four-vector orthogonal to (\*;
together they define the unmoved 2-flat. In the local
tetrad frame, we see a simple spatial rotation by
angle 6 about the ¢ direction. Equation (C.14) and
the invariance of \* and ¢ can be verified imme-
diately by direct computation. Strangling Eq. (C.15)
we get the familiar 3-space proper rotation matrix

Oa = €080 8,5 + 8inf e, + 28in’(36) {5, (C.16)

¢ is the unit 3-vector with strangled components
ta = {. A" it points along the axis of the rotation.
Noting that O,, = 0, 0y, = —1, we can also write

A, == 05 N T 0 o0 A, =K, K, (C.17)

Any vector V* orthogonal to ;A\* may be expanded
in either auxiliary tetrad system,

VP =V 2 =T 5 (C.18)

and substituting from Eq. (C.13) we can see that
the components °V transform contragradiently to
the unit vectors:

‘V = VO, . (C.19)

The arrays of components a,, 2, and S,, can be
immediately shown, from their definitions Eqs. (C.1)
and (C.2), to transform according to Eq. (C.19)
(or its dyadic generalization, in the case of S,),
and so this justifies our use of 3-vector and dyadic
notation for them: a, @, and S.

We now consider the change of w,, defined in
Eq. (C.3), under the transformation of Eq. (C.13).
From the definition,

A, =

Tota = —€apetd”. (C.20)
If we similarly set
r.Obu = ux‘ bxu:r GA' = _eubca’a; (C-zl)

substitution from Eqs. (C.13) and (C.16) leads
finally to the transformation law

& = 0'0;" + 3*°0%,0,.. (C.22)
Equivalent to this is
& = «'0;" — 6¢* — sing §°
— (1 — cost) Exd)°, (C.23)

where the superimposed dot means the intrinsie
derivative in the A" direction, e.g., § = 6, \“
If (and only if) we restrict the orthogonal trans-
formation tensor A“ to one for which # and §
everywhere vanish, which is to say 0,, = 0, we
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arrange that the quantities " transform precisely
like a 3-vector, and so justify our choice of notation
for this set of three components. The restriction
0,, = 0 amounts to correlating the rotation induced
by 0, of the three spacelike unit vectors of a
fundamental tetrad at a given event, to the rotations
of all other such tetrads induced at all other events
along the world line of the ¢A\* congruence through
the given event, so that  is not intrinsically changed,
but only locally projected on a different anholonomie
coordinate mesh.

The remaining components, those of the symmetric
3-dyadic N,, or N, and the 3-vector L,, or L, will
also transform precisely as the notation suggests
only under special forms of O,,. In fact, one finds

A‘;nb . NedO;ao‘;‘ + ie‘n)‘no“‘no‘daub

+ 30,,,,0° %0, (C.29)

and
Lt = Lo — 40 .. (C.25)

Upon substitution of the explicit form of O,, from
Eq. (C.16), it is found from equations analogous to
Eq. (C.23) that the extraneous terms in Eqs. (C.24)
and (C.25) can vanish in general if and only if
Ou.. = 0. Combining this with our previous result,
we can state: o, N, and L transform properly as
three-dimensional vector and dyadic fields, for those
orthogonal transformations having the array O,
constant everywhere.

We have then the following situation: given o\*
a further orthonormal set " may be chosen at
every event. Three quite arbitrary auxiliary space-
like congruences are thus determined. From this
auxiliary set, however, we usually allow only trans-
formations to other sets derived from it by choosing
an arbitrary unit spacelike 3-vector {, whose compo-
nents with respect to the spacelike unit vectors are the
same at every event, and rotating the spacelike set at
every event by the same angle 6 about the direction L
Any such transformation thus derives a new set
of three auxiliary spacelike congruences from the
first. We call such a new set of auxiliary orthogonal
congruences 3-space rotated with respect to the
original set. Under such 3-space rotation, a, Q, §,
o, N, and L transform in familiar three-dimensional
orthogonal fashion, and form-invariant equations
between these quantities can be written in the
familiar language of the Gibbsian vector analysis.

In such equations, | denotes the unit dyadic,
with components I,, = d.,. By (tr §) we mean
the contraction or trace, S°,. The dot notation for
inner products is used, and a double dot product
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of two dyadies is equivalent to the trace of their
inner product. The cross product is defined in the
usual right-handed way. When a x operates on a
dyadic, it operates on the nearest index when
expressed in terms of components; e.g.,

(2 %S)u = €ca° S (C.26)

The double cross product of two dyadics often
provides a convenient brevity of notation. It is
used only between symmetric dyadics so that no
ambiguity of ordering can arise in its definition; viz.,

(Q :5).5 = C.“.{EM',Q“SJ’. (0.27)

The result is again a symmetric dyadic having the
expansion

QXS = QS+ 5-Q — (trS)Q — (tr Q)S
+ [(trS)tr Q) — Q:S]I.  (C.28)

We use the 3-vector symbol D for spatial intrinsic
derivation: thus ¢, becomes D¢, a gradient; V° ,
becomes D-V, a divergence; §(V.., — V,..) when
multiplied by *° becomes the curl, D xV; etec.
Another spatial differential operator, linearly related
to D, is introduced in Sec. C5; denoted ¥V, this
operator is convenient in many of our equations,
and is the triad-strangled operation of covariant
differentiation in spatial subspaces (when such exist).
The operations of gradient, divergence and curl with
the V¥ operator are defined in Sec. C5.

4, Physical Interpretation of the Dyadic Quantities

The identification of \* with a physical motion
imbues many of the components of the anholonomic
affinity with immediate physical or kinematical
significance. We first develop the interpretations by
recalling some definitions met with in the usual
tensorial description of the kinematies of a relativistic
continuum. In a sense this procedure is logically
inverted, but it has the advantage of quickly con-
necting quantities in the present notation with the
familiar tensor quantities. A more basie approach
will follow.

Let a fluid motion be described by a velocity
4-vector field \*, with A\* = —1. From the deriva-
tives A\*,, one resolves canonical sets of first-order
differential quantities:” the acceleration vector a, =
MaoA”; the (antisymmetric) angular velocity tensor
2., = A, + @M ; and the (symmetric) rate-
of-gtrain tensor o,, = Au.. -+ ag),. From the
angular-velocity tensor can be defined an equivalent

® See, for example, J. Ehlers and W. Kundt, in Gravitation:
An Introduction to Current Research, edited by L. Witten
(John Wiley & Sons, Inc., New York, 1962).
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local angular-velocity vector, 2, by setting
2 = §(—g) RN, (C.29)
This can be solved for @,,,
2, = (—9) Ve 2N, (C.30)
which demonstrates the equivalence. All these

canonical tensor quantities are projected into the
local proper frame; that is,

aN =0\ =0N=e\N =0 (C.31)

Now, we identify \* = " and take the proper
components of the canonical tensors with respect
to the local tetrad, using Eq. (B.3) to introduce
affinity components. Clearly, by Eq. (C.31), trans-
vection with A" itself will always give a zero result.
For the acceleration vector, then, we have using
Eq. (B.3) and Eq. (C.1),

a, uk’ = okm. oh. ,,.A. = Poo, = Qay (0.32)

80 that our 3-vector a is precisely the local proper
acceleration of the (A" congruence. Likewise from

(C.2)

nu ,Ak — %E.',h l‘nbﬂ - ﬂn : (C _33)
and from (C.10)
Qj) cku bA- T o anb = €pac ﬂﬂ, (0.34)

which identifies the 3-vector Q as the local angular
velocity of the medium. Analyses by Synge,® Pirani,"®
and others have made it clear that, like a, this Q
is an absolule entity: the angular velocity of the
material medium with respect to Weyl’s “compass
of inertia.”

The rate-of-strain tensor o,, gives six proper
components, all spacelike, and using (C.4),

Tyy .R“ ;]\' T (C.35)

so that S is the local, three-dimensional, rate-of-
strain dyadie. With this, we have found transcrip-
tions for all the canonical tensors and will turn to
the interpretation of w, Eq. (C.3).

Projecting the local time derivatives (i.e., the
intrinsic derivatives in the ,\" direction, for which
we use the superimposed dot notation throughout)
of the spacelike tetrad vectors themselves, one has
for the timelike components

—Taro = Sm

(C.36)

from the orthogonality relations alone. And in the
spatial directions, from Eq. (C.3) we have

.‘A, n)\" = _.,)\, nlh.” = _,A" a" = —a,

ain bln - Ponll - eab:wgv (0.37)

10 F, A. E. Pirani, Helv. Phys. Acta Suppl. IV, 198 (1956);
Acta Phys. Polon. 15, 389 (1956).
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The vector @ thus describes the orthogonal propaga-
tion of the spacelike auxiliary triads along the \*
congruence; kinematically, @ is the local angular
velocity of the auxiliary orthonormal triad with
respect to the compass of inertia. Conversely, (—w)
is the angular velocity of a “stable-platform” rel-
ative to the triad.

From Egs. (C.36) and (C.37), we may express
the condition for Fermi-Walker transport of the
spacelike triad along a given line of the " con-
gruence simply by setting @ = 0 on that line.
Putting @ = 0 everywhere would prescribe the
introduction of a tetrad field such that the spacelike
triad attached to each material point represents a
local, inertially nonrotating reference frame. It is
an advantage of the dyadic notation that this condi-
tion is a 3-vector equation, form invariant under
3-space rotation. We show in See. C5 that it is
always possible initially to introduce the tetrad field
according to any such prescription for w.

Elucidation of the kinematical significance of the
quantities Q, o, and § is alternatively obtained by
considering an equation for the proper orthogonal
separation, say p", of two closely adjacent members
of the ;A" congruence. In the local, proper frame
p" will appear as the displacement vector between
two proximate material particles. Its rate of change
with local time is given by’

= (N, + oN'a,)p'. (C.38)

Projecting p" onto the tetrad defines locally Cartesian
spatial coordinates r,, or components of a local
displacement 3-vector r, where

(C.39)

The local time derivative of these is found with the
help of Eq. (C.38) and (C.11) to be given by

i"a = ZQunb‘rb == [Sub + eaeh(ﬁe — we)]rb- (0.40)

Equation (C.40) is valid to first order in the dis-
placements r,. These displacement components are
a Carlesian vector, in the (flat) tangent space at
the origin r, = 0: the S,;, 2. and «, are Cartesian
components evaluated at r, = 0. Remembering these
limitations, we may still use dyadic notation:

rﬂ = P‘ ‘Rﬂ‘

f +wxr =51+ Qxr (C.41)
from which immediately
iDxi = Q — @ (C.42)
and
3(Df 4+ D) = S. (C.43)

These equations manifest the local kinematical
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significance of @, , and S and basically provide
interpretations for the canonical tensors as well.
Since Fermi—-Walker transport of the basis vectors
is accomplished by setting » = 0, the interpretation
of © as the local angular velocity of the material
relative to the compass of inertia is clear. In the
general dyadic equations to be written later it is
evident that a particularly convenient choice for
@ is rather to propagate the tetrads so that Q —w=0.
This alternative is called corotating transport, or
“body-fixed axes,” since as Eq. (C.42) shows, the
local reference frame is thereby rotated with respect
to the compass of inertia so as to follow the physical
rotation of the neighboring members of the \*
congruence. Again, the condition for body-fixed axes
is form invariant under 3-space rotation.

Interpretation of the quantities L and N, which
express characteristics of the auxiliary congruences,
is somewhat less evident. In fact their significance,
being more geometrical than physical, emerges most
clearly in the special circumstance when the given
timelike congruence comprises the orthogonal tra-
jectories of a family of 3-surfaces immersed in
space—time. This is discussed in some detail in the
next section. First, however, the relationship of L
and N to the properties of the spacelike congruences
is obtained.

The first curvature vector of a curve of the
congruence generated by A" is defined by A.., A"
(a not summed), and its components in the local
tetrad basis are

(chp:- nk.)rhﬁ = ranr (0'44)
Referring to Eq. (C.4) we see that the timelike
component is given by the diagonal element of S,

Paﬂa = Sua (0'45)

which determines the rate of convergence in the
N direction of the timelike congruence curves A"
Forr = b # a we have

(a not summed).

(a not summed),

(C.46)

which involves L and only the off-diagonal elements
of N. If we were to perform a 3-space rotation to
diagonalize N at a given event, the spacelike compo-
nents at that point of the first curvature vectors
of the new set of auxiliary congruences thus obtained
would be expressed by L alone. In general, of course,
such a transformation does not diagonalize N else-
where and it reappears in Eq. (C.46) at other events.

The geometrical meaning of the diagonal elements
of N is more easily expressed in terms of the modified
dyadic, N — Z(tr N)I. The ath diagonal element

Iyar = esaN“ + Ly (@ not summed),
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of this dyadic gives the rate of “twist” around the
M direction applied to the triads in propagating
them in the \* direction itself. In a word, then,
one might refer to these as the “torsions” of the
spacelike congruence net. -

5. Conditions on the Auxiliary Congruences.
The ¥V Operator.

An orthonormal tetrad field aligned along a
“given’’ congruence, generating three orthogonal
but otherwise arbitrary auxiliary congruences, con-
stitutes a complex geometrical structure. We wish,
in this section, to remark about specializations of
this auxiliary structure, some of which may be
imposed in general, others only when the preferred
congruence has special properties. While this dis-
cussion is not at all complete, it should at least
show that the necessary equations for investigating
such points are at hand in the dyadic notation.
We first briefly discuss some specializations which
are always available, then summarize several special
cases which may occur, and finally, introduce the
useful vector differential operator, ¥V, suggested by
one such geometrical subcase.

The pertinent equations are, in fact, Eqs. (C.22),
(C.24), and (C.25); for when an aligned but other-
wise arbitrary tetrad field is initially introduced
upon a given timelike congruence, the general
orthogonal transformation 0,, in these equations
can often be selected to give a second, in some way
special or canonical, tetrad field having the same
alignment. The dyadic notation then allows the
further generation (with constant O0,,) of a family
of tetrad ficlds 3-space rotated from this second one,
as was expounded previously.

The first example of this, encountered in the
previous section, is the prescription of Fermi-Walker
propagated axes everywhere, the condition o = 0.
That this may be done in general is clear from inspec-
tion of Eq. (C.22), when we regard the @, as ar-
bitrarily given initial fields, set w, = 0, and solve
for the three independent components of O,, every-
where. A choice of O,, on one spacelike 3-surface
then suffices to determine a solution. We thus
demonstrate by direct construction a transformation
leading to a new tetrad field with the desired prop-
erty. Subsequent 3-space rotations (with O,, con-
stant everywhere) clearly will preserve this property.

A second example is the imposition of body-fixed
axes everywhere, @ — w = 0, the justification of
which follows in exactly similar fashion.

Another important case is the imposition of the
set of conditions N = 0, L = 0, @ = 0 on a single
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world line of the congruence. That this may be
done follows again by construction of the required
transformation. Given first N,,, L, and &, the
12 equations in (C.22), (C.24), and (C.25) can now
be solved for the twelve partial derivatives of the
three scalar fields in Q,, on the line. With a choice
of 0,, at one point on the line it may by quadrature
be suitably determined along and near the line to
achieve any desired values of N, L, and o.

An essential point is that while this last can
always be done along a line or at a point, it cannot
be done on manifolds of higher dimensions unless
further integrability conditions are satisfied. Such
conditions, however, introduce relations among
the other 12 components of TI',,, (viz., a, , S,
referring to the timelike congruence) and so require
the timelike congruence to have special properties.
A typical situation occurs when one attempts si-
multaneously to impose Fermi-Walker propagation
everywhere while also taking N and L to vanish on
a line: the result is a constraint on the timelike
congruence along that line.

We now proceed to summarize some similar cases
in which partial degrees of integrability, or hol-
onomity, are imposed on the congruence structure
throughout space-time. The conditions take the
form of the global vanishing of certain components
of the object of anholonomity. The various condi-
tions are not derived ab initio in the following;
they are to be found for general spaces in Ref. 3.
We are primarily interested here in specializing them
to the case of a (3 4+ 1)-dimensional metrie space
with orthonormal tetrad vectors and then trans-
scribing them into dyadic notation,

We consider first the geometrical situation in
which one given pair of the four congruences is
2-forming. That is to say, the two congruences mesh
together so as to form a (two-parameter) family of
2-surfaces embedded in the four-dimensional mani-
fold. The condition for the s congruence and the
¢t congruence to be 2-forming is

't =0 (r = s, r 1), (C.47)

(We emphasize again that these conditions are
written for the case of orthonormal tetrads only.)
For a given pair (s, f) the inequalities allow only
two values for the index r, and so two independent
conditions result. There are six possible ways of
pairing the congruences, and if we were to ask that
all congruence pairs be 2-forming, we would require
exactly one-half of the 24 independent components
of the object of anholonomity to vanish everywhere.
In dyadic terms from Eqs. (C.9)—(C.12) the 12 condi-
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tions given by Eq. (C.47) for this completely 2-
forming case become:

Q =0, w =10,

Sa =0 (a#Db), (C.48)

so that, in addition to the vanishing of the two
angular velocities, S must be diagonal and N off-
diagonal. The constraints on Q and $ are of partic-
ular significance, since they restrict the physical
congruences (A" for which this situation may exist.
We may consider, alternatively, the possibility
that a given set of three congruences is 3-forming.
This is here equivalent to the condition that the
fourth congruence be 3-normal; that is, the unit
vector generating this fourth congruence is every-
where proportional to the gradient of a scalar func-
tion, ¢, and so orthogonal to the family of 3-dimen-
sional hypersurfaces, ¢ = constant, which essentially
define a holonomic coordinate in the space. The
condition for the r congruence to be 3-normal is

9 =0 E=r, t%r), (C.49)

which is very similar to (C.47) but differs in the
effect of the inequalities. Here, when r is given,
s and t are allowed three values each, but the
antisymmetry on s and ¢ reduces the number of
independent, nontrivial conditions to three. If, in
this case, we ask that all four congruences be 3-
normal, we again require the vanishing of 12 com-
ponents of the object of anholonomity; clearly, in
fact, the same 12 as for the case of complete 2-
forming. The dyadic conditions for complete 3-
normality, then, are already given by Eq. (C.48).

A large class of conditions, less restrictive than
the complete cases covered by (C.48), could be
considered. In accord with a dyadic approach how-
ever, which confers a special position exclusively
on the timelike congruence, only those intermediate
situations treating the three spacelike congruences
impartially are of interest. There are four such sub-
cases; the constraints for them follow immediately
from Eq. (C.47) and (C.49) and they need only
to be listed:

(1) All spacelike congruences are 2-forming with ,\*.
Q—o=0, Sa =0 (a==D). (C.50)
(2) All pairs of spacelike congruences are 2-forming.

N.. = 0 (a not summed),

Q=0, N.. = 0 (e not summed). (C.51)
(3) All spacelike congruences are 3-normal.
Q—-—0=0Su=0 (a=b),
N.. =0 (aznot summed). (C.52)
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(4) The timelike congruence is 3-normal.

Q=0. (C.53)

It is worth noting that the 12 components of
Q""" which are not concerned in any of the constraint
equations presented in Eqgs. (C.47)—(C.53) are a, L,
the diagonal elements of S, and the off-diagonal
elements of N. As we have brought out in previous
discussions, these are precisely the 12 components
of the first curvature vectors of the four congru-
ences. The entire vanishing of the object of an-
holonomity is secured, then, by the requirements
that all four congruences be 3-normal and geodesic.
As we remarked in Sec. B, this would imply the
vanishing of the Riemann tensor and the introduc-
tion of holonomic Minkowski coordinates.

In Case 4, Eq. (C.53), the separation of space
and time is accomplished globally—space-time is a
sandwich of spacelike 3-manifolds, each normal to
the (everywhere nonrotating) timelike congruence.
The Riemannian structure of space-time allows
invariant measurements in any one of these 3-mani-
folds; it is, consequently, a Riemannian 3-manifold
with an induced intrinsic metric and a second funda-
mental form (just S) describing its immersion in the
4-space—the mathematics of this emerge naturally
in Sec. D2. N and L now express exactly the nine
components of the anholonomic affinity generated
by an arbitrary triad field in a Riemannian 3-space.
Even in the general case, this interpretation of N
and L has much heuristic value, and completes our
geometric discussion of these arrays.

If we pursue this last interpretation by introduc-
ing a vector operator ¥V to denote triad-strangled
three-dimensional covariant differentiation as in
Eq. (B.11), e.g.,

V:Mnb = DeMab + I‘;fdM‘ﬁ + P;fbMﬂdJ (0‘54)

we greatly simplify the notation in the dyadic dif-
ferential equations to be presented in Sec. D. We de-
note ¥V the three-dimensional covariant differentiation
operator, although of course this interpretation is
only immediately accessible geometrically in Case (4)
(as differentiation in immersed subspaces). Without
inquiring further here into the geometries of quotient
subspaces, we merely regard the ¥ operator in the
general case as a useful notation. From the defining
Eq. (C.54) we may calculate and tabulate the
following useful formulas, where V is an arbitrary
vector field, and M an arbitrary symmetric dyadic
field:

VV =DV — [N — 4(trN)| — LxI]xV, (C.55)
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vV:V=D.V— 2L.V, (C.56)
VxV=DxV —N-V—LxV, (C57)
VXM =DxM— M:N— 2N-M — LxM
+ L-Mx 1+ 3(tr N)M + (tr M)N
+ (N: M)I — (tr N)(tr M), (C.58)

VxM— MxV = DxM — MxD — 3M-N
— 3N‘M — LxM + MxL + (tr N)M
+ 2(tr M)N + 2(N: M)I — (tr N)(tr M)I,
V:M=D-M— 3L-M— NXM + (tr M)L.

(C.59)
(C.60)

D. THE DYADIC PARTIAL DIFFERENTIAL
EQUATIONS AND INTERPRETATION

1. The Dyadic Components of the Riemann Tensor

In this section we first introduce and discuss two
alternate splittings of strangled components of the
Riemann or eurvature tensor into dyadiec arrays.

Accordingly as they contain two, one, or no zeros,
the strangled components of the symmetrized Rie-
mann tensor in Eq. (B.8) may be gathered into four
arrays with the property of covariance under 3-space
rotation:

Py = ‘%%etéugsd“, (Dl)
an T 3Snuoh (D.2)
B, + €al’ = €8.u0.- (D.3)

We thus describe the 20 components of the curva-
ture field of general relativity by three symmetric
dyadics P, Q, B (the last is traceless) and a vector t.
In Sec. D2, when we write all the dyadic partial
differential equations, we interpret P in terms of
the intrinsic curvature of the spacelike 3-manifolds
of a normal congruence. In Sec. D3 we derive
several results allowing physical interpretation of
the differential equations; in particular we there
interpret Q as giving the tidal aceeleration between
neighboring test particles. An interpretation of B
and t also appears in Sec. D3—they determine the
differential (tidal) precession between neighboring
(inertially oriented) test particles. It should be
noted that, like N, the dyadic B has a pseudochar-
acter under 3-space inversion.

The alternate splitting up of dyadic components
of the Riemann tensor is suggested by considering
the canonical resolution of this tensor, in four dimen-
sions, into three irreducible tensorial parts with the
same algebraic symmetries.'"" We write this in

1 J, Géhéniau and R. Debever, Bull. Acad. Roy. Belg. Cl.
Sci. 42, 114, 252, 313, 608 (1956).
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strangled form as
R,.w = Crosu + (eillisy — naruflny,)
+ RO — Mwnng),  (D.4)
where
H,, = R,, — }R»,., (D.5)
the strangled Ricei tensor is
R,, = R.,.., (D.6)
and its scalar contraction is the curvature scalar
R =F,. (D.7)

C..iu is the conformal curvature tensor (strangled)
of Weyl; it is antidouble-dual; all its contractions
are zero; it in general exists for Riemannian geom-
etries in four or more dimensions, where its vanish-
ing is the necessary and sufficient condition for the
metric to be conformally flat. In four dimensions
C.... has ten independent components; upon resolu-
tion into proper dyadic arrays, according as the
Lorentz indices contain one or two zeros, we obtain
two symmetric dyadics (traceless, so having five
components each) A and again the B of Eq. (D.3):

Aab = Cnnnb . —}encdeb!u (D'S)
Bnb e %Ef‘.’bcnud- (D-g)

The dyadic A, expressed in terms of the previous
set, is one-half the traceless sum of P and Q:

A=3P+Q—i{trP + tr QI.

yedfo
e,

(D.10)

To complete this alternate splitting, the ten
components of the Ricei tensor may also be resolved
into dyadic arrays. For physical reasons we prefer
to introduce these from the strangled form of the
Einstein tensor R,, — }Rg,, which, in Einstein
theory, is identified with the negative of the non-
gravitational stress-momentum-energy tensor, 7.,,.
[We have already adopted a unit of length such
that the velocity of light ¢ = 1; now we adopt
a unit of mass such that the Newtonian constant
of gravitation v is (4x)”".] In dyadic form we have
then a symmetric stress dyadic T, a momentum-
density vector t, and an energy-density scalar p:

T-b = %Rab . %Rnnh tn ] '&RuO:
p= —3Row — iR.

The vector t was introduced previously in Eq.
(D.3). The local proper system of a fluid is defined
by the condition that (\* be an eigenvector of P e

(D.11)

*J. L. Synge, Proc. London Math. Soc. 43, 376 (1937).
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T“, 0)\' = —p uA", (D.lz)

or simply

t = 0. (D.13)

In this proper system, p is the proper energy or
rest-mass density. The condition (D.13) is invariant
under 3-space rotation. It is of especial importance
in formulating many relativistic problems where the
preferred congruence is of both kinematical and
dynamical significance.

The dyadic T is, up to its trace, one-half the
difference of P and Q,

T=3[-P+ Q— (tr QI], (D.19)

and p is minus one-half the trace of P. We note
finally that the curvature scalar R of Eq. (D.7) is
given in terms of each set by

iR=—trT—p=1trP 4 tr Q. (D.15)

We have then two entirely equivalent sets of
curvature dyadies—it is difficult to say which is
to be preferred. In Einstein’s theory the ten compo-
nents of the Einstein tensor, T, t, and p, express
the true (or non-self-excited) sources of the total
gravitational curvature, and the ten components of
conformal curvature, A and B, express the expected
ten components of a spin-2 gravitational field. From
this point of view the second splitting is the more
fundamental. Nevertheless the essential nonlinearity
of Einsteinian theory appears both in the Bianchi
Identities of Sec. D2, in 16 equations of which
all these source and field terms are inextricably
mixed, and again in the operational physical equa-
tions of test particle motion which are given in
Sec. D3. In both of these, the more natural splitting
of the Riemann tensor appears to be that first
given, into thedyadics P, Q, B,and t, Eqgs. (D.1)-(D.3).

The various possible radiative characters of Ein-
steinian gravitational fields are expressed, in close
analogy with those of Maxwell fields, in the alge-
braically special forms of C*,,,. The algebraic hier-
archy for this due to Petrov, Pirani, and Sachs®
leads, as might be expected, to simple canonical
forms for our A and B.

Summarizing this briefly, for a Type II field, the
conform tensor has a singly degenerate principal
null direction, which, strangled in any local proper
frame, defines a unit 3-vector of propagation, say

138 A, Z. Petrov, Sci. Trans. Kazan State University 114,
55 (1954) [Translation by M. Karweit: Astron. Information,
Trans. No. 29, Jet Propulsion Laboratory, California Insti-
tute of Technology, Pasadena, California (1963)]; F. A. E.
Pirani, Phys. Rev. 105, 1089 (1957); R. K. Bachs, Z. Phys.
157, 462 (1960).
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¥; take this to be normal to a plane defined by
otherwise arbitrary but orthogonal unit vectors &
and {i; and then it may be shown that the field
dyadics must be of the form

A= (@ — a)ift + (@ + o)#® — 2att

+ c(® + wh) + bEIw + &), (D.16)
B = @+ o)l + (& — )W — 280¥
+ a(G® + &a) + b(Gv + V). (D.17)

Here a, @, ¢, ¢ and b are arbitrary scalars under
3-rotations. i, ¥, W are taken to form a right-handed
orthonormal triad.

For a Type III algebraically special field the
conform tensor has a doubly degenerate principal
null direction—again denoting this by a unit ¥ we
find that

A = a(f® — G0) + c(@® + #0)

+ bW + %9),  (D.18)
B = c(Gifi — W) + a(G® + @)
+ b@e + ¢8),  (D.19)

which results from Egs. (D.16), (ID.17) on setting
a==&=0.

For a type-N algebraically special field the con-
form tensor has but one principal null direction,
triply degenerate, and the canonical forms simplify
further (b = a = 0) to

A = c(GW + #a), (D.20)
B = c(ill — ). (D.21)

The quadrupole character of this extreme far zone
radiative gravitational field is nicely shown by these
last forms, in conjunction with the test particle
equations to be given in See. D3. Roy and Rhada-
krishna'* have obtained equivalent forms in a recent
paper, together with elegant results for gravitational
and electromagnetic—gravitational shock fronts. They
characterize the type N field, Eqs. (D.20)-(D.21),
by saying that the 3-space quadrics associated with
A and B are equal hyperbolic eylinders, coaxial
(the ¥ direction!), with their other principal direc-
tions inclined at 45°. The scalar ¢ characterizes the
gravitational field strength seen by an observer
whose world line is (A*; by itself, a type N conform
tensor has no nontrivial invariants. All of which
is nicely analogous to the case of a null electro-
magnetic field.

1 S. R. Roy and L. Radhsakrishna, Proc. Roy. Soc. (Lon-
don) A275, 245 (1963).
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2. The Dyadic Partial Differential Equations

We now write the four sets of differential relations
which must hold between our dyadic fields in full
generality, the application and analysis of which
are the essence of this dyadic formalism for general
relativistic physics. These are, respectively, (a) the
Differential Identities—16 equations (one scalar
three vector, one dyadic) arising from Eq. (B.7)
metric and curvature independent; (b) the Curva-
ture Equations—20 equations (one vector, three
dyadic, the first traceless) introducing the Riemann
tensor components, from Eq. (B.8); (¢) the Bianchi
Identities—20 equations (three vector, two dyadie,
the first traceless) relating the derivatives of the
Riemann components, from the integrability condi-
tions Eq. (B.13); and (d) the Commutation Form-
ulas for anholonomie space and time differentiation,
special cases of Eq. (B.12).

(a) Differential Identities

V- =aQ, (D.22)
1Vxa— (Q40xQ) =—5Q+ (tr5)Q, (D.23)
V:N+ VxL = —2L-N + (tr NL
—25-Q +20xQ  (D.24)
2L = (V + a)-[$*" — (tr S)I] — S* xN*, (D.25)
N — 3tr N)I = (V + 2)-(2 — !
+ 15*T % (V + a) — 3(V + a) xS*
— 3S*.N* — IN*T.S*T, (D.26)

To shorten Eqs. (D.25)-(D.26) we have used the
notation $* = S — (@ — w)xland N* = N —
1(tr N)I — L x 1. The superscript T denotes a trans-
posed dyadic. The trace of Eq. (D.26) may be
written in addition:

tr N + 2V-(Q —w) = 2N: S — (tr N)(tr S)

— 2a+(Q — ) — 4L (2 — w). (D.27)

The first two of these equations are remarkably
simple, curvature-independent, general identities
satisfied by the proper kinematic observables of
any timelike congruence. The third, Eq. (D.24),
expresses integrability conditions on the spatial
parts, L and N, of the anholonomic affinity. The
remaining three relate the time derivatives of L and
N to the properties of the preferred congruence.

(b) Curvature Equations

V-5 — V(trS) + VxQ = 2Qxa — 2t,

(VxS —5SxV) — Ve + av)
= aQ + Qa — a-Q| — B,

(D.28)

(D.29)
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HV xN - NxV) — }VL + LV)
= —N:N + }{tr NNJN — LL — [i(tr N)*
— IN:N — 3L.-L]l 4+ E — 3(tr E)I, (D.30)
5§ + 0xS — Sxo — }(Va + aV)
= —S5:5S+4+aa — QQ + (Q-Q)l — Q. (D.31)

The traces of Egs. (D.30) and (D.31) may be written
in addition:

9V .L = —3(trN)* + IN:N — L-L +tr E,
Va—trS=5:5S—a-a—2Q-Q +tr Q.

(D.32)
(D.33)

Equation (D.30) may be referred to as the gen-
eralized equation of Gauss (c.f. Ref. 3, p. 278 and
Ref. 4, p. 146). It contains only the spatial parts
of the anholonomic affinity, L and N, and the
dyadic E, defined as

E=—P+4iSX5 + QQ + 0 + Qo). (D.34)

In our case (4), when @ = 0, the preferred con-
gruence is 3-space normal, and Eq. (D.30) then com-
prises the six curvature equations for an imbedded
Riemannian 3-space. The dyadic E reduces to

E= —P — iSXS (@ =0), (D.35)

and is precisely the strangled Einstein 3-tensor for
this imbedded space. The form explicitly reveals
the dependence of the metric properties of the
subspace on the four-dimensional curvature compo-
nents P (which we have accordingly dubbed the
induced curvature dyadic), and on the second funda-
mental form S, the rate-of-strain of the timelike
congruence. Upon taking the covariant divergence
of Eq. (D.35), the dyadic equations may be used to
show further that

V-E=0 (D.36)

a vector equation expressing the three independent
Bianchi Identities for a Riemannian 3-space. Fi-
nally, the scalar curvature of the subspace, —2 trE,
is related to the spatial anholonomic affinity by
Eq. (D.32).

Equations (D.28 and D.29) may together be
referred to as the generalized equations of Codazzi
(cf. Ref. 3, p. 278 and Ref. 4, p. 146) inasmuch
as, again when Q@ = 0, they are the usual eight
partial differential equations for the second funda-
mental form of the imbedded 3-space. A special
case of Iq. (D.28) in tensor form has been used by
Rayner' in discussing Born-type rigid motions
(S = 0) in general relativity, (c.f. Ref. 2).
_TC-._ET-Rnyner, Compt. Rend. 248, 929 (1959).

(Q=0),
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Equation (D.31) is essentially a kinematic relation
for the preferred congruence; we return to its
physical interpretation in See. D3. Its trace, Eq.
(D.33), reduces for incoherent matter (T = 0, t = 0,
a = 0) to an equation whose tensor equivalent is
found in Raychaudhuri’s work.™

The quantities L and N do not appear explicitly
in eighteen of the thirty-six equations, (D.22) to
(D.33), althought they still play an implicit role
in the “covariant” derivative, V. It is often con-
venient to collect this particular set of equations
in two nonsymmetric dyadic equations as follows:

Va — (S 4+ 0xS — Sx0) + (2 + 0oxQ) x|
=88 — QxS — SxQ — aa

+ oa — (2-9)1 + Q, (D.37)
and
VQ 4+ 5xV
= —2aQ + (a- Q) + B 4+ tx1I. (DD.38)

(¢) Bianchi Equations

These follow from Eq. (B.13), but more directly
can be obtained in dyadiec form by differentiation
of Eqgs. (D.22)—(D.33), using the commutation form-
ulas to be given in the following subsection.

V-Q — Vir Q) — 2t + o xt)
= —Sx%xB — 3Q-B — Qxt -+ 35-t

+ @rSit+a-[P—Q— (trP —tr Q)1], (D.39)
VB — V¥V xt
= SxP 4+ 2Q-Q + Q-P — (tr P)Q, (D.40)
VP = —SxB — 3Q-B
— 3Q xt 4 St — (tr S)t, (D.41)

VxQ— QxV — 2B 4+ ©xB — B xw)
=P+ Q)xa—ax(P+ Q) —txS4 Sxt
4+ 30t + 3t — 20t — @ xB4+ BxQ

— 35+B — 3B-S + 4(tr S)B + 2S: BI, (D.42)
—VxB4BxV — Vt —tV + 2V -tI
— 2(P + @ xP — Pxw) = 2axB — 2B xa
+ 2ta + 2at — 4a-tl — QxP + PxQ
— P+S — S+P + 2(tr S)P — 25X Q. (D.43)

The trace of Eq. (D.43) is of independent interest:
2Vt —trP = —S:P + S:Q + (tr S)(tr P)

— (tr S)(tr Q) — 4a-t.
¢ A. Raychaudhuri, Phys. Rev. 98, 1123 (1955).

(D.44)
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The scalar Eq. (D.44) may be joined with a
vector equation which is the difference of (D.39)
and (D.41), to give four familiar equations for the
stress dyadic T, momentum density vector t and
energy density p:

V-t+ [p+ (trS)p] = T:S — 2a-t, (D.45)
VT — [t +wxt + (tr S)t]
=S-t+4+ Qxt — T-a + pa. (D.46)

These are the ‘“‘contracted Bianchi Identities’” in
dyadic form, commonly interpreted as conservation
laws for energy and momentum.

(d) Commutation Formulas

A large variety of these may readily be inferred
from Eq. (B.12). As was remarked, it is an in-
convenience that neither the D nor ¥V operator
commutes with itself, or with time differentiation.
We will give here only three which are of frequent
occurrence in manipulating the intrinsic derivative
operator D; ¢ and V are arbitrary sealar and vector
fields, respectively.

(D¢)" — D(¢) = a$ — S-D¢

+ (@ —w)xDp, (D.AT)
DxD¢ = 2Q¢ + N-D¢p + LxDgp,  (D.48)
D:(DxV)=2Q:-V+ N:DV+ L-DxV. (D.49)

It is convenient however to give a quite complete
tabulation of such formulas for the 3-space covariant
operator ¥ ; here M is an arbitrary symmetric dyadic.
For the time—space commutation relations we have:

(V¢) — V() = ap — $*-V¢, (D.50)
(VV) — V() = aV — s*. YV
— [$*" x(V + a) + (V + a)- (@ — )] xV, (D.51)
(VM) — TV x(M) =axM — S*XVM
+ [(V 4+ a) xS*]-M + M-[(V + a) x5*]
+ [(V + a)xS* — (V + a)-(Q — )]

(M — (tr M)I] — [(V + a) xS*]: ML (D.52)
The analogous commutators for (V-V)*, (V xV)",
and (V-M)" follow directly from Egs. (D.51) and
(D.52) by contraction and antisymmetrization, and
so need not be exhibited. We have for convenience

again introduced the nonsymmetric dyadic S* and
its transpose S**:

S* =5—(Q—w)xl, S* " =5+ (@ —a) x|
(D.53)

The commutation relations for spacelike direc-
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tions are:
V x(V¢) = 20- {1}, (D.54)
V(¥ xV) = 2Q-{V + 5*-V}, (D.55)
Vv x(VV)
= —ExV 4+ 2Q-{IV — 3s*x(I1xV)}, (D.56)
V- (VxM) = —ExXM
+ 2Q-[{M + 3S*-[M — i(tr M1}, (D.57)

V- [V x(1xV)]

= —Ex(I1xV) 4+ 2Q-[{I1xV + §5*- (1 xV)}. (D.58)
These general relations appear quite complicated.
Again, however, when = 0 and the timelike
congruence is 3-space normal, we discover simple,
perspicuous equations. Equations (D.54) and (D.55)
become the familiar vector identities; the rest reduce
to dyadic forms of the Ricei identities in a Rie-
mannian 3-space, with the Einstein dyadic E acting
for the curvature tensor.

3. Physical Interpretations

Let us consider further the relative separation r
of two closely adjacent particles of the ;A" congru-
ence, Eq. (C.41). This is a local Cartesian vector
equation, correct to first order in r; §, ©, and o
are to be evaluated on one line of the congruence.
Taking N and L to vanish on the line was tacitly
necessary for interpretation of Eq. (C.40), for this
condition implies that the spatial triad system is
taken locally Cartesian and flat, and we in fact
required this in order to write Eqs. (C.41)-(C.43),
where the displacement r is a vector. We may thus
say that Eq. (C.41) is not just pointwise valid,
but rather is valid to first order in a flat metric
3-space carried along with the local observer. The
observer is accelerating, and since we do not special-
ize © along the world line, his reference triad is
arbitrarily rotating.

Differentiating Eq. (C.41) with respect to time,
and substituting § from Eq. (D.31) and & from
Eq. (D.23), we can eliminate all such quantities
relating to the whole congruence in favor of the
local kinematic observables of one particle-observer
(or of one line of the congruence with its reference
tetrad), viz., a and —w. These are respectively the
veetorial reading of a linear accelerometer and the
vector angular velocity of a (gyroscopically sta-
bilized, or untorqued) ““stable-platform.”

We find as a result an equation for the observed
spatial variation of a:

a,=a-+rVa=a{l— a1 +71+ 20xi

+ w % (0 %1) + @ %r + Q-r. (D.59)
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This is a quasi-Newtonian equation for a,, the
accelerometer reading at the adjacent point r, in
terms of the accelerometer reading a at the origin
of spatial coordinates and the relative acceleration t.
It is entirely written in local, proper or “operational’’
terms, and is immediately useful for the analysis
of experiments. The usual centrifugal, Coriolis, and
angular acceleration terms will be recognized. A
special relativistic clock rate correction factor
(1 — a-r/c*)—where ¢ = 1 in our units—is but
another manifestation of the ‘“red shift” predicted
by special relativity for accelerating frames and
recently verified in local terrestrial experiments using
the Mossbauer effect (compare Ref. 5, p. 411).

The term Q-r is the general relativistic term
expressing the tidal effect of the curvature tensor on
the relative acceleration. When Q is written in terms
of our second set of dyadies this term becomes

Qr=[A+T+ip—2trN-r. (D.60)

In this form the contributions of the “source” and
“field” parts of the Riemann tensor are separately
revealed: for source-free regions one has just A-r.
If the test particles are free (a = a, = 0), Equation
(D.59) reduces to the equation of geodesic deviation
of Synge.® If on the other hand they are parts of
a stress system obeying Hooke’s law and the ab-
solute accelerations a, a, are related to the stresses,
one obtains the dynamical equations of Weber."”
The dyadic partial differential equations, such as
those for Va and VQ, Egs. (D.37) and (D.38),
provide a generally valid instrument, expressed in
an operational language, for the treatment of
similar problems on the motion of macroscopie,
continuous ‘‘test” bodies.

A similar equation may be found for the stable-
platform angular velocity —e,, at r, in terms of
that at the origin, —w. From Egs. (D.28), (D.29),
(D.25), and (D.26) and again (C.41), and setting
N = 0 and L = 0, we obtain

~o = 0+ 1 V(o) = (—a)(1 — a-1)
+ ax(f + o xr) — B-r + t xr. (D.61)

Here all terms leading to a difference of —w, and
—w are nonclassical, of special or general relativistic
origin. We again find a clock rate correction factor.
The second special relativistic term is the differential
Thomas precession. These two terms combined can
be derived from the usual Thomas precession form-
ula, in the differential limit, if care is taken to
express all precession rates in terms of local proper

7). Weber, General Relativity and Gravitational Waves
(Interscience Publishers, Inc., New York, 1961), Chap. 8.
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times. In the last two terms we again note separate
contributions from the field and source parts of the
Riemann tensor: a “spin’” term —B-r, arising from
the conformal tensor, and an ‘“‘orbital” term t xr,
from the Einstein tensor. For geodesic observers,
only these general relativistic terms will remain;
they may be denoted the differential Fokker preces-
sion. '

Equations (D.59) and (D.61) show how in prin-
ciple the fourteen Riemann components Q, B, and
t may be experimentally determined from local
differential kinematical measurements near, and on,
one arbitrarily given timelike world line. As was
remarked previously, the remaining six components,
in the induced curvature dyadic P, are in principle
determinable from local spatial surveying in a triad
system, Eq. (ID.30); this means that their geometric
effects will be second order in the spatial displace-
ment components r,. An experimental approach to
the measurement of P would no doubt instead
involve kinematical experimentson Q, B, and t as
above, but made by two or more point-observers
in rapid relative motion. These complications will
not arise in source-free regions, however: for express-
ing P by

P=A—-T+4 tr T — 2p)l (D.62)

and recalling Eq. (D.60), we clearly have in this
case P = Q = A.

As a final illustration we obtain an equation for
the quasi-Newtonian “gravitational field” of a non-
rotating (@ = 0) static distribution of matter with
proper energy density p and stress dyadic T. The
matter is represented by a congruence \* defined
by the condition t = 0, and everywhere nonrotating
(0 = 0) auxiliary triads are introduced. A static
distribution is defined operationally by the condition
that in this tetrad system the local time derivative
of every kinematic observable must vanish. We, of
course, already have & = & = 0, but specifically
impose the further conditions 4 = 0 and S = 0,
the latter being required to ensure that all relative
displacements r are time independent.

When all these conditions (2 =w=t=4a=5=0)
are invoked, Eqs. (D.25) and (D.26) show that
L = N = 0, and the other dyadic equations then
directly yield the same result for the local time
derivative of every remaining quantity. For instance,
the scalar Bianchi identity Eq. (DD.45) has the
immediate eonsequence, p = 0.

We now imagine a population of proper Newtonian

18 A, D. Fokker, Proc. Roy. Acad. (Amsterdam) 23, 729
(1920).
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observers, each of whom prefers to ascribe his
kinematic observations not to his own absolute
acceleration a, but rather to a “gravitational field
of force’” with intensity F = —a. The “gravitational
field equation” is then just Eq. (D.33) which, under
the imposed conditions, may be written

V-F = —47r’)’(pM ~ Str T) +%FF,  (D.63)

where we have put —F for a; substituted for tr Q
its equivalent, p — tr T; restored dimensional
factors; and defined a proper mass density, py = p/c’.

When € = 0 it follows from Eq. (D.23) that
V xa = 0, and this, together with a4 = 0, is suffi-
cient to permit expressing F as the gradient of a
time-independent scalar:

F=-V¢, ¢=0.
Equation (D.63) will then take the form

(D.64)

Vip = 4m,(p,,, - gatr T) - ga (Vo).  (D.65)

For the prescribed conditions this is an exact equa-
tion reducing to Poisson’s equation in the non-
relativistic approximation. If we also rewrite Eq.
(D.37) in these terms and for these conditions, we
find the following expressions for the tidal accelera-
tion dyadic Q:

Q=—VF+‘%FF

= VVé + 5 (VoIV8).  (D.66)

Nole added in proof: In a private communication,
Dr. F. A. E. Pirani has very kindly called our atten-
tion to the “method of projection” of Carlo Cat-
taneo.'® We were completely unaware of this work,
whose relation to the present formulation should
be noted. Our operator ¥V, denoted by us the opera-
tor of ““spatial covariant differentiation,” is precisely
the covariant operator of “transverse differentiation’
of Cattaneo, strangled. Those of our equations such
as (D.37) and (D.38) not explicitly involving N
and L can of course be immediately “unstrangled”
by multiplication with A", 4\, ete., to give covariant
equations not depending on a choice of auxiliary
congruences; such equations are thus derivable by
the method of projection. On the other hand, our
equations (D.24), (D.25), (D.26), and (D.30) ex-
plicitly contain N and L, and seem to be much less
accessible in covariant language, while vital for the
completeness of the total set.

19 See, for example, C. Cattaneo, Compt. Rend. 248, 197

€1959); I. Cattaneo-Gasparini, Compt. Rend. 252, 3722
1961 ). J
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The scattering wavefunction for a Dirac particle in a central potential is written in terms of a
matrix acting on a plane-wave spinor whose momentum direction p and polarization direction are the
assigned directions for the asymptotic incident plane wave. The matrix involves four functions, inde-
pendent of polarization direction, which multiply the matrices 1, a-(p — #), a-(p + #), and p-F-0.
Differential relations for these four functions are directly obtained and asymptotic relations are
given. In particular, the function multiplying e-(# -+ #) is asymptotically zero, so the potential
seattering formulation is identical with that given previously for the Coulomb potential. The scat-
tering wavefunction is a solution of the general differential relations subject to appropriate boundary
conditions. For the Coulomb potential, these differential relations simplify, and an iterative solution
is developed based on a Green's function technique with the Sommerfeld-Maue approximation as

the zero-order solution.

INTRODUCTION

HE scattering wavefunction for a Dirac

particle in a central potential is that eigen-
function of the Hamiltonian which has the asymp-
totic behavior of a plane wave plus an outgoing
spherical wave. The usual method of constructing
the seattering wavefunction is to find simultaneous
eigenfunctions of the Hamiltonian, the Dirac
operator K = (- L + 1) whose eigenvalues charac-
terize both the total angular momentum and the
parity, and the z component of the angular mo-
mentum. The scattering wavefunction is then
expanded in terms of an infinite series of these
angular momentum eigenfunctions. The expansion
coefficients are chosen to provide the proper asymp-
totic behavior. This infinite series expansion, though
exact, has the disadvantage of being unwieldy
for purposes of calculation and does not lend itself
easily to approximation procedures. Consequently,
it is desirable to express the scattering wavefunc-
tion in a different form.

For the special case of a Coulomb potential,
the infinite series expansion has been reorganized
into the form of a matrix acting on a plane-wave
spinor of arbitrary polarization direction."* The
momentum direction $ and the assigned polariza-
tion direction of the plane-wave spinor are the
corresponding directions associated with the asymp-
totic incident plane wave. The matrix can be written
in terms of three functions, independent of polariza-
tion direction, multiplying the matrices 1, e+ (p — #)
and p,f-é. These three functions are given in
" * Contribution No. 1519. Work was performed in the
Ames Laboratory of the U. S. Atomic Energy Commission.

1 A, Deloff, Nucl. Phys. 13, 136 (1959).

*W. R. Johnson and R. T. Deck, J. Math. Phys. 3,
319 (1962).

terms of an infinite series which may be summed
to zero order in the interaction strength to give the
Sommerfeld-Maue approximation. For large r, a
correction to higher order in the interaction strength
may also be given in terms of a finite number of
functions.® In addition to the case of the Coulomb
potential, the scattering solution of the Biedenharn
symmetric Dirac-Coulomb Hamiltonian"® has also
been reorganized® into the form of a matrix acting
on a plane-wave spinor, and the matrix has exactly
the same form as the one for the Dirac-Coulomb
case.

In the present paper, it is shown that the scatter-
ing solution for a general central potential may be
reorganized into the form of a matrix acting on a
plane wave spinor of arbitrary polarization direc-
tion. For this general case, the matrix is written in
terms of four functions, independent of polariza-
tion direction, multiplying the matrices 1, «- (p— #),
a-(p + 7), and p,#-6. Once this fact is established,
it is shown that the assumption of this form leads
to differential relations among the four functions.
The exact solution is then a matter of solving these
partial differential equations subject to the ap-
propriate boundary conditions. The advantage of
casting the problem into this form is that approxi-
mation procedures may be developed directly from
the differential equations. Also, certain asymptotic
relations among the four functions can be directly
determined by invoking the boundary conditions.

3 D. M. Fradkin, T. A. Weber, and C. L. Hammer, Ann.
Phys. (N. Y.) 27, 338 (1964). In the following, this paper
will be referred to as FWH.

4 L. C. Biedenharn, Bull. Am. Phys. Soc. 7, 314 (1962).

5 L. C. Biedenharn and N. V. V. J. Swamy, Phys. Rev.
133, B1353 (1964).

¢ ID. M. Fradkin, Phys. Rev. 135, B1085 (1964).
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Restricting the discussion of the general equa-
tions to the case of the Coulomb potential, it is
shown that the function multiplying the matrix
a'(p + #) is identically zero. Also, the whole
problem of obtaining the scattering solution re-
duces to finding the solution of a single second-
order partial differential equation. A solution of
this equation to zero order in the square of the
interaction strength yields the Sommerfeld-Maue
approximation. The Green’s function based on this
zero-order solution is then developed. In this way,
the problem of solving the differential equation
subject to appropriate boundary conditions is
transformed into a problem of solving an integral
equation. This provides an iteration procedure for
expanding the exact solution in powers of the
square of the interaction strength for all values of
the dynamical Born parameter. For large r, the
approximation obtained from the first iteration is
equivalent to that previously obtained in FWH.

THE GENERAL FORM OF THE WAVEFUNCTION

The Hamiltonian for a Dirac particle in a central
potential is given by

H = —ia-V + 8 + AV(). (1.1)

Here, units are used for which h = m = ¢ = 1,
and the notation in FWH is followed. In particular,
A\ is the interaction strength parameter and V(r)
is the central potential. In this section, it will be
proved that the scattering solution y which satisfies

Hy(E, 1) = EY(E, 1) (1.2)
may be written in the form
v =[G+ AMa-(p — 1)
+ i\Na-(p + £) + tLpaf-6]U), (1.3)

where G, M, N, and L are functions independent
of the polarization direction, and U(p) is a plane-
wave spinor whose momentum direction 7 and
polarization direction are the directions associated
with the asymptotic incident plane wave.

It is known’ that the scattering solution for a
Dirac particle in a central potential is given in
terms of an angular momentum eigenfunction
expansion by

WE, 1) = 4rlx/(2Ep)]*
X > "% CUKk), §, j;u — m, m)

times Y705 (9) ¢4, E). (1.4)

7 See, for example, M. E. Rose, Relativistic Electron Theory
(John Wiley & Sons, Inc., New York, 1961), p. 207.
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Here I(k) = Ikl + 36 —-1),5= lkl -4, k= %],
+2, -+, 8 = =1 for k 2 0, uis a half integer,
and the summation extends over all k, m = =3},
and p such that [¢ — m| < £(k). Also, p is the di-
rection of the asymptotic momentum, p = [E* — 1],
C is the Clebsch-Gordor. coefficient, A, is the
difference between the phase shift for the potential
V(r) and zero potential, ¢, are arbitrary constants
limited only by the condition ), ckc, = 1, and
Y is the usual spherical harmonic. The angular
momentum eigenfunction ¢} (r, ) satisfies

(H — E)Yulr, E) = (K + k)¥ir, E) =0, (L5

where K is the Dirac operator 8(é-L + 1). It has
the form

Vi, E) = [ g(E, r)x:(F) } (1.6)
ifu(E, r)x=.()
Here,
xi®) = 2° CAK), 3, 458 — 7, DYV B, (1.7)

T=%3

g(E, r), {.(E, r) are solutions of the appropriate
radial equations for the given central potential,
and x" are the two component spin-up, spin-down
functions.

In analogy to the treatment of Johnson and Deck,’
a coordinate system is chosen so that the polar z
axis is oriented along the direction of the asymptotic
momentum vector $. This choice conveniently
gives

0@ = s.mlCUK) + 1)/Em].  (1.8)

Evaluating the Clebsch—-Gordon -coefficients and
performing the sums over m and p, one finds that
the seattering solution has the form

(by + Obyv J
(bs + Ob)w

v, = [ (1.9)

e 0

[0 _‘"m] = i(sin 0)"a-xp,  (1.10)

by = 2 pigs |k| Praa(cos 6),

by = 2 pesigePio(cos 6),

by = —il(E + D/E = DI* X pufa k| Pic-w(cos ),
by = il(B + 1/E — DI' 2 psifuPi-n(cos 6),

pr = [x/(2Ep))Y' Me™*,
P} (cos 8) = (sin 8)(d/d cos 0)P,(cos 6),
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o= (),
€~y
é-p

. _ |:E _— 1]1( Cy )
SE+1' T EF1i\-c /)
The argument of the Legendre polynomial P is
cos = f-p.

The two component column matrices » and w
are the upper and lower components of the plane

wave spinor of arbitrary polarization direction
(corresponding to the arbitrary nature of ¢,.). Thus,

w

vy - 1+ v/eoi(),  aa

where

(erp + 8 — E)U(p) = 0. (1.12)

Consequently, the general expression for the scatter-
ing solution ¢ given by Eq. (1.9) can be written
in the form

v = EN2(E + 1]} [b, + tba(sin 6) ' a-74p1(1 + B)
+ [bs + tby(sin 6)"6-#,p](1 — B)IUH). (1.13)

This establishes the fact that for a central po-
tential, the scattering solution has the form of an
operator acting on a plane-wave spinor of arbitrary
polarization. This operator is composed of the four
Dirac matrices 1, 8, é-#,4, and Bé-#,p multiplied
by functions which are independent of polarization
direction. Alternatively, one can replace 8 by
E — «-p when acting on U(p), and consider then
the operator in terms of the Dirac matrices 1,
é-pAf, a-(p + #), and a-(p — ) with multiplying
functions that are also polarization independent.

DIFFERENTIAL RELATIONS

Consider a scattering solution of the form given
in Eq. (1.3), namely

Y(B,1) = DE, 1, HUG), (2.1)

where
DE,1,9) = [G+ AMa-(p — #) + iANe-(p + £
+ iLpA7d]. (2.2)

The differential relations among G, M, N, and L
(functions that are independent of polarization
direction) can be obtained directly by the following
technique.

Sinee the scattering solution is an eigenfunction
of the Hamiltonian, given in Eq. (1.1), it must
satisfy the relation

(H — E)D@E,x, phUP) = 0. (2.3)
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As a consequence, it follows that

Tr [ya(H — E)D(E, 1, p)P.(E, p)] = 0, (2.4)

where v, is any one of the sixteen independent
Dirac matrices, and P,(E, ) is the free-particle
positive energy projection operator given by

PuE,p) = QE)(ep+ B+ E). (2.5)

In other words, the coefficients of the sixteen Dirae
matrices appearing in the expression

(H — E)D(E, 1, pP.(E, p)

are all equal to zero. This process yields sixteen
equations, of which only eight are independent
since P, connects the coefficients of 8 with those
for @-p + E. The vector matrices, e.g., e, may
be conveniently resolved in the independent di-
rections #, p, and #,p. Also, it is convenient to use
a spherical coordinate system

x = rsin @ cos ¢,

y = rsin @ sin ¢,

z =171 cos 8,
where, as before, the polar direction is $ so that
(2.6)

It is found that the eight independent equations
are:

cos @ = 7P = a.

3G/3¢ = OM/op = aN/d¢ = dL/ag = 0,  (2.7)
[—(1 = a)@/ar) + (1 — a®)r'(3/3a) + ip(l — a)
— (2/0]IM + [(1 + a)(@/or) + (1 — aﬁ)r“(a/aa)

+ ip(1 + a) + (2/NIN + VG = 0, (2.8)
[(a/ar) + (1 — a)r (8/da) — ip]M + [(9/07)
— (1 4+ a)r'(8/9a) + ip]N — VL = 0, (2.9)

[—(@/or) — (1 — a)r"'(3/da) + p)G
+ [(1 = a)(3/3r) — (1 — a*)r"'(8/3a) — ip(1 — a)

+ (14 ar']L + [2MAV — 2E)]N =0, (2.10)
(A + a)(@/dr) + (1 — a®)r""(3/da)

+ip(l +a) + (1 — a)p™ 'L

+ [(8/0r) — (1 + a)r™'(8/0a) + ip]G

+ [2\O\V — 2B)M = 0. 2.11)

Substituting G and L from Eqgs. (2.8) and (2.9)
into Egs. (2.10) and (2.11), one obtains the coupled
second-order partial differential equations con-
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taining only M and N:

—f(8/da)(1 — a)M + [*(8°/9r") + (3 — f)r(a/or)
+ (8/9a)(1 — a)(3/0a)(1 + a) + (1 — f)(1 + ipr)
+ @) + V) — 2pr(V)IN = 0, (2.12)

f(8/8a)(1 4+ a)N + [F*(8*/ar") + (3 — fir(a/ar)

+ (3/3a)(1 + a)(9/9a)(1 — a) + (1 — )1 — pr)

4+ (pr)’ + V) — 2opr(rV)IM = 0, (2.13)
where

f = [r(d/dr) InrV],

v = AE/p, the Born parameter. (2.14)

In these and subsequent equations, all the differential
operators act on everything to their right in a
particular term. The sole exception to this con-
vention is the function { which is a function of r
only and not a differential operator.

It is apparent that by operating on Eq. (2.12)
by (8/da)(1 4 a) and using Eq. (2.13), one can
obtain a fourth-order partial differential equation
for M alone. Similarly, by operating on Eq. (2.13)
by (d/da)(1 — a), a fourth-order partial differential
equation for N can be obtained.

The first-order partial differential relations
simplify somewhat in terms of the parabolic co-
ordinate system associated with the nonrelativistic
problem, namely,

L =1p(l+a), &=1p(l—a). (215

In this coordinate system, Eqgs. (2.8)-(2.11) can
be written

[—52(6/3525 + %fz - 1]M

+ [E(8/08) + 3 + 1IN + 3¢V)G = 0, (2.16)
{a/afi) == %]M +‘ [8/652) + %]N
— V)& + &)L = 0, (2.17)

[—(8/08) + 31G + 2[£.(8/08,) — 38+ 1] + £)7'L
+ 2NEV)E 4 £ 4+ @IV =0, (2.18)
[(@/08) + 31G + 2[t.(0/08) + 36 + 1]G + &)7'L
+ 2D V)E )+ WM = 0. (2.19)

Also, the coupled second-order equations, Egs.
(2.12) and (2.13), become:

—fl(a/0%) — (8/3k) et + &2)™'M
+ {£(3°/98) + £u(0%/982)
+ [2 5= ffl(fl + EQ}_'](Q/BEI)
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+ [1 — fealt + £)7'10/08) + 3(1 — ) + w(rV)

- %(E! + Ea) - [O‘-""V)2 + f](f: + Ea)_l}N = 0,
(2.20)

fla/og) — (8/08))6E + £)7'N
+ (£(0°/081) + £.(0°/082)
+ (1 — fa(& + £)7'1(0/0%)
+ [2 — fa + £)7'10/08) — 31 — f) + w(V)

— 6+ 8+ (V) —flE + &)7IM = 0.
(2.21)

ASYMPTOTIC RELATIONS

The scattering solution has the asymptotic
behavior of a plane wave plus an outgoing spherical
wave. Thus,

lim ¢(E, 1) = &' ™" U(p)
+ e (B, 1, pU®P), (3.1)

where 6, and §, are the plane-wave and spherical-
wave phase factors, respectively, and the asymptotic
matrix operator D,(F, r, ) has the form

D.(E, 1, 9) = [Gs + AM e+ (p — )
+ AN.a-(p + ) + iL P ).

The functions G,, M,, N,, and L, are obtained
from the asymptotic form of G, M, N, and L,
respectively.

When operating on the plane wave spinor U(p)
of definite polarization, the matrices associated with
M, N, and L cannot produce the same plane-wave
spinor. This follows from the fact that the only
matrix operators, independent of polarization di-
rection, that have this property are the identity
and (ap + B). Consequently, since it is assumed
that the asymptotic plane wave is characterized
by U(p) with definite assigned polarization, only
the function G can contribute to the asymptotic
plane wave.

Asymptotically, the outgoing spherical wave
itself must be proportional to a plane-wave spinor
propagating in the # direction. Thus it follows that

(pa-f + B — E)D,(E, r, p)UH) = 0. (3.3)

This equation implies certain relations among the
asymptotic functions @,, M,, N,, and L,. By argu-
ments similar to those given in the preceding section,
the coefficients of the sixteen Dirac matrices appear-
ing in the expression

(pl!'f + ﬁ - E)ﬂ),(E, r, ?j)P+(E| ﬁ)

(3.2)
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are all equal to zero. Of the resulting sixteen equa-
tions, only two are independent. These asymptotie
relations are

N, =0,
@, + 2wM, + (1 + o)L, = 0,

where again » = AE/p, a = cos § = £-.
Since N, is zero, the asymptotic matrix operator is

D.(E, 1, p) = (G, + \M e (p — 7) + iLPF+d].
(3.5)

This is the same form as given in FWH, so the
potential scattering formulation for a general
central potential—cross sections for single, double,
and triple scattering, asymmetry functions, and
change of polarization direction—may be taken

over completely from that reference.
Specifically, the relation of N, and N is
lim [re”*®**N] = N, = 0.

r—s@

(3.4)

(3.6)

It is of interest to inquire under what conditions
N itself is identically zero (for all 7). If one assumes
that N is zero, then from Eq. (2.12) it is found that

f(a/9a)(1 — a)M = 0, (3.7)

where f is [r(d/dr) In rV]. Consequently, if rV is
not constant, i.e., for potentials other than the
Coulomb one, the assumption that N equals zero
implies that M = (1 — a) 'h(r), where h(r) is
some function of r only. Substituting this form in
Egs. (2.13) and (2.8), one obtains the relations:

F(d*/dr®) + (3 — Prid/dr) + (1 — ipr)(1 — f)
+ () + wV)* — 2mpr(rV)1RG) = 0O, (3.8)
G = (V) '[(d/dr) + " — iplh(r). (3.9)

But @ cannot be a function of r alone, as implied
by Eq. (3.9), since its asymptotic form must provide
a plane-wave contribution exp #(p-r -+ §,) which
has angular dependence. Thus, for any central
potential other than the Coulomb one, N cannot
be identically zero.

REDUCTION TO THE COULOMB CASE

The discussion will now be restricted to the case
of a Coulomb potential. Thus, V = —1/r and
f = r[(d/dr) In rV] = 0. The sign of the potential
V has been chosen negative so that positive inter-
action strength N\ corresponds to attractive scatter-
ing. The function N may now be chosen to be
identically zero, and Eq. (2.12) is satisfied without
imposing any restrictions on the angular dependence

1649

of M. The remaining independent relations among
G, M, and L [Egs. (2.8), (2.9), and (2.13)] become

G =e""[—(1 — a)y(ad/or)

+ (1 — &®)(9/0a) — 2] """ M, (4.1)
L= —¢"[r(d/ar) + 1 — a)(3/da)le "M, (4.2
{o@, a) + (W)}l — @)'M = 0, (4.3)

where O(r, a) is the self-adjoint differential operator
o(r, a) = {r *[(a/anr*(3/ar) + (8/0a)(1 — a*)(3/da)
- 31 —a™" = 2ipr(3 + W] + '}, (4.49)

Thus, the problem of finding the scattering solution
reduces to solving a single second-order partial-
differential equation for M only, subject to the
appropriate boundary conditions.

With the understanding that the operand is
independent of the aximuthal angle ¢, the operator
O(r, a) can be written

ofr,a) = {V:— [2°1 — a)]"
— 2ip + )y + 97}, (4.5)
where V* is the Laplacian operator. Thus Eq. (4.3)
is a Schriodinger equation, but the “potential” is
such that it is separable only in spherical
coordinates.®
In terms of the parabolic coordinates & =
ipr(1 4+ a), £ = tpr(l — a), the differential re-
lations for &, M, and L are:
G=1[—2-— 252(3/352)]M'
L=( + 52)[% == 6/651)]Ma
[6,(8°/98)) + £(3°/08) + (3/08) + 2(8/0%.)
-G+ 8 -G+ 'i'") . ?\2(51 + fz)_l]ﬂf = 0.
(4.8)

It is seen that the function M is not separable in
parabolic coordinates because of the term in A%
However, as a zero-order approximation, the term
in \* can be neglected. The resulting solution,
characterized by M,, that satisfies the secattering
boundary conditions is the single eigenfunction

Mo, &)
= —3P(1 — w)e" e TR+ v, 2, 8). (4.9)

Using Eqgs. (4.6) and (4.7), one obtains the auxiliary
results

Golki, &) = T(1 —w)e" %782 F (i, 1,£), (4.10)

L, &) = 0. (4-11)
® L. P. Eisenhart, Phys. Rev. 74, 87 (1948).

(4.6)
(4.7)
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This zero-order approximation is the well known
Sommerfeld-Maue approximation to the Dirac—
Coulomb problem. In the preceding equations,
"y is the regular confluent hypergeometric func-
tion and the normalization for M, has been chosen
so the asymptotic plane wave derivable from G,
corresponds to unit incident flux.

THE COULOMB GREEN'S FUNCTION

The partial differential equation [Eq. (4.3)] for
[r(1 — a)]!M(r) together with the boundary con-
dition that asymptotically M(r) behaves like a
plane wave plus an outgoing spherical wave, can
be replaced by the equivalent integral equation

[r(1 — @))M@ = [r1 — o)'M.(x)

— f G, )1 — )PME) def. (5.1)
Here, M,(r) is that solution (Eq. 4.9) of the homo-
geneous equation O(r, a)[r(l1 — a)l’M,(r) = 0
which asymptotically behaves like a plane wave
plus an outgoing spherical wave. The Green's
function G(r, r’), which like M (r) is independent
of the azimuthal angle ¢, must satisfy the partial
differential equation

olr, a)Gr, 1) = 2 *80r — 1)é(e — a’). (5.2

It must also satisfy the boundary conditions of
regularity at r = 0 and asymptotic behavior of
an outgoing spherical wave at r — o,

In this formulation, the differential operator
O(r, @) rather than 0(r, a)[r(1 — a)]! is considered
since the former is self-adjoint while the latter is
not. In the construction of a Green’s function,
eigenfunctions of the relevant operator and also
of the adjoint operator are required. Thus, the
simplification of considering a self-adjoint operator
is that only one set of eigenfunctions has to be used.

Since the inhomogeneous term of the integral
equation involves the factor (A/r’)?, it is most
convenient to develope the Green’s function in
terms of spherical coordinates. For this purpose,
one considers the solutions of the differential equation

o(r, aQ(r, a) = 0, (5.3)
which are separable in spherical coordinates. These
eigenfunctions have the form

Qu(r, a) = r_’m,,(r)a;,(a), (5.4)
where the angular function @.(a) and the radial
function ®,(r) satisfy the equations
[(8/3a)(1 — a®)(3/9a) — 3(1 — @)™

— i+ #la@ =0, (5.5

FRADKIN, HAMMER, AND WEBER

[(8°/0r") + p* + 24p(—§ — w)r™
+ G — E)y7'loue) = 0. (5.6)

The regular solution of the separated angular
equation is

@a) = [(1 — a)/(20)]}(d/da)[Ps(@) + P.-i(a)],

k=1,2,+--, (5.7

where P, is the Legendre polynomial of order k.
These solutions possess the orthogonality and
completeness relations:

(5.8)

ak,k':

f' @,()@u(a) da =
i a(a)Gi(a’) = 6la —a’), —1<a,a’ <1. (5.9

The differential equation for the radial function
®(r) is just the Whittaker equation in which the
independent variable is 2¢pr. The solution that is
regular at the origin is the Whittaker function®

Rulr) = M_y_., (2pre’™"?)

.-f/z)guee—.-p.

(2pre”
X Fyk 4+ 1+ v, 2k + 1, 2pre’™?). (5.10)

The solution that asymptotically behaves like
an outgoing spherical wave is the other Whittaker
function

Wiso(2pre ™),
[P(k - z‘y)]—l(2pre—ir/2}§-—ke|'pf

Ru(r) =

Il

Xf e~ T (2pre T 4 M dL. (5.11)
o

This has the asymptotic form
lim Wy, .(2pre“’?) = @pre ")V e,

r—@

(5.12)
The Wronskian of these two solutions of the radial
equation is
M sy ()N A/A2) [Wyssy 1™ T)]
— Wyoralae™ )@/d) M i (@)
— e"r(!—kir(flk + 1)/T'(k — 1v),

ir/2

(5.13)

where z = 2pre

The Green’s function G(r, r’) is now constructed
by weighting the terms of the angular delta func-
tion with radial functions satisfying the boundary

® The notation for the Whittaker functions that is adopted
here follows L. J. Slater, Confluent Hypergeomelric Funclions
(Cambridge University Press, Cambridge, England, 1960).
The properties of these functions quoted here are developed
in that reference.
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conditions and having a discontinuity in slope at
r = 7' Thus, the Green’s function is given by

6er) = X alr) al@)ada)

M—;—n.e(?p‘re"'”)Wh -'r.k(zp’r"e_" rfz)

% for r <7’ (5.14)

Wiysira@pre™ "M _y_,, 1 (2pr'e’ ™)
for r > 1.

The constant ¢, is determined by the condition

f olr, @), o) dr = 1, (5.15)
which follows from Eq. (5.2). By integrating over
the infinitesimal region ' — ¢ < r < ' 4 e for
which the Green’s function has a discontinuous
slope, and using the Wronskian relation and the
completeness of the @’s, one finds that

6 = Tk — w)e " [4apT(@k + DI, (5.16)

Now that the Green’s function has been de-
termined, the function M,(r’) given in Eq. (4.9)
can be substituted for M(r') in the integral of
Eq. (5.1) in order to obtain the first order of an
iterative expansion in A% For this purpose, it is
convenient to express M,(r’) in terms of spherical
coordinates instead of in terms of parabolic co-
ordinates. By referring to FWH, it is found that
M,(r) is given by the expansion

[ — QPM@) = &' 2p) ™ X2 (k/p)
k=1
times [T(k — @)/ T(2k + 1)]1'_’M_,_.~,_k(2p?‘e"'/Z)Gk(a).
(5.17)
10 This technique is discussed by P. M. Morse and H.

Feshback, Methods of Theoretical Physics (McGraw-Hill Book
Company, Ine., New York, 1953), Vol. I, p. 825 fi.
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Consequently,

fG(r, @) (1 — o) M) dr’

—— _%(p)—ieirﬂlenr/2 E (k);(_l)k

k=1
X [Tk — )/T(2k + D] aula)
X [W§+h.t(2p(re—‘.'m)ll(k: v 2])7')
+ JW_Q_i,.k(Zpre”m)Ig(k. v; 2pn)],

where

(5.18)

2pr

I(k, v; 2pr) = lim e lyT Moo alye’ ")) dy,

=0+ Jo
(5.19)
Iy(k, v; 2pr) = lim e Y Wiiiva
0% Ja2pr
X (g "My alye’™ ) dy.  (5.20)

For applications to potential scattering, the
asymptotic value for large r is of interest. In this
case, I,(k, »; ) = 0 and the definite integral
defining I,(k, »; =) can be evaluated" in terms of
known functions. This result is

Ik, v; ©) = (=1 """ T(2k)T(2k + 1)
X [Tk + 14+ )Tk — )]
X lir+ e+ 14+ a) — a(k — i), (5.21)

where i, is the derivative of the logarithm of the
gamma function. The \® contribution to M (r)
for asymptotic r obtained in this fashion by use
of the Green’s function is in complete agreement
with the Taylor’s expansion of the exaet solution
developed in FWH.

#uD. M. Fradkin, Ph.D. thesis, Iowa State University,

Ames, Towa, 1963 (unpublished).
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In the attempts to connect the Lorentz group and the internal symmetry group of fundamental
particles, a 16-parameter connected, noncompact group of rank 4 is studied in detail. The subgroup
structure, Lie algebra and its complex extension (which is A; in Cartan’s notation),little groups, the
inhomogeneous groups, and the group invariants are discussed.

I. INTRODUCTION

N previous notes'” we have discussed the ways

in which the quantum numbers of the real in-
homogeneous Lorentz group (mass, spin) appear
to be coupled to the internal quantum numbers,
and the desirability of considering larger groups
which contain the real Lorentz group as well as
other internal quantum numbers. In this connection
we study in this paper the mathematical properties
of the complex Lorentz group with a real metric.
We are interested mainly in the real form of the
group. The complex extension of this group, as
pointed out in the Appendix, is SU,. However, as
is known, the complex extension of a Lie group
does not determine its various real forms, and, to
our knowledge, the real form of the complex Lorentz
group has not been discussed in the literature.
Furthermore, the detailed relations obtained here,
will be used when this group is considered as a
possible exact symmetry group of elementary
particle interactions.”

II. THE GROUP

The group under study is the complex Lorentz
group with a real metric: the set of complex trans-
formations A in a four-dimensional space satisfying

the condition®

A'Ga = @G, (I1.1)

where G is the metric matrix
+1

¢=| !

=1
=il

* Supported in part by the U. 8. Air Force Office of Scien-
tific Research and the National Science Foundation.

1 A. O. Barut, Nuovo Cimento 32, 234 (1964 ).

* A. O. Barut, Phys. Rev. 135, B839 (1964); in Proceedings
of the Coral Gables gmference on Symmetry (W. H. Freeman
and Company, San Francisco, 1964 ).

® The superscripts 1, *, and T stand for Hermitian conju-
gate, complex conjugate, and transpose of a matrix, re-
spectively.

The transformations act on a space of complex
4-vectors z" with an invariant norm

l2]* = 2%, = 2°]* — '] — |&}| — |&*[ (11.2)

which is always real. In contrast to this, the complex
Lorentz group L used in the analytic continuation
of mass shell amplitudes® has the invariant metric

2 =" =" = = (11.3)
and satisfies the equation
L'GL = G. (11.4)

The group (I1.1) is intended to connect the space—
time and internal quantum numbers of elementary
particles. Whereas the group (I1.4) is isomorphic to
a direct product of two 2-by-2 unimodular groups,
the structure of the group (II.1) is much more
complex.®

First we discuss the tensor calculus within the
group and the definition of dotted and undotted,
upper and lower indices.

Together with A we must also consider the
transformations

A, AT, A%, AT
All these representations satisfy the same group
property ATGA = G.
We denote the indices of A as follows:

z! = Rl

1t follows from (I1.1) that A and A'™, and A* and
A" are equivalent:

A=@GA"'G,
A* = GATTG.

(I1.5)
(11.6)

4 See, for example, R. Jost in Theoretical Physics in the
20th Century, edited by M. Fierz and V. Weisskopf (Inter-
science Publishers, Inec., New York, 1960).

¢ For a discussion of this 12-parameter complex Lorentz
group (II.4) (plus 8 parameters of translations) from the point
of view of internal quantum numbers, see A. O. Barut, in
Symposium on Lorentz Group (University of Colorado Press,
Boulder, Colorado, 1964).
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But A and A* are not. There is no fixed matrix C
such that

A = CA*C;

in mathematical language, there is no inner auto-
morphism of this form. We denote the tensors
transforming under A* by dotted indices

zi = AJz(A) = A%).
The invariant form can now be written as
22 = gud'? (IL.7)
or
g2’ = guA A2,
where
9l 5A"e = Goe | A%5Mie = Gse

which is equivalent to (II.1). The elements of G
have always mixed indices:

A = guh'T g”, (11.5%
with

=Ly Ja¥

GarA = o (I1.6")

A =

¥ V., ér r
Gucll = 8i; Gug = Oy -
‘We have then the indices as follows:
A @A, transforming z,,

A¥ Aﬁ’ rr Ziy

A AN i 2,

. A‘if ’” Zi.
III. GROUP PROPERTIES

A. Connectedness

The A group is connected, that is, all group
elements can be reached by continuously varying
the parameters of the group. From the defining
equation (II.1) we get

(II1.1)

which is continuous. In particular it connects the
four pieces of the real Lorentz group: I, P, T and
PT. For example, the following element of A

det A = e

eu‘#: 0 0 0
i(ga—d1)
0 e 0 0 1 amg
0 0 COS by SN ¢y

0 0 —s8in ¢y COS ¢y
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where ¢,, ¢, and ¢, are real parameters, connects
continuously I, P, T, and PT.°
Together with A, Ae™ belongs also to the group.
We can therefore write
A=A ®e",

det A, = 1.

(IT1.3)

In other words, A has a one-dimensional (Abelian)
invariant subgroup. We show that A, is simple.
The group is, however, not simply connected, be-
cause the path e cannot be shrunk to zero.

B. Infinitesimal Generators and Subgroups

If we write
A =¢e", (I11.4)
we obtain for infinitesimal w
©'@ = Qo (I11.5)
or
WAGor = = Gueer
or
Woo = —Woo,
W = woi*, (IIL.6)
wi* = —w,.

The infinitesimal generators are either Hermitian
or skew Hermitian. There are 16 parameters in w.
We can choose the 16 infinitesimal generators as
follows:

I. m‘-"; = Wk

Real matrices must be antisymmetrie; pure
imaginary ones symmetric. We take

0 000 00 00 0o 000
_[o o010 00 00 0 001
Rl—o—loo.Ra—-on ol.Ra'—uuoo
0 0 0 0 0 0 -1 0 0 -1 0 0
and
0000 0 00 0 000 0
00 i o0 0000 000 i
U1=oion-Un=oon;sUa=nuuo
500 0 00 i 0 0 i 00
and
0 0 0
i 0 0
Cx= 0 102= i scs': 0 *
0 0 ‘

2. wa = w}X

Real matrices are now symmetric and pure

_ % The complex Lorentz group 511.4) connects only the
pieces I and PT together and P and T together (see Ref. 4).
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TasLe I. The commutation relations.

R| R] R: L; Lg Ls J‘:{l M’ ﬂ[: U: U! Ul C] Cﬂ Cl C

Rl 0 R] '—'Rz O L; —L; 0 Ml —M: A U| —Ul —U: Ul 0 0

R% 0 1 —Ls 0 Ll —M: 0 M1 —U. B U] 0 —Ug U! 0

Rl 0 L, '—L] 0 M: —Ml 0 —U: Ul D —Ul O U: 0
Ll 0 —Rl Rn a U| —Ug 0 —M: M: 0 0 Ml —M;
Ll 0 —Rl U. b —U; —M; 0 M1 Mz 0 0 '-'Mg
L’! 0 —U: —U; c —M: —M; 0 0 Ml 0 —M!
Ml 0 -Rn Ra 0 L; '—L1 0 0 "'Ll Ll.
M, 0 —Ry Ls 0 =L, =L 0 0 Ly
M, (1] Ly L 0 0 —L; 0 Ly

U, 0 —Ry =R, R, —-R, 0 0

U, 0 R’y 0 Ry =R, 0

3 0 Ry 0 —R; 0

1 0 0 0 0

2 0 0 0

2 0 0

0

a =2(Cy — C), b =2(C, —C),c =2(C: —C)
A =2(C, — Cs), B = 2(Cs — C3), D = 2(C; — C»)

imaginary ones are antisymmetric. We choose

00 01 0100 o0 -1 0
G°) w=G") (")
1 0 0

Qino 00 —:¢«0
(‘.; ).M;,=(‘.’ )

- *
3. woy = wek

T 000
o

0 .
0

There are four mutually commuting diagonal
generators C, C,, C,, C;. The group is of rank 4.
The generator C' commutes with all other generators;
it belongs to the one-dimensional invariant Abelian
subgroup. The remaining 15 generators form also a
Lie algebra under the operation of commutation.

The three generators R,, R,, R, represent a rota-
tion group, R, and L; (i = 1, 2, 3) span the real
Lorentz group, and the six generators R, M, span
a particular subgroup of complex Lorentz trans-
formations which is isomorphic to the real Lorentz
group. None of these subgroups is an invariant
subgroup.

Consider the subgroup of A of the form

(a 0)_
0B
We have then
a=¢" and B'B = I;

Lo
[

@ =

Thus B is the 3 X 3 unitary group U,. In A, we
can choose @ = 1, then det B = 1. Hence, the

subgroup
3.
0B

is the enlarged (to four dimensions) SU, group.
The infinitesimal generators R;, U, and the two
traceless combinations of C; span SU,. The com-
mutation relations are shown in Table I and the
subgroup structure schematically in Fig. 1.

The complex Lie algebra of A, and that of SU,
are identical (see Appendix I). The complex Lie
algebra can be brought easily into the Cartan’s
form,” and the roots can be determined by forming
the combinations R; #+ ¢U; and L; =& iM,.*"*

From structure constants it can be shown that
A, is semisimple.®

Fic. 1. Intersections of the subgroups.

7 See G. Racah, “Group Theory and Spectroscopy,”” Insti-
tute for Advanced Study Lecture Notes (1951) (reprinted
CERN 61-3); W. Pauli, “Continuous Groups in Quantum
Mechanics,” Lecture Notes, CERN-31; A. galsm, in Theo-
rchga)t Physics (lnf.ernat.ionaj Atomic Energy Agency, Vienna,
1963).

® See a much enlarged version of this paper—University
of Colorado preprint (unpublished)—in which other forms
of the generators and the invariants are given.
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IV. INHOMOGENEOUS GROUP AND INVARIANTS

We now consider inhomogeneous infinitesimal
transformations of the form

Z:: = 2, + (a,.- + iﬁu,)z’ + a, + ibm

where «,, is real antisymmetric and B,,, real sym-
metric:

(IV.1)

ﬁp! = ﬁip' (IV‘Z)

The group property implies the following relations
for the composition of the parameters of two in-
finitesimal transformations:

oy = O!:., + C!:.: + a;’nva: - ﬁ;mﬂ”"r

Bu = Bl + BUL + Bl + LB,

Xpyy = —0Qyy,

(IV.3)

and
a., = a. + al’ + al.a’”’" — BLb",
b, = bl + bl + Bla’ + albC.

We write the representations of these infinitesimal
transformations in the form

U=1-— %"M, + 36"N,, + 'k, + ibh,,

(Iv.3")

where M ,, is an antisymmetric set of real matrices
and N,, is a symmetric set of pure imaginary
matrices. The connection of these generators to
those discussed in previous sections is the following:

0 L, —L, L,
My=| O BBl _ ., @a
O Rg
0
XO() M2 _ﬂ/[:; Ml
No=| X0 U U|_y. avs
Xaz U2
Xﬂa

From the group property of the representations,
U = U'U”, and the Egs. (V.2) and (V.3), we obtain
the following commutation relations:

M., M) = —g..M,, — g.,M,.

gl e W .
Ny, No) = 0oy + g M,,

+ 9uM,, + g, M,.,  (IV.6)
[M,,, No)] = —g,eNu, + 9N,

= ng'p - g.pN,‘,.
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which agree with the previous form of the com-

mutators of the homogeneous group, and
[M.un k] = g.uﬂ]cv = ok,
[M#'- h'] = guﬂh' - gﬂhul

(IV.7)
[N.M': IC,] = —i(g,.,h, + gﬂhu)v
[N, k] = iguk, + gak,),
and
kas k] = [hy, B,] = [k, B] = 0. (IV.8)

In terms of these new generators the invariant of
the homogeneous group is given by

F =M, ,M" — N,N". (IV.9)

Now we can evaluate the invariants of the in-
homogeneous group. From the first two equations
we get

(M., '] = [M,,, K] = 0,

but k* and A* do not commute with N,,. From the
last two equations we obtain

Voo B+ 5] = 0. (IV.10)

Hence k* + h* is the first invariant of the inhomo-
geous group as might be expected from the invariant
norm discussed in See. II.

The other two invariants of the inhomogeneous
group are given by®

C, = (k* + R )N, — N, (k"k" + h"h")

+ M, (k"R — B'E") (IV.11)

and
C, = (K + B){(M, k™ + N, .h*)(MPky + N"hy)
+ (M,.h" — N,.k*)(M"*hy — N""kg)}
— M. (R — E'R*) — N, (K'k" + h*R")}®
— 3k + (M. M* + N.,N").

V. LITTLE GROUPS

(IV.11)

The concept of “little group’” arises in the rep-
resentation theory of the inhomogeneous group.'®
The little group of a “momentum’’ vector p = k + ih
is defined as the subgroup of the transformations
A, which leave p invariant:

Ap = p. (V.1)
If we write, infinitesimally, A, = 1 4+ w,, we have
w,p = 0. (V.2)

9 This has been found independently by Dr. Y. Murai

(private communication).
10 . P. Wigner, Ann. Math. 40, 149 (1939).
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TasLe II. Commutation relations for the little
group for Mg = 0.»

a b c d € R Uy f
a 0 0 0 0 d b —c -—d
b 0 0 0 e —a —d ¢
¢ 0 0 =t —d a —bhb
d 0 —a ¢ b a
e 0 0 0 0
I’y 0 fr =U
U, 0 R,
A 0

* The generator M — C + C: commutes with all the above eight and
forms a_ one-dimensional invariant subgroup. The other four mutually
commuting generators area = Ly + R, b = Ly — Rs, ¢ = My + Us, d =
My — Ui Furthermore, ¢ = Cy + C1,f = (C1 — C1) /2. The generators R,
Uy, f formn a rotation group.

It is then easy to identify the generators of the little
group. Because the norm p* = k* + A* = M is
invariant, the little groups may be classified accord-
ing to the values of this invariant:

(1) M > 0 : p can be brought to the form
(2%, 0, 0, 0), and, consequently, by (V.2) the little
group is the group U, consisting of the infinitesimal
generators R, U, and C.

(2) M} < 0 : p can be brought to the form
(0, 0, 0, 2, and the little group consists of the
generators Rl: Ul: Lz, La, ﬂl?) Ma, C’l: Ch and C

It is to be noted that the complex extension of
Cartan’s form for these two little groups is the same,

(3) M2 = 0 : the standard form of p is now
a(l, 0, 0, 1). The little group is now again a nine-
parameter group, but is now of rank 5 instead of 3
as in the two previous cases. It consists of the
infinitesimal generators: R,, U,, C,, C; (ie., the
group U,), Ly — Ry, Ry + L3, My + Us, My — U,
and M, — C + C,.

The commutation relations of this group is shown
in Table II.

A. O, BARUT

We also introduce the little “groups” with respect
to the real part of p, the actual linear momentum £k,
i.e., transformations which leave k invariant:

Ak + k) = (B + h'). (V.3)
These transformations have the usual little groups
of the real inhomogeneous group, i.e., part of the
set M,, in (IV.4) and the whole of N,, in (IV.5).
For k* > 0, we have the generators R and N,,;
for k* = 0, the set L,, Ly, R,, and N,,. The trans-
formations (V.3) do not form a Lie group unless
in the limit L = 0 in the case of k* > 0, and in
the limit L, = R, = R; = 0 in the case k* = 0.
In these limits the little “groups” are of rank 4.

APPENDIX I: A; GROUP AND SU,

The infinitesimal generators « of the unitary
group in four dimensions, U'U = I, satisfy the
relation wt = —w, or w% = —w,,. The 16 generators
can be chosen, therefore, in the notation of Sec. ITI1. B,
to be

R,U,C,—iM = M’, iL=1L1', and C.

Beesuse of the factors 7 in M and L, the commutation
relations of these generators, and hence the real
Lie algebra, are quite different. However, as far
as the complex Lie algebra, e.g., Cartan’s form,
is concerned, we can form exactly the same linear
combinations with complex coefficients replacing
M = M’ and L = —iL’ everywhere. Thus the
complex extensions of the Lie algebras of the two
groups A and U, (or A, and SU,) coincide. This is
an example of the known fact that to a given com-
plex Lie algebra there correspond, in general, more
than one real Lie algebra."

1 I,, Pontrayagin, Tepological Groups (Princeton Univer-
sity Press, Princeton, New Jersey, 1958), p. 265.
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All of the possible quadratic relations among the Dirac bilinear covariants which one may construct
using both the usual bispinor and its charge-conjugate are given. Many interesting purely algebraic

results are found for a general Dirac field.

I. INTRODUCTION

HE tensor bilinears which one may construct

from the Dirac v matrices and the Dirac bi-
spinor y are well known.' Such bilinears are the
ingredients for constructing interaction Lagrangians,
for example. The bilinears also occur in any analysis
of the hydrodynamics of the electron field,” or,
indeed, in any physical theory of the spinor particles.
Yet it is not generally recognized that the bilinear
quantities are not algebraically independent.

Some of the relations, quadrilinear in ¥, which
ocecur among the bilinears have been found by
Pauli,’ and by Kofink.* These relations have been
used in the Vigier® theory of elementary particles.
A very limited use of the Pauli-Kofink relations
has also oceurred in an attempted® geometric theory
of neutrinos.

It is the author’s belief that any relations exist-
ing among the Dirac bilinears are of importance for
physical understanding of the Dirac field, and for
this reason, a completely exhaustive study of such
relations has been made. In the present paper, we
present all possible quadrilinear combinations of
the usual Dirac bilinears, and of those bilinears one
may construct with the use of the charge-conjugate
field. We will not attempt any physical interpreta-
tion which may follow from such relations, but
merely point out that any proposed neutrino theory
of light or geometric theory of neutrinos must use
the given relations to some extent.

We will use Minkowski coordinates as is usual,
and our notation will be that used by Roman' in
his book.

II. USUAL BILINEARS

The Dirac equation may be written as

Tnau\{’ = —xy

' P. Roman, Theory of Elementary Particles (Interscience
Publishers, Ine., New York, 1961), 2nd ed., p. 112.

* L. de Broglic, Vigier Theory of Elementary Particles
(Elsevier Publishing Company, New York, 1963).

W, Pg.uh, Ann. Inst. Henri Poincaré 6, 109 (1936).

+ W. Kofink, Ann. Physik 30, 91 (1937); 37, 421 (1940).

¢ A. Inomata, Bull, Am. Phys. Soc. 9, 86 (1964).

with
Wlls T Wil = 2.
The adjoint spinor ¢ is defined by
¥ =y
as usual. The tensor bilinears one may construct
are

S = l;fl, P T~ il}'rs'ﬁ:
Vn = i%u’p- Au == i%&7p¢|
Ty = % Yy =), *Te = % e e Pt VA

where v, 18 v,v2ysyvs and *T,, is the dual tensor

which may also be expressed by

*an P 5T %Euvu.ﬁTcﬂ'

As Pauli® and Kofink* showed, there exist certain
algebraic relations among these bilinears. For
example, we have that

| .
V.V, =

= (),
— A4,

III. CHARGE-CONJUGATE BILINEARS

As is well known, the charge-conjugate bispinor,
defined by
V=09, -y =CNC,

obeys the Dirac equation. Using this new bi-
spinor, we may construct new bilinears. For example
we may construct

Stll = \ch#
which would be a new scalar. Or we could construct
VP = ifyy©

a new vector.

In general, we denote a bilinear constructed
with ¢° and ¢ by the superscript (1); a bilinear
using ¥, ¥° by the superseript (2). A bilinear which
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Tasre 1. A list of all quadratic relations among the Dirac bilinears.
v A Tn 'T, Vm v Ti” T(z) -T:Il ‘Tf,”
r v v r v » » br r r
V., —(8*+4 Py 0 P, iS4, 0 0 SV —sve pyn —py®
A, 0 S8t 4 p? PV, 18V, 0 0 PyR PV —8VN SYEM
L PA, P¥, V,V,—A,A, —iSPs,, —i8¥(M SV (2 b b * 4
+5%%,,
bl . 1S54, 18V, —iSPs,, a —PVV PV ° c . L
v 0 0 —iSvin —PV{V 0 2(St + P?) 0 —2i8V, 0 —2iS4,
—2PA, —2PV,
v 0 0 SV PV{®  2(S* 4 P?) 0 2i8V, 0 —2iS4, 0
—2PA4, +2PV,
T iSViY Py b e 0 %IV, VWY s 0 A
—2PA,
Y i —iSV» PV b ¢ —2iSV, 0 1 Vivyi i 0
—2PA,
$TE0 PYM —iSV}'f 4 . 0 —2i84, 0 ¢ . e
+2PV,
‘T —PV® WSy Ly 4 . —-2PV, 0 5 0 ¢ .
—2i84,

* TuyTpy + *Tyy* Ty = §(TepTap) bup-

b T 4 DT, = VoVl g V, V.

e B, e o B edh, e 4 e,

¢ T T ) .;.aﬁ- 'm'_r’, = — A’ Vyte) — A“ v,

. -;'“.mf' ylo) t;‘”'hl:Tp. - _f/uv’(.) =S f V@,

mr,,m 4 Tmmq‘”(u = 2V“V’ B 2,1“;“ + 2(P! — 8%)4,,.

! 1, 'up
) tf-:.m Tpy D 4 *T,, IRT, () = —2V,V, — 24,4, + 2(P? — S1)3,,.

AP T ) P T, () = 24V, + 24,V + 4iSPS,,.
¢ Tanth w4 Thentiow = — 2.4, Z24,V, + 4i8Ps,,.
am 1,2

uses ¢°, ¢° will be denoted by a superseript (C).
By simple ealculation, we easily see that
S(I) v S(?l - P(“ = P(Tl - A(l) - A(!] =i 0

and that the bilinears using both ¢° and ¢° are
the same, except for a sign, as the original bilinears.
We thus have only 6 new bilinears, viz.,

1) (2)
Vu ' Vu '
(1) 2)
Tpv 1 Tn: '
K1) *r(2)
Ty MG

In all, therefore, we have 12 bilinear quantities.
Two of these are scalars, and we thus have 10 bi-
linear vectors or antisymmetric tensors to combine.
These are therefore at most 55 quadrilinear ex-
pressions obtainable by tensor contraction.

IV. QUADRATIC RELATIONS

We have calculated all of the possible combina-
tions of the bilinears and give our results in Table I.
Insofar as was possible, the relations have been
subjected to internal consistency checks. Thus,
any errors in the table could only consist of sign

errors, which have been eliminated as nearly as
possible.

In constructing the charge-conjugate quantities,
we have made a choice for the C matrix (which is
not unique) which must be noted. If we use the
spinorial representation, the defining equation for C
gives the result

C = ayyva, a*a j |
and we have taken the value a = +1.

We also must point out that neither V" nor
V® has the reality conditions of a velocity vector

in Minkowski space, but the combinations
Vfl” _|__ V‘(':ll' 1(]/:1) — V:‘Z))
do have. That is, the spatial components are
Hermitian, with the time component anti-Hermitian.
Similar remarks apply to the tensors T}, T...
Of particular interest on the table are those
entities which vanish. We see that V", V¥ are
null vectors which are orthogonal to both V, and
A,. Similarly, both 7|}’ and 7§}’ are null tensors.
Some of the physical consequences of these
purely algebraic relations will be reported in a
later paper.
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The existence of a class of conserved tensors Ty, .. .0

5 -+ - 80d the existence of a class of con-

served tensor densities Vya,..-anf - - -#n 15 exhibited for the electromagnetic field. They are differ-
ential generalizations of the energy momentum tensor in the sense that they are bilinear in E and B,
contain n -+ m derivatives and are symmetric, trace free and divergenceless on their u» pair of indices.
Corresponding conserved quantities for the two-component neutrino field, linear gravitational field
and indeed for all massless free fields are also exhibited.

INTRODUCTION

ECENTLY, Lipkin has established a new con-
servation law for the electromagnetic field.'

He showed the existence of a third-rank tensor
density Z,,., which is a bilinear function of E and B
containing one derivative and which is conserved in
the sense that Z,,” . = 0, where the comma denotes

differentiation and thus for bounded fields
a f s _
i Zgde” =10, (1)

In this article, a class of conserved tensors and a
class of conserved tensor densities is exhibited. Dr.
Lipkin’s expression is simply related to one of the
conserved tensor densities.

TENSOR CONSERVATION LAWS

The Maxwell energy momentum tensor 7',, can be
written

T,, = —3(F..F°, + F2F"%), (2
where F,,* = }F*’¢,,.s is the dual of the electro-
magnetic field strengths F,,. The identity’

ALB', — A..*B°,* = 3g..(4,.B") @)
implies that Tur is symmetric in pr. If the energy

momentum tensor is generalized to

Toaroroutipn = — 3 Fusiaremant v a008a
+ Fﬂl’.ﬂx"'ﬂ‘*F"..‘|""-*)! (4)

then the same identity implies that its generalization
is also symmetric in pvr. The identity

A”Bu = _,A”tBut (5)

* Present Address: University of Nebraska, Lincoln,

Nebraska.
2D, M. Lipkin, J. Math. Phys. 5, 698 (1964).
3 Where A, Br* are antisymmetric tensors, and g,, is
the flat-space metric.

implies that both 7,, and its generalization are
trace free on the uv pair of indices. The proof that
Tivear--anss---pa 18 divergence free on v, is a trivial
extension of the proof that Tur is divergence free
and is obtained by using Maxwell’s equations in
the form

FP* ., =0 (6)
to show that

'_"%(Fmv.n.“'nnF’t.m’\"'ﬂ-

+ F“r.c."'n*.F'-.lﬂl"'ﬁ:)l (7)

in the

T"-n.---a-.B.---ﬂn.n =

and then by using Maxwell’s equations
equivalent form

Fye+ Foww+ Fop, =0
= Fovies T Fai® ¥ Fpuis” (8)
to show that
, TP - 1/ S,
+ Bugassivasl piovipt); 9

but this expression is zero by the identity Eq. (5).
The indices a, ... @, B ... B. are essentially
spectators and this allows one to generalize the
energy momentum tensor in a simple and perhaps
trivial manner. In general these new conserved
quantities cannot be expressed as derivatives of the
energy momentum tensor and they are thus in this
sense independent of it. When a current J* is present
then

T varcicamtrerpun = ¥ oiaiooianf v pyeepa
+ J'-ﬂn"'ﬂ-F'r.a.---n.)-
MASSLESS FREE FIELDS

(10)

In the Pauli-Fierz formulation of massless free
fields, a field of spin s is represented by the completely
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symmetric spinor ¢4, 4,...4,, With 2s indices, and the
field equations are

0% %54,.8n = 0, (11)

where 34% is the derivative operator in spinor form.
The current of the two-component neutrino field is
da¢s + H.c. where ¢, is the field strength and H.c.
denotes the Hermitian conjugate. It is obvious that
Eq. (11) implies that the current is conserved. The
expression for the current of the two-component
neutrino may be generalized to give a conservation
law for any Pauli-Fierz field. Consider

Dussiidy, Piyisat,, Hits (12)

It is a completely symmetric and a completely trace-
free tensor of rank 2s which is divergenceless on all
indices. In particular the expression in Eq. (12) is
for the electromagnetic field just the Maxwell energy
momentum tensor.

The expression for the current for the two-com-
ponent neutrino can also be generalized to give
derivative conservation laws. Consider

¢_4,.“,...ﬂ. lbg',gl...g_‘ + H.c. (13)

1t is a tensor of rank of n -+ m < 1 which is divergence-
less on the tensor index corresponding to the pair
of spin indices A4, B. Both generalizations can be
performed simultaneously to yield the derivative
conservation law exhibited in Eq. (14) for a field of
spin s.

aAB¢AA.---A. = 0;

(14)

For the case of the electromagnetic field, the expres-
sion in Eq. (14) and the expression in Eq. (4) are
identical.

There is a second class of conservation laws for the
two-component neutrino. The energy momentum
tensor of the two-component neutrino

t(padcn0s — H.c.) (15)

is also conserved. The expression in Eq. (15) is again
simply generalized to the arbitrary Pauli-Fierz field
of spin s

PavevhusarroeauPhieeBos,bo--n + H.C.

T:(¢A,-..A"acj¢3"...§" = H.c-). (16)

It can also be generalized by adding spectator
derivatives to yield

1:(¢A_a....¢_acﬁ¢glﬁ,...3._ = H.G.). (17)

THOMAS A. MORGAN

Combining the generalizations made in Eq. (16) and
Eq. (17), one obtains the conserved tensor densities

i(¢A.---A...a.---a.acﬁqbﬂ'.---é...ﬂa---ﬂu —_ H.c.). (18)

CONSERVED TENSOR DENSITIES

The tensor equivalent of Eq. (18) is for the
electromagnetic field

= v *
Bm = Fmr.q;---anF Y- PR 1N
a
= Fia awisital v.piseopas

This tensor density can be seen to be symmetrie in
w and » by means of the identity in Eq. (3). It is
more convenient for this purpose to write the identity
in Eq. (3) in the form

AMB’*: + A::B'u — %g#'(APthp)‘

Vivareorangi-gn 18 traceless in the ur pair of indices
because of the identity

AB* = A,.B"*.

| S———
(19)

(20)

(21)

The proof that V., .....as....s. 18 divergenceless in
wr and hence represents a conserved quantity has
exactly the same steps as were performed in Eqgs. (6)
through (9) except now the identity in Eq. (21) is
used in place of identity in Eq. (5).

A particularly interesting conserved tensor density
is V,,. which can be shown to be trace free and
divergenceless on all three indices. V,,. is essentially
the conserved tensor density discovered by Dr.
Lipkin, except that it can be easily shown to be
divergenceless on all indices, a fact not mentioned
by him. It is interesting that all the conserved
tensor expressions and all of the conserved tensor
density expressions are, like the Maxwell energy
momentum tensor, invariant under duality rotations.

Note added in proof: The existence of an infinite
number of conserved quantities for a free field fol-
lows from the fact that the number of quanta as-
sociated with each mode of a free field is constant
in time.
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